Coverage Report

Created: 2025-10-10 06:50

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/proc/self/cwd/libfaad/mdct.c
Line
Count
Source
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: mdct.c,v 1.47 2007/11/01 12:33:31 menno Exp $
29
**/
30
31
/*
32
 * Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform)
33
 * and consists of three steps: pre-(I)FFT complex multiplication, complex
34
 * (I)FFT, post-(I)FFT complex multiplication,
35
 *
36
 * As described in:
37
 *  P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the
38
 *  Implementation of Filter Banks Based on 'Time Domain Aliasing
39
 *  Cancellation'," IEEE Proc. on ICASSP'91, 1991, pp. 2209-2212.
40
 *
41
 *
42
 * As of April 6th 2002 completely rewritten.
43
 * This (I)MDCT can now be used for any data size n, where n is divisible by 8.
44
 *
45
 */
46
47
#include "common.h"
48
#include "structs.h"
49
50
#include <stdlib.h>
51
#ifdef _WIN32_WCE
52
#define assert(x)
53
#else
54
#include <assert.h>
55
#endif
56
57
#include "cfft.h"
58
#include "mdct.h"
59
#include "mdct_tab.h"
60
61
62
mdct_info *faad_mdct_init(uint16_t N)
63
20.8k
{
64
20.8k
    mdct_info *mdct = (mdct_info*)faad_malloc(sizeof(mdct_info));
65
66
20.8k
    assert(N % 8 == 0);
67
68
20.8k
    mdct->N = N;
69
70
    /* NOTE: For "small framelengths" in FIXED_POINT the coefficients need to be
71
     * scaled by sqrt("(nearest power of 2) > N" / N) */
72
73
    /* RE(mdct->sincos[k]) = scale*(real_t)(cos(2.0*M_PI*(k+1./8.) / (real_t)N));
74
     * IM(mdct->sincos[k]) = scale*(real_t)(sin(2.0*M_PI*(k+1./8.) / (real_t)N)); */
75
    /* scale is 1 for fixed point, sqrt(N) for floating point */
76
20.8k
    switch (N)
77
20.8k
    {
78
7.61k
    case 2048: mdct->sincos = (complex_t*)mdct_tab_2048; break;
79
7.61k
    case 256:  mdct->sincos = (complex_t*)mdct_tab_256;  break;
80
#ifdef LD_DEC
81
    case 1024: mdct->sincos = (complex_t*)mdct_tab_1024; break;
82
#endif
83
0
#ifdef ALLOW_SMALL_FRAMELENGTH
84
2.80k
    case 1920: mdct->sincos = (complex_t*)mdct_tab_1920; break;
85
2.80k
    case 240:  mdct->sincos = (complex_t*)mdct_tab_240;  break;
86
#ifdef LD_DEC
87
    case 960:  mdct->sincos = (complex_t*)mdct_tab_960;  break;
88
#endif
89
20.8k
#endif
90
#ifdef SSR_DEC
91
    case 512:  mdct->sincos = (complex_t*)mdct_tab_512;  break;
92
    case 64:   mdct->sincos = (complex_t*)mdct_tab_64;   break;
93
#endif
94
20.8k
    }
95
96
    /* initialise fft */
97
20.8k
    mdct->cfft = cffti(N/4);
98
99
#ifdef PROFILE
100
    mdct->cycles = 0;
101
    mdct->fft_cycles = 0;
102
#endif
103
104
20.8k
    return mdct;
105
20.8k
}
106
107
void faad_mdct_end(mdct_info *mdct)
108
74.1k
{
109
74.1k
    if (mdct != NULL)
110
74.1k
    {
111
#ifdef PROFILE
112
        printf("MDCT[%.4d]:         %I64d cycles\n", mdct->N, mdct->cycles);
113
        printf("CFFT[%.4d]:         %I64d cycles\n", mdct->N/4, mdct->fft_cycles);
114
#endif
115
116
74.1k
        cfftu(mdct->cfft);
117
118
74.1k
        faad_free(mdct);
119
74.1k
    }
120
74.1k
}
121
122
void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
123
1.19M
{
124
1.19M
    uint16_t k;
125
126
1.19M
    complex_t x;
127
1.19M
#ifdef ALLOW_SMALL_FRAMELENGTH
128
#ifdef FIXED_POINT
129
    real_t scale = 0, b_scale = 0;
130
#endif
131
1.19M
#endif
132
1.19M
    ALIGN complex_t Z1[512];
133
1.19M
    complex_t *sincos = mdct->sincos;
134
135
1.19M
    uint16_t N  = mdct->N;
136
1.19M
    uint16_t N2 = N >> 1;
137
1.19M
    uint16_t N4 = N >> 2;
138
1.19M
    uint16_t N8 = N >> 3;
139
140
#ifdef PROFILE
141
    int64_t count1, count2 = faad_get_ts();
142
#endif
143
144
1.19M
#ifdef ALLOW_SMALL_FRAMELENGTH
145
#ifdef FIXED_POINT
146
    /* detect non-power of 2 */
147
481k
    if (N & (N-1))
148
90.1k
    {
149
        /* adjust scale for non-power of 2 MDCT */
150
        /* 2048/1920 */
151
90.1k
        b_scale = 1;
152
90.1k
        scale = COEF_CONST(1.0666666666666667);
153
90.1k
    }
154
#endif
155
1.19M
#endif
156
157
    /* pre-IFFT complex multiplication */
158
360M
    for (k = 0; k < N4; k++)
159
359M
    {
160
359M
        ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
161
359M
            X_in[2*k], X_in[N2 - 1 - 2*k], RE(sincos[k]), IM(sincos[k]));
162
359M
    }
163
164
#ifdef PROFILE
165
    count1 = faad_get_ts();
166
#endif
167
168
    /* complex IFFT, any non-scaling FFT can be used here */
169
1.19M
    cfftb(mdct->cfft, Z1);
170
171
#ifdef PROFILE
172
    count1 = faad_get_ts() - count1;
173
#endif
174
175
    /* post-IFFT complex multiplication */
176
360M
    for (k = 0; k < N4; k++)
177
359M
    {
178
359M
        RE(x) = RE(Z1[k]);
179
359M
        IM(x) = IM(Z1[k]);
180
359M
        ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
181
359M
            IM(x), RE(x), RE(sincos[k]), IM(sincos[k]));
182
183
359M
#ifdef ALLOW_SMALL_FRAMELENGTH
184
#ifdef FIXED_POINT
185
        /* non-power of 2 MDCT scaling */
186
149M
        if (b_scale)
187
22.5M
        {
188
22.5M
            RE(Z1[k]) = MUL_C(RE(Z1[k]), scale);
189
22.5M
            IM(Z1[k]) = MUL_C(IM(Z1[k]), scale);
190
22.5M
        }
191
#endif
192
359M
#endif
193
359M
    }
194
195
    /* reordering */
196
91.1M
    for (k = 0; k < N8; k+=2)
197
89.9M
    {
198
89.9M
        X_out[              2*k] =  IM(Z1[N8 +     k]);
199
89.9M
        X_out[          2 + 2*k] =  IM(Z1[N8 + 1 + k]);
200
201
89.9M
        X_out[          1 + 2*k] = -RE(Z1[N8 - 1 - k]);
202
89.9M
        X_out[          3 + 2*k] = -RE(Z1[N8 - 2 - k]);
203
204
89.9M
        X_out[N4 +          2*k] =  RE(Z1[         k]);
205
89.9M
        X_out[N4 +    + 2 + 2*k] =  RE(Z1[     1 + k]);
206
207
89.9M
        X_out[N4 +      1 + 2*k] = -IM(Z1[N4 - 1 - k]);
208
89.9M
        X_out[N4 +      3 + 2*k] = -IM(Z1[N4 - 2 - k]);
209
210
89.9M
        X_out[N2 +          2*k] =  RE(Z1[N8 +     k]);
211
89.9M
        X_out[N2 +    + 2 + 2*k] =  RE(Z1[N8 + 1 + k]);
212
213
89.9M
        X_out[N2 +      1 + 2*k] = -IM(Z1[N8 - 1 - k]);
214
89.9M
        X_out[N2 +      3 + 2*k] = -IM(Z1[N8 - 2 - k]);
215
216
89.9M
        X_out[N2 + N4 +     2*k] = -IM(Z1[         k]);
217
89.9M
        X_out[N2 + N4 + 2 + 2*k] = -IM(Z1[     1 + k]);
218
219
89.9M
        X_out[N2 + N4 + 1 + 2*k] =  RE(Z1[N4 - 1 - k]);
220
89.9M
        X_out[N2 + N4 + 3 + 2*k] =  RE(Z1[N4 - 2 - k]);
221
89.9M
    }
222
223
#ifdef PROFILE
224
    count2 = faad_get_ts() - count2;
225
    mdct->fft_cycles += count1;
226
    mdct->cycles += (count2 - count1);
227
#endif
228
1.19M
}
faad_imdct
Line
Count
Source
123
481k
{
124
481k
    uint16_t k;
125
126
481k
    complex_t x;
127
481k
#ifdef ALLOW_SMALL_FRAMELENGTH
128
481k
#ifdef FIXED_POINT
129
481k
    real_t scale = 0, b_scale = 0;
130
481k
#endif
131
481k
#endif
132
481k
    ALIGN complex_t Z1[512];
133
481k
    complex_t *sincos = mdct->sincos;
134
135
481k
    uint16_t N  = mdct->N;
136
481k
    uint16_t N2 = N >> 1;
137
481k
    uint16_t N4 = N >> 2;
138
481k
    uint16_t N8 = N >> 3;
139
140
#ifdef PROFILE
141
    int64_t count1, count2 = faad_get_ts();
142
#endif
143
144
481k
#ifdef ALLOW_SMALL_FRAMELENGTH
145
481k
#ifdef FIXED_POINT
146
    /* detect non-power of 2 */
147
481k
    if (N & (N-1))
148
90.1k
    {
149
        /* adjust scale for non-power of 2 MDCT */
150
        /* 2048/1920 */
151
90.1k
        b_scale = 1;
152
90.1k
        scale = COEF_CONST(1.0666666666666667);
153
90.1k
    }
154
481k
#endif
155
481k
#endif
156
157
    /* pre-IFFT complex multiplication */
158
150M
    for (k = 0; k < N4; k++)
159
149M
    {
160
149M
        ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
161
149M
            X_in[2*k], X_in[N2 - 1 - 2*k], RE(sincos[k]), IM(sincos[k]));
162
149M
    }
163
164
#ifdef PROFILE
165
    count1 = faad_get_ts();
166
#endif
167
168
    /* complex IFFT, any non-scaling FFT can be used here */
169
481k
    cfftb(mdct->cfft, Z1);
170
171
#ifdef PROFILE
172
    count1 = faad_get_ts() - count1;
173
#endif
174
175
    /* post-IFFT complex multiplication */
176
150M
    for (k = 0; k < N4; k++)
177
149M
    {
178
149M
        RE(x) = RE(Z1[k]);
179
149M
        IM(x) = IM(Z1[k]);
180
149M
        ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
181
149M
            IM(x), RE(x), RE(sincos[k]), IM(sincos[k]));
182
183
149M
#ifdef ALLOW_SMALL_FRAMELENGTH
184
149M
#ifdef FIXED_POINT
185
        /* non-power of 2 MDCT scaling */
186
149M
        if (b_scale)
187
22.5M
        {
188
22.5M
            RE(Z1[k]) = MUL_C(RE(Z1[k]), scale);
189
22.5M
            IM(Z1[k]) = MUL_C(IM(Z1[k]), scale);
190
22.5M
        }
191
149M
#endif
192
149M
#endif
193
149M
    }
194
195
    /* reordering */
196
37.8M
    for (k = 0; k < N8; k+=2)
197
37.3M
    {
198
37.3M
        X_out[              2*k] =  IM(Z1[N8 +     k]);
199
37.3M
        X_out[          2 + 2*k] =  IM(Z1[N8 + 1 + k]);
200
201
37.3M
        X_out[          1 + 2*k] = -RE(Z1[N8 - 1 - k]);
202
37.3M
        X_out[          3 + 2*k] = -RE(Z1[N8 - 2 - k]);
203
204
37.3M
        X_out[N4 +          2*k] =  RE(Z1[         k]);
205
37.3M
        X_out[N4 +    + 2 + 2*k] =  RE(Z1[     1 + k]);
206
207
37.3M
        X_out[N4 +      1 + 2*k] = -IM(Z1[N4 - 1 - k]);
208
37.3M
        X_out[N4 +      3 + 2*k] = -IM(Z1[N4 - 2 - k]);
209
210
37.3M
        X_out[N2 +          2*k] =  RE(Z1[N8 +     k]);
211
37.3M
        X_out[N2 +    + 2 + 2*k] =  RE(Z1[N8 + 1 + k]);
212
213
37.3M
        X_out[N2 +      1 + 2*k] = -IM(Z1[N8 - 1 - k]);
214
37.3M
        X_out[N2 +      3 + 2*k] = -IM(Z1[N8 - 2 - k]);
215
216
37.3M
        X_out[N2 + N4 +     2*k] = -IM(Z1[         k]);
217
37.3M
        X_out[N2 + N4 + 2 + 2*k] = -IM(Z1[     1 + k]);
218
219
37.3M
        X_out[N2 + N4 + 1 + 2*k] =  RE(Z1[N4 - 1 - k]);
220
37.3M
        X_out[N2 + N4 + 3 + 2*k] =  RE(Z1[N4 - 2 - k]);
221
37.3M
    }
222
223
#ifdef PROFILE
224
    count2 = faad_get_ts() - count2;
225
    mdct->fft_cycles += count1;
226
    mdct->cycles += (count2 - count1);
227
#endif
228
481k
}
faad_imdct
Line
Count
Source
123
715k
{
124
715k
    uint16_t k;
125
126
715k
    complex_t x;
127
715k
#ifdef ALLOW_SMALL_FRAMELENGTH
128
#ifdef FIXED_POINT
129
    real_t scale = 0, b_scale = 0;
130
#endif
131
715k
#endif
132
715k
    ALIGN complex_t Z1[512];
133
715k
    complex_t *sincos = mdct->sincos;
134
135
715k
    uint16_t N  = mdct->N;
136
715k
    uint16_t N2 = N >> 1;
137
715k
    uint16_t N4 = N >> 2;
138
715k
    uint16_t N8 = N >> 3;
139
140
#ifdef PROFILE
141
    int64_t count1, count2 = faad_get_ts();
142
#endif
143
144
715k
#ifdef ALLOW_SMALL_FRAMELENGTH
145
#ifdef FIXED_POINT
146
    /* detect non-power of 2 */
147
    if (N & (N-1))
148
    {
149
        /* adjust scale for non-power of 2 MDCT */
150
        /* 2048/1920 */
151
        b_scale = 1;
152
        scale = COEF_CONST(1.0666666666666667);
153
    }
154
#endif
155
715k
#endif
156
157
    /* pre-IFFT complex multiplication */
158
210M
    for (k = 0; k < N4; k++)
159
210M
    {
160
210M
        ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
161
210M
            X_in[2*k], X_in[N2 - 1 - 2*k], RE(sincos[k]), IM(sincos[k]));
162
210M
    }
163
164
#ifdef PROFILE
165
    count1 = faad_get_ts();
166
#endif
167
168
    /* complex IFFT, any non-scaling FFT can be used here */
169
715k
    cfftb(mdct->cfft, Z1);
170
171
#ifdef PROFILE
172
    count1 = faad_get_ts() - count1;
173
#endif
174
175
    /* post-IFFT complex multiplication */
176
210M
    for (k = 0; k < N4; k++)
177
210M
    {
178
210M
        RE(x) = RE(Z1[k]);
179
210M
        IM(x) = IM(Z1[k]);
180
210M
        ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
181
210M
            IM(x), RE(x), RE(sincos[k]), IM(sincos[k]));
182
183
210M
#ifdef ALLOW_SMALL_FRAMELENGTH
184
#ifdef FIXED_POINT
185
        /* non-power of 2 MDCT scaling */
186
        if (b_scale)
187
        {
188
            RE(Z1[k]) = MUL_C(RE(Z1[k]), scale);
189
            IM(Z1[k]) = MUL_C(IM(Z1[k]), scale);
190
        }
191
#endif
192
210M
#endif
193
210M
    }
194
195
    /* reordering */
196
53.2M
    for (k = 0; k < N8; k+=2)
197
52.5M
    {
198
52.5M
        X_out[              2*k] =  IM(Z1[N8 +     k]);
199
52.5M
        X_out[          2 + 2*k] =  IM(Z1[N8 + 1 + k]);
200
201
52.5M
        X_out[          1 + 2*k] = -RE(Z1[N8 - 1 - k]);
202
52.5M
        X_out[          3 + 2*k] = -RE(Z1[N8 - 2 - k]);
203
204
52.5M
        X_out[N4 +          2*k] =  RE(Z1[         k]);
205
52.5M
        X_out[N4 +    + 2 + 2*k] =  RE(Z1[     1 + k]);
206
207
52.5M
        X_out[N4 +      1 + 2*k] = -IM(Z1[N4 - 1 - k]);
208
52.5M
        X_out[N4 +      3 + 2*k] = -IM(Z1[N4 - 2 - k]);
209
210
52.5M
        X_out[N2 +          2*k] =  RE(Z1[N8 +     k]);
211
52.5M
        X_out[N2 +    + 2 + 2*k] =  RE(Z1[N8 + 1 + k]);
212
213
52.5M
        X_out[N2 +      1 + 2*k] = -IM(Z1[N8 - 1 - k]);
214
52.5M
        X_out[N2 +      3 + 2*k] = -IM(Z1[N8 - 2 - k]);
215
216
52.5M
        X_out[N2 + N4 +     2*k] = -IM(Z1[         k]);
217
52.5M
        X_out[N2 + N4 + 2 + 2*k] = -IM(Z1[     1 + k]);
218
219
52.5M
        X_out[N2 + N4 + 1 + 2*k] =  RE(Z1[N4 - 1 - k]);
220
52.5M
        X_out[N2 + N4 + 3 + 2*k] =  RE(Z1[N4 - 2 - k]);
221
52.5M
    }
222
223
#ifdef PROFILE
224
    count2 = faad_get_ts() - count2;
225
    mdct->fft_cycles += count1;
226
    mdct->cycles += (count2 - count1);
227
#endif
228
715k
}
229
230
#ifdef LTP_DEC
231
void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
232
13.7k
{
233
13.7k
    uint16_t k;
234
235
13.7k
    complex_t x;
236
13.7k
    ALIGN complex_t Z1[512];
237
13.7k
    complex_t *sincos = mdct->sincos;
238
239
13.7k
    uint16_t N  = mdct->N;
240
13.7k
    uint16_t N2 = N >> 1;
241
13.7k
    uint16_t N4 = N >> 2;
242
13.7k
    uint16_t N8 = N >> 3;
243
244
#ifndef FIXED_POINT
245
6.88k
  real_t scale = REAL_CONST(N);
246
#else
247
6.87k
  real_t scale = REAL_CONST(4.0/N);
248
#endif
249
250
13.7k
#ifdef ALLOW_SMALL_FRAMELENGTH
251
#ifdef FIXED_POINT
252
    /* detect non-power of 2 */
253
6.87k
    if (N & (N-1))
254
3.42k
    {
255
        /* adjust scale for non-power of 2 MDCT */
256
        /* *= sqrt(2048/1920) */
257
3.42k
        scale = MUL_C(scale, COEF_CONST(1.0327955589886444));
258
3.42k
    }
259
#endif
260
13.7k
#endif
261
262
    /* pre-FFT complex multiplication */
263
3.37M
    for (k = 0; k < N8; k++)
264
3.35M
    {
265
3.35M
        uint16_t n = k << 1;
266
3.35M
        RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 +     n];
267
3.35M
        IM(x) = X_in[    N4 +     n] - X_in[    N4 - 1 - n];
268
269
3.35M
        ComplexMult(&RE(Z1[k]), &IM(Z1[k]),
270
3.35M
            RE(x), IM(x), RE(sincos[k]), IM(sincos[k]));
271
272
3.35M
        RE(Z1[k]) = MUL_R(RE(Z1[k]), scale);
273
3.35M
        IM(Z1[k]) = MUL_R(IM(Z1[k]), scale);
274
275
3.35M
        RE(x) =  X_in[N2 - 1 - n] - X_in[        n];
276
3.35M
        IM(x) =  X_in[N2 +     n] + X_in[N - 1 - n];
277
278
3.35M
        ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]),
279
3.35M
            RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8]));
280
281
3.35M
        RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale);
282
3.35M
        IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale);
283
3.35M
    }
284
285
    /* complex FFT, any non-scaling FFT can be used here  */
286
13.7k
    cfftf(mdct->cfft, Z1);
287
288
    /* post-FFT complex multiplication */
289
6.73M
    for (k = 0; k < N4; k++)
290
6.71M
    {
291
6.71M
        uint16_t n = k << 1;
292
6.71M
        ComplexMult(&RE(x), &IM(x),
293
6.71M
            RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k]));
294
295
6.71M
        X_out[         n] = -RE(x);
296
6.71M
        X_out[N2 - 1 - n] =  IM(x);
297
6.71M
        X_out[N2 +     n] = -IM(x);
298
6.71M
        X_out[N  - 1 - n] =  RE(x);
299
6.71M
    }
300
13.7k
}
faad_mdct
Line
Count
Source
232
6.88k
{
233
6.88k
    uint16_t k;
234
235
6.88k
    complex_t x;
236
6.88k
    ALIGN complex_t Z1[512];
237
6.88k
    complex_t *sincos = mdct->sincos;
238
239
6.88k
    uint16_t N  = mdct->N;
240
6.88k
    uint16_t N2 = N >> 1;
241
6.88k
    uint16_t N4 = N >> 2;
242
6.88k
    uint16_t N8 = N >> 3;
243
244
6.88k
#ifndef FIXED_POINT
245
6.88k
  real_t scale = REAL_CONST(N);
246
#else
247
  real_t scale = REAL_CONST(4.0/N);
248
#endif
249
250
6.88k
#ifdef ALLOW_SMALL_FRAMELENGTH
251
#ifdef FIXED_POINT
252
    /* detect non-power of 2 */
253
    if (N & (N-1))
254
    {
255
        /* adjust scale for non-power of 2 MDCT */
256
        /* *= sqrt(2048/1920) */
257
        scale = MUL_C(scale, COEF_CONST(1.0327955589886444));
258
    }
259
#endif
260
6.88k
#endif
261
262
    /* pre-FFT complex multiplication */
263
1.67M
    for (k = 0; k < N8; k++)
264
1.66M
    {
265
1.66M
        uint16_t n = k << 1;
266
1.66M
        RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 +     n];
267
1.66M
        IM(x) = X_in[    N4 +     n] - X_in[    N4 - 1 - n];
268
269
1.66M
        ComplexMult(&RE(Z1[k]), &IM(Z1[k]),
270
1.66M
            RE(x), IM(x), RE(sincos[k]), IM(sincos[k]));
271
272
1.66M
        RE(Z1[k]) = MUL_R(RE(Z1[k]), scale);
273
1.66M
        IM(Z1[k]) = MUL_R(IM(Z1[k]), scale);
274
275
1.66M
        RE(x) =  X_in[N2 - 1 - n] - X_in[        n];
276
1.66M
        IM(x) =  X_in[N2 +     n] + X_in[N - 1 - n];
277
278
1.66M
        ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]),
279
1.66M
            RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8]));
280
281
1.66M
        RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale);
282
1.66M
        IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale);
283
1.66M
    }
284
285
    /* complex FFT, any non-scaling FFT can be used here  */
286
6.88k
    cfftf(mdct->cfft, Z1);
287
288
    /* post-FFT complex multiplication */
289
3.33M
    for (k = 0; k < N4; k++)
290
3.32M
    {
291
3.32M
        uint16_t n = k << 1;
292
3.32M
        ComplexMult(&RE(x), &IM(x),
293
3.32M
            RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k]));
294
295
3.32M
        X_out[         n] = -RE(x);
296
3.32M
        X_out[N2 - 1 - n] =  IM(x);
297
3.32M
        X_out[N2 +     n] = -IM(x);
298
3.32M
        X_out[N  - 1 - n] =  RE(x);
299
3.32M
    }
300
6.88k
}
faad_mdct
Line
Count
Source
232
6.87k
{
233
6.87k
    uint16_t k;
234
235
6.87k
    complex_t x;
236
6.87k
    ALIGN complex_t Z1[512];
237
6.87k
    complex_t *sincos = mdct->sincos;
238
239
6.87k
    uint16_t N  = mdct->N;
240
6.87k
    uint16_t N2 = N >> 1;
241
6.87k
    uint16_t N4 = N >> 2;
242
6.87k
    uint16_t N8 = N >> 3;
243
244
#ifndef FIXED_POINT
245
  real_t scale = REAL_CONST(N);
246
#else
247
6.87k
  real_t scale = REAL_CONST(4.0/N);
248
6.87k
#endif
249
250
6.87k
#ifdef ALLOW_SMALL_FRAMELENGTH
251
6.87k
#ifdef FIXED_POINT
252
    /* detect non-power of 2 */
253
6.87k
    if (N & (N-1))
254
3.42k
    {
255
        /* adjust scale for non-power of 2 MDCT */
256
        /* *= sqrt(2048/1920) */
257
3.42k
        scale = MUL_C(scale, COEF_CONST(1.0327955589886444));
258
3.42k
    }
259
6.87k
#endif
260
6.87k
#endif
261
262
    /* pre-FFT complex multiplication */
263
1.70M
    for (k = 0; k < N8; k++)
264
1.69M
    {
265
1.69M
        uint16_t n = k << 1;
266
1.69M
        RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 +     n];
267
1.69M
        IM(x) = X_in[    N4 +     n] - X_in[    N4 - 1 - n];
268
269
1.69M
        ComplexMult(&RE(Z1[k]), &IM(Z1[k]),
270
1.69M
            RE(x), IM(x), RE(sincos[k]), IM(sincos[k]));
271
272
1.69M
        RE(Z1[k]) = MUL_R(RE(Z1[k]), scale);
273
1.69M
        IM(Z1[k]) = MUL_R(IM(Z1[k]), scale);
274
275
1.69M
        RE(x) =  X_in[N2 - 1 - n] - X_in[        n];
276
1.69M
        IM(x) =  X_in[N2 +     n] + X_in[N - 1 - n];
277
278
1.69M
        ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]),
279
1.69M
            RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8]));
280
281
1.69M
        RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale);
282
1.69M
        IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale);
283
1.69M
    }
284
285
    /* complex FFT, any non-scaling FFT can be used here  */
286
6.87k
    cfftf(mdct->cfft, Z1);
287
288
    /* post-FFT complex multiplication */
289
3.39M
    for (k = 0; k < N4; k++)
290
3.39M
    {
291
3.39M
        uint16_t n = k << 1;
292
3.39M
        ComplexMult(&RE(x), &IM(x),
293
3.39M
            RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k]));
294
295
3.39M
        X_out[         n] = -RE(x);
296
3.39M
        X_out[N2 - 1 - n] =  IM(x);
297
3.39M
        X_out[N2 +     n] = -IM(x);
298
3.39M
        X_out[N  - 1 - n] =  RE(x);
299
3.39M
    }
300
6.87k
}
301
#endif