Coverage Report

Created: 2025-11-16 06:18

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/proc/self/cwd/libfaad/sbr_hfadj.c
Line
Count
Source
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: sbr_hfadj.c,v 1.23 2008/09/19 22:50:20 menno Exp $
29
**/
30
31
/* High Frequency adjustment */
32
#include <float.h>
33
34
#include "common.h"
35
#include "structs.h"
36
37
#ifdef SBR_DEC
38
39
#include "sbr_syntax.h"
40
#include "sbr_hfadj.h"
41
42
#include "sbr_noise.h"
43
44
45
/* static function declarations */
46
static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
47
                                         qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
48
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch);
49
#ifdef SBR_LOW_POWER
50
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
51
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
52
#endif
53
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
54
55
56
uint8_t hf_adjustment(sbr_info *sbr, qmf_t Xsbr[MAX_NTSRHFG][64]
57
#ifdef SBR_LOW_POWER
58
                      ,real_t *deg /* aliasing degree */
59
#endif
60
                      ,uint8_t ch)
61
24.9k
{
62
24.9k
    ALIGN sbr_hfadj_info adj = {{{0}}};
63
24.9k
    uint8_t ret = 0;
64
65
24.9k
    if (sbr->bs_frame_class[ch] == FIXFIX)
66
6.49k
    {
67
6.49k
        sbr->l_A[ch] = -1;
68
18.4k
    } else if (sbr->bs_frame_class[ch] == VARFIX) {
69
8.26k
        if (sbr->bs_pointer[ch] > 1)
70
2.13k
            sbr->l_A[ch] = sbr->bs_pointer[ch] - 1;
71
6.12k
        else
72
6.12k
            sbr->l_A[ch] = -1;
73
10.1k
    } else {
74
10.1k
        if (sbr->bs_pointer[ch] == 0)
75
3.20k
            sbr->l_A[ch] = -1;
76
6.94k
        else
77
6.94k
            sbr->l_A[ch] = sbr->L_E[ch] + 1 - sbr->bs_pointer[ch];
78
10.1k
    }
79
80
24.9k
    ret = estimate_current_envelope(sbr, &adj, Xsbr, ch);
81
24.9k
    if (ret > 0)
82
768
        return 1;
83
84
24.1k
    calculate_gain(sbr, &adj, ch);
85
86
#ifdef SBR_LOW_POWER
87
    calc_gain_groups(sbr, &adj, deg, ch);
88
    aliasing_reduction(sbr, &adj, deg, ch);
89
#endif
90
91
24.1k
    hf_assembly(sbr, &adj, Xsbr, ch);
92
93
24.1k
    return 0;
94
24.9k
}
95
96
static uint8_t get_S_mapped(sbr_info *sbr, uint8_t ch, uint8_t l, uint8_t current_band)
97
206k
{
98
206k
    if (sbr->f[ch][l] == HI_RES)
99
91.8k
    {
100
        /* in case of using f_table_high we just have 1 to 1 mapping
101
         * from bs_add_harmonic[l][k]
102
         */
103
91.8k
        if ((l >= sbr->l_A[ch]) ||
104
30.1k
            (sbr->bs_add_harmonic_prev[ch][current_band] && sbr->bs_add_harmonic_flag_prev[ch]))
105
63.1k
        {
106
63.1k
            return sbr->bs_add_harmonic[ch][current_band];
107
63.1k
        }
108
115k
    } else {
109
115k
        uint8_t b, lb, ub;
110
111
        /* in case of f_table_low we check if any of the HI_RES bands
112
         * within this LO_RES band has bs_add_harmonic[l][k] turned on
113
         * (note that borders in the LO_RES table are also present in
114
         * the HI_RES table)
115
         */
116
117
        /* find first HI_RES band in current LO_RES band */
118
115k
        lb = 2*current_band - ((sbr->N_high & 1) ? 1 : 0);
119
        /* find first HI_RES band in next LO_RES band */
120
115k
        ub = 2*(current_band+1) - ((sbr->N_high & 1) ? 1 : 0);
121
122
        /* check all HI_RES bands in current LO_RES band for sinusoid */
123
299k
        for (b = lb; b < ub; b++)
124
193k
        {
125
193k
            if ((l >= sbr->l_A[ch]) ||
126
56.5k
                (sbr->bs_add_harmonic_prev[ch][b] && sbr->bs_add_harmonic_flag_prev[ch]))
127
138k
            {
128
138k
                if (sbr->bs_add_harmonic[ch][b] == 1)
129
9.82k
                    return 1;
130
138k
            }
131
193k
        }
132
115k
    }
133
134
133k
    return 0;
135
206k
}
136
137
static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
138
                                         qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
139
24.9k
{
140
24.9k
    uint8_t m, l, j, k, k_l, k_h, p;
141
24.9k
    real_t nrg, div;
142
24.9k
    (void)adj;  /* TODO: remove parameter? */
143
#ifdef FIXED_POINT
144
10.3k
    const real_t half = REAL_CONST(0.5);
145
    real_t limit;
146
    real_t mul;
147
#else
148
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
    const real_t limit = FLT_MAX;
150
#endif
151
152
24.9k
    if (sbr->bs_interpol_freq == 1)
153
17.4k
    {
154
47.4k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
30.1k
        {
156
30.1k
            uint8_t i, l_i, u_i;
157
158
30.1k
            l_i = sbr->t_E[ch][l];
159
30.1k
            u_i = sbr->t_E[ch][l+1];
160
161
30.1k
            div = (real_t)(u_i - l_i);
162
163
30.1k
            if (div <= 0)
164
1.12k
                div = 1;
165
#ifdef FIXED_POINT
166
11.0k
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
11.0k
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
#endif
169
170
405k
            for (m = 0; m < sbr->M; m++)
171
375k
            {
172
375k
                nrg = 0;
173
174
6.89M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
6.51M
                {
176
6.51M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
6.51M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
6.51M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
6.51M
                    nrg += MUL_C(re, re)
184
6.51M
#ifndef SBR_LOW_POWER
185
6.51M
                        + MUL_C(im, im)
186
6.51M
#endif
187
6.51M
                        ;
188
6.51M
                }
189
190
375k
                if (nrg < -limit || nrg > limit)
191
172
                    return 1;
192
#ifdef FIXED_POINT
193
174k
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
200k
                sbr->E_curr[ch][m][l] = nrg / div;
196
200k
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
200k
            }
205
30.1k
        }
206
17.4k
    } else {
207
18.9k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
12.0k
        {
209
89.0k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
77.5k
            {
211
77.5k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
77.5k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
298k
                for (k = k_l; k < k_h; k++)
215
221k
                {
216
221k
                    uint8_t i, l_i, u_i;
217
221k
                    nrg = 0;
218
219
221k
                    l_i = sbr->t_E[ch][l];
220
221k
                    u_i = sbr->t_E[ch][l+1];
221
222
221k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
221k
                    if (div <= 0)
225
9.94k
                        div = 1;
226
#ifdef FIXED_POINT
227
120k
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
120k
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
#endif
230
231
4.50M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
4.28M
                    {
233
20.9M
                        for (j = k_l; j < k_h; j++)
234
16.6M
                        {
235
16.6M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
16.6M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
16.6M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
16.6M
                            nrg += MUL_C(re, re)
243
16.6M
#ifndef SBR_LOW_POWER
244
16.6M
                                + MUL_C(im, im)
245
16.6M
#endif
246
16.6M
                                ;
247
16.6M
                        }
248
4.28M
                    }
249
250
221k
                    if (nrg < -limit || nrg > limit)
251
596
                        return 1;
252
#ifdef FIXED_POINT
253
119k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
101k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
101k
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
101k
                }
265
77.5k
            }
266
12.0k
        }
267
7.50k
    }
268
269
24.1k
    return 0;
270
24.9k
}
sbr_hfadj.c:estimate_current_envelope
Line
Count
Source
139
10.3k
{
140
10.3k
    uint8_t m, l, j, k, k_l, k_h, p;
141
10.3k
    real_t nrg, div;
142
10.3k
    (void)adj;  /* TODO: remove parameter? */
143
10.3k
#ifdef FIXED_POINT
144
10.3k
    const real_t half = REAL_CONST(0.5);
145
10.3k
    real_t limit;
146
10.3k
    real_t mul;
147
#else
148
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
    const real_t limit = FLT_MAX;
150
#endif
151
152
10.3k
    if (sbr->bs_interpol_freq == 1)
153
6.28k
    {
154
17.1k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
11.0k
        {
156
11.0k
            uint8_t i, l_i, u_i;
157
158
11.0k
            l_i = sbr->t_E[ch][l];
159
11.0k
            u_i = sbr->t_E[ch][l+1];
160
161
11.0k
            div = (real_t)(u_i - l_i);
162
163
11.0k
            if (div <= 0)
164
487
                div = 1;
165
11.0k
#ifdef FIXED_POINT
166
11.0k
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
11.0k
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
11.0k
#endif
169
170
185k
            for (m = 0; m < sbr->M; m++)
171
174k
            {
172
174k
                nrg = 0;
173
174
2.92M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
2.75M
                {
176
2.75M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
2.75M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
2.75M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
2.75M
                    nrg += MUL_C(re, re)
184
2.75M
#ifndef SBR_LOW_POWER
185
2.75M
                        + MUL_C(im, im)
186
2.75M
#endif
187
2.75M
                        ;
188
2.75M
                }
189
190
174k
                if (nrg < -limit || nrg > limit)
191
165
                    return 1;
192
174k
#ifdef FIXED_POINT
193
174k
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
                sbr->E_curr[ch][m][l] = nrg / div;
196
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
174k
            }
205
11.0k
        }
206
6.28k
    } else {
207
9.93k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
6.50k
        {
209
46.4k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
40.5k
            {
211
40.5k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
40.5k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
160k
                for (k = k_l; k < k_h; k++)
215
120k
                {
216
120k
                    uint8_t i, l_i, u_i;
217
120k
                    nrg = 0;
218
219
120k
                    l_i = sbr->t_E[ch][l];
220
120k
                    u_i = sbr->t_E[ch][l+1];
221
222
120k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
120k
                    if (div <= 0)
225
4.49k
                        div = 1;
226
120k
#ifdef FIXED_POINT
227
120k
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
120k
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
120k
#endif
230
231
2.35M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
2.22M
                    {
233
11.9M
                        for (j = k_l; j < k_h; j++)
234
9.73M
                        {
235
9.73M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
9.73M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
9.73M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
9.73M
                            nrg += MUL_C(re, re)
243
9.73M
#ifndef SBR_LOW_POWER
244
9.73M
                                + MUL_C(im, im)
245
9.73M
#endif
246
9.73M
                                ;
247
9.73M
                        }
248
2.22M
                    }
249
250
120k
                    if (nrg < -limit || nrg > limit)
251
590
                        return 1;
252
119k
#ifdef FIXED_POINT
253
119k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
119k
                }
265
40.5k
            }
266
6.50k
        }
267
4.01k
    }
268
269
9.55k
    return 0;
270
10.3k
}
sbr_hfadj.c:estimate_current_envelope
Line
Count
Source
139
14.6k
{
140
14.6k
    uint8_t m, l, j, k, k_l, k_h, p;
141
14.6k
    real_t nrg, div;
142
14.6k
    (void)adj;  /* TODO: remove parameter? */
143
#ifdef FIXED_POINT
144
    const real_t half = REAL_CONST(0.5);
145
    real_t limit;
146
    real_t mul;
147
#else
148
14.6k
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
14.6k
    const real_t limit = FLT_MAX;
150
14.6k
#endif
151
152
14.6k
    if (sbr->bs_interpol_freq == 1)
153
11.1k
    {
154
30.2k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
19.1k
        {
156
19.1k
            uint8_t i, l_i, u_i;
157
158
19.1k
            l_i = sbr->t_E[ch][l];
159
19.1k
            u_i = sbr->t_E[ch][l+1];
160
161
19.1k
            div = (real_t)(u_i - l_i);
162
163
19.1k
            if (div <= 0)
164
635
                div = 1;
165
#ifdef FIXED_POINT
166
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
#endif
169
170
219k
            for (m = 0; m < sbr->M; m++)
171
200k
            {
172
200k
                nrg = 0;
173
174
3.96M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
3.76M
                {
176
3.76M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
3.76M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
3.76M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
3.76M
                    nrg += MUL_C(re, re)
184
3.76M
#ifndef SBR_LOW_POWER
185
3.76M
                        + MUL_C(im, im)
186
3.76M
#endif
187
3.76M
                        ;
188
3.76M
                }
189
190
200k
                if (nrg < -limit || nrg > limit)
191
7
                    return 1;
192
#ifdef FIXED_POINT
193
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
200k
                sbr->E_curr[ch][m][l] = nrg / div;
196
200k
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
200k
            }
205
19.1k
        }
206
11.1k
    } else {
207
9.05k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
5.57k
        {
209
42.5k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
37.0k
            {
211
37.0k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
37.0k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
138k
                for (k = k_l; k < k_h; k++)
215
101k
                {
216
101k
                    uint8_t i, l_i, u_i;
217
101k
                    nrg = 0;
218
219
101k
                    l_i = sbr->t_E[ch][l];
220
101k
                    u_i = sbr->t_E[ch][l+1];
221
222
101k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
101k
                    if (div <= 0)
225
5.45k
                        div = 1;
226
#ifdef FIXED_POINT
227
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
#endif
230
231
2.15M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
2.05M
                    {
233
8.95M
                        for (j = k_l; j < k_h; j++)
234
6.89M
                        {
235
6.89M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
6.89M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
6.89M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
6.89M
                            nrg += MUL_C(re, re)
243
6.89M
#ifndef SBR_LOW_POWER
244
6.89M
                                + MUL_C(im, im)
245
6.89M
#endif
246
6.89M
                                ;
247
6.89M
                        }
248
2.05M
                    }
249
250
101k
                    if (nrg < -limit || nrg > limit)
251
6
                        return 1;
252
#ifdef FIXED_POINT
253
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
101k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
101k
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
101k
                }
265
37.0k
            }
266
5.57k
        }
267
3.48k
    }
268
269
14.5k
    return 0;
270
14.6k
}
271
272
#ifdef FIXED_POINT
273
#define EPS (1) /* smallest number available in fixed point */
274
#else
275
189k
#define EPS (1e-12)
276
#endif
277
278
279
280
#ifdef FIXED_POINT
281
282
/* log2 values of [0..63] */
283
static const real_t log2_int_tab[] = {
284
    LOG2_MIN_INF, REAL_CONST(0.000000000000000), REAL_CONST(1.000000000000000), REAL_CONST(1.584962500721156),
285
    REAL_CONST(2.000000000000000), REAL_CONST(2.321928094887362), REAL_CONST(2.584962500721156), REAL_CONST(2.807354922057604),
286
    REAL_CONST(3.000000000000000), REAL_CONST(3.169925001442313), REAL_CONST(3.321928094887363), REAL_CONST(3.459431618637297),
287
    REAL_CONST(3.584962500721156), REAL_CONST(3.700439718141092), REAL_CONST(3.807354922057604), REAL_CONST(3.906890595608519),
288
    REAL_CONST(4.000000000000000), REAL_CONST(4.087462841250339), REAL_CONST(4.169925001442312), REAL_CONST(4.247927513443585),
289
    REAL_CONST(4.321928094887362), REAL_CONST(4.392317422778761), REAL_CONST(4.459431618637297), REAL_CONST(4.523561956057013),
290
    REAL_CONST(4.584962500721156), REAL_CONST(4.643856189774724), REAL_CONST(4.700439718141093), REAL_CONST(4.754887502163468),
291
    REAL_CONST(4.807354922057604), REAL_CONST(4.857980995127572), REAL_CONST(4.906890595608519), REAL_CONST(4.954196310386875),
292
    REAL_CONST(5.000000000000000), REAL_CONST(5.044394119358453), REAL_CONST(5.087462841250340), REAL_CONST(5.129283016944966),
293
    REAL_CONST(5.169925001442312), REAL_CONST(5.209453365628949), REAL_CONST(5.247927513443585), REAL_CONST(5.285402218862248),
294
    REAL_CONST(5.321928094887363), REAL_CONST(5.357552004618084), REAL_CONST(5.392317422778761), REAL_CONST(5.426264754702098),
295
    REAL_CONST(5.459431618637297), REAL_CONST(5.491853096329675), REAL_CONST(5.523561956057013), REAL_CONST(5.554588851677637),
296
    REAL_CONST(5.584962500721156), REAL_CONST(5.614709844115208), REAL_CONST(5.643856189774724), REAL_CONST(5.672425341971495),
297
    REAL_CONST(5.700439718141093), REAL_CONST(5.727920454563200), REAL_CONST(5.754887502163469), REAL_CONST(5.781359713524660),
298
    REAL_CONST(5.807354922057605), REAL_CONST(5.832890014164742), REAL_CONST(5.857980995127572), REAL_CONST(5.882643049361842),
299
    REAL_CONST(5.906890595608518), REAL_CONST(5.930737337562887), REAL_CONST(5.954196310386876), REAL_CONST(5.977279923499916)
300
};
301
302
// pan_log2_tab[X] = log2(2**X + 1) - X
303
static const real_t pan_log2_tab[13] = {
304
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362), REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339),
305
    REAL_CONST(0.044394119358453), REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878), REAL_CONST(0.002815015607054),
306
    REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247), REAL_CONST(0.000352177480301)
307
};
308
309
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
310
409k
{
311
    /* check for coupled energy/noise data */
312
409k
    if (sbr->bs_coupling == 1)
313
178k
    {
314
178k
        int16_t e = sbr->E[0][k][l];
315
178k
        int16_t E = sbr->E[1][k][l];
316
178k
        uint8_t amp0 = (sbr->amp_res[0]) ? 0 : 1;
317
178k
        uint8_t amp1 = (sbr->amp_res[1]) ? 0 : 1;
318
178k
        real_t tmp, pan;
319
320
        /* E[1] should always be even so shifting is OK */
321
178k
        E >>= amp1;
322
178k
        if (e < 0 || e >= 64 || E < 0 || E > 24)
323
49.8k
            return LOG2_MIN_INF;
324
129k
        E -= 12;
325
326
129k
        if (ch != 0)  // L/R anti-symmetry
327
64.6k
            E = -E;
328
329
129k
        if (E >= 0)
330
65.9k
        {
331
            /* negative */
332
65.9k
            pan = pan_log2_tab[E];
333
65.9k
        } else {
334
            /* positive */
335
63.0k
            pan = pan_log2_tab[-E] + ((-E)<<REAL_BITS);
336
63.0k
        }
337
338
        /* tmp / pan in log2 */
339
129k
        tmp = (7 << REAL_BITS) + (e << (REAL_BITS-amp0));
340
129k
        return tmp - pan;
341
231k
    } else {
342
231k
        int16_t e = sbr->E[ch][k][l];
343
231k
        uint8_t amp = (sbr->amp_res[ch]) ? 0 : 1;
344
231k
        if (e < 0 || (e >> amp) >= 64)
345
45.4k
            return LOG2_MIN_INF;
346
185k
        return 6 * REAL_PRECISION + e * (REAL_PRECISION >> amp);
347
231k
    }
348
409k
}
349
350
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
351
284k
{
352
    /* check for coupled energy/noise data */
353
284k
    if (sbr->bs_coupling == 1)
354
126k
    {
355
126k
        int32_t q = sbr->Q[0][k][l];
356
126k
        int32_t Q = sbr->Q[1][k][l];
357
126k
        real_t tmp, pan;
358
359
126k
        if (q < 0 || q > 30 || Q < 0 || Q > 24)
360
25.0k
            return LOG2_MIN_INF;
361
101k
        Q -= 12;
362
363
101k
        if (ch != 0)  // L/R anti-symmetry
364
51.0k
            Q = -Q;
365
366
101k
        if (Q >= 0)
367
51.5k
        {
368
            /* negative */
369
51.5k
            pan = pan_log2_tab[Q];
370
51.5k
        } else {
371
            /* positive */
372
50.2k
            pan = pan_log2_tab[-Q] + ((-Q)<<REAL_BITS);
373
50.2k
        }
374
375
        /* tmp / pan in log2 */
376
101k
        tmp = (7 - q) * REAL_PRECISION;
377
101k
        return tmp - pan;
378
157k
    } else {
379
157k
        int32_t q = sbr->Q[ch][k][l];
380
157k
        if (q < 0 || q > 30)
381
27.1k
            return LOG2_MIN_INF;
382
130k
        return (6 - q) * REAL_PRECISION;
383
157k
    }
384
284k
}
385
386
static const real_t log_Qplus1_pan[31][13] = {
387
    { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
388
    { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
389
    { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
390
    { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
391
    { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
392
    { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
393
    { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
394
    { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
395
    { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
396
    { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
397
    { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
398
    { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
399
    { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
400
    { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
401
    { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
402
    { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
403
    { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
404
    { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
405
    { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
406
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
407
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
408
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
409
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
410
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
411
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
412
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
413
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
414
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
415
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
416
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
417
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
418
};
419
420
static const real_t log_Qplus1[31] = {
421
    REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
422
    REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
423
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
424
    REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
425
    REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
426
    REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
427
    REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
428
    REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
429
    REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
430
    REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
431
    REAL_CONST(0.000000000000000)
432
};
433
434
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
435
284k
{
436
    /* check for coupled energy/noise data */
437
284k
    if (sbr->bs_coupling == 1)
438
126k
    {
439
126k
        if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
440
119k
            (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
441
101k
        {
442
101k
            if (ch == 0)
443
50.7k
            {
444
50.7k
                return log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1];
445
51.0k
            } else {
446
51.0k
                return log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)];
447
51.0k
            }
448
101k
        } else {
449
25.0k
            return 0;
450
25.0k
        }
451
157k
    } else {
452
157k
        if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
453
130k
        {
454
130k
            return log_Qplus1[sbr->Q[ch][k][l]];
455
130k
        } else {
456
27.1k
            return 0;
457
27.1k
        }
458
157k
    }
459
284k
}
460
461
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
462
9.55k
{
463
    /* log2 values of limiter gains */
464
    /* Last one less than log2(1e10) due to FIXED POINT float limitations */
465
9.55k
    static real_t limGain[] = {
466
9.55k
        REAL_CONST(-1.0), REAL_CONST(0.0), REAL_CONST(1.0), REAL_CONST(21.0)
467
9.55k
    };
468
9.55k
    uint8_t m, l, k;
469
470
9.55k
    uint8_t current_t_noise_band = 0;
471
9.55k
    uint8_t S_mapped;
472
473
9.55k
    ALIGN real_t Q_M_lim[MAX_M];
474
9.55k
    ALIGN real_t G_lim[MAX_M];
475
9.55k
    ALIGN real_t G_boost;
476
9.55k
    ALIGN real_t S_M[MAX_M];
477
478
9.55k
    real_t exp = REAL_CONST(-10);
479
480
26.3k
    for (l = 0; l < sbr->L_E[ch]; l++)
481
16.7k
    {
482
16.7k
        uint8_t current_f_noise_band = 0;
483
16.7k
        uint8_t current_res_band = 0;
484
16.7k
        uint8_t current_res_band2 = 0;
485
16.7k
        uint8_t current_hi_res_band = 0;
486
487
16.7k
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
488
489
16.7k
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
490
491
16.7k
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
492
2.70k
        {
493
2.70k
            current_t_noise_band++;
494
2.70k
        }
495
496
56.4k
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
497
39.6k
        {
498
39.6k
            real_t Q_M = 0;
499
39.6k
            real_t G_max;
500
39.6k
            uint64_t den = 0, acc1 = 0, acc2 = 0;
501
39.6k
            uint8_t current_res_band_size = 0;
502
39.6k
            uint8_t Q_M_size = 0;
503
39.6k
            real_t log_e, log_den, log_acc1, log_acc2;
504
505
39.6k
            uint8_t ml1, ml2;
506
507
            /* bounds of current limiter bands */
508
39.6k
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
509
39.6k
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
510
511
39.6k
            if (ml1 > MAX_M)
512
0
                ml1 = MAX_M;
513
514
39.6k
            if (ml2 > MAX_M)
515
0
                ml2 = MAX_M;
516
517
518
            /* calculate the accumulated E_orig and E_curr over the limiter band */
519
324k
            for (m = ml1; m < ml2; m++)
520
284k
            {
521
284k
                if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
522
198k
                {
523
198k
                    current_res_band_size++;
524
198k
                } else {
525
85.6k
                    log_e = find_log2_E(sbr, current_res_band, l, ch);
526
85.6k
                    acc1 += pow2_int(exp + log2_int_tab[current_res_band_size] + log_e);
527
528
85.6k
                    current_res_band++;
529
85.6k
                    current_res_band_size = 1;
530
85.6k
                }
531
532
284k
                acc2 += sbr->E_curr[ch][m][l];
533
284k
            }
534
39.6k
            if (current_res_band_size) {
535
39.6k
                log_e = find_log2_E(sbr, current_res_band, l, ch);
536
39.6k
                acc1 += pow2_int(exp + log2_int_tab[current_res_band_size] + log_e);
537
39.6k
            }
538
539
540
39.6k
            if (acc1 == 0)
541
23.3k
                log_acc1 = LOG2_MIN_INF;
542
16.3k
            else
543
16.3k
                log_acc1 = log2_int(acc1);
544
545
39.6k
            if (acc2 == 0)
546
38.8k
                log_acc2 = LOG2_MIN_INF;
547
817
            else
548
817
                log_acc2 = log2_int(acc2);
549
550
            /* calculate the maximum gain */
551
            /* ratio of the energy of the original signal and the energy
552
             * of the HF generated signal
553
             */
554
39.6k
            G_max = log_acc1 - log_acc2 + limGain[sbr->bs_limiter_gains];
555
39.6k
            G_max = min(G_max, limGain[3]);
556
557
558
324k
            for (m = ml1; m < ml2; m++)
559
284k
            {
560
284k
                real_t G;
561
284k
                real_t E_curr, E_orig;
562
284k
                real_t Q_orig, Q_orig_plus1;
563
284k
                uint8_t S_index_mapped;
564
565
566
                /* check if m is on a noise band border */
567
284k
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
568
16.1k
                {
569
                    /* step to next noise band */
570
16.1k
                    current_f_noise_band++;
571
16.1k
                }
572
573
574
                /* check if m is on a resolution band border */
575
284k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
576
85.6k
                {
577
                    /* accumulate a whole range of equal Q_Ms */
578
85.6k
                    if (Q_M_size > 0)
579
37.5k
                        den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
580
85.6k
                    Q_M_size = 0;
581
582
                    /* step to next resolution band */
583
85.6k
                    current_res_band2++;
584
585
                    /* if we move to a new resolution band, we should check if we are
586
                     * going to add a sinusoid in this band
587
                     */
588
85.6k
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
589
85.6k
                }
590
591
592
                /* check if m is on a HI_RES band border */
593
284k
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
594
130k
                {
595
                    /* step to next HI_RES band */
596
130k
                    current_hi_res_band++;
597
130k
                }
598
599
600
                /* find S_index_mapped
601
                 * S_index_mapped can only be 1 for the m in the middle of the
602
                 * current HI_RES band
603
                 */
604
284k
                S_index_mapped = 0;
605
284k
                if ((l >= sbr->l_A[ch]) ||
606
73.8k
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
607
212k
                {
608
                    /* find the middle subband of the HI_RES frequency band */
609
212k
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
610
105k
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
611
212k
                }
612
613
614
                /* find bitstream parameters */
615
284k
                if (sbr->E_curr[ch][m][l] == 0)
616
278k
                    E_curr = LOG2_MIN_INF;
617
6.36k
                else
618
6.36k
                    E_curr = log2_int(sbr->E_curr[ch][m][l]);
619
284k
                E_orig = exp + find_log2_E(sbr, current_res_band2, l, ch);
620
621
622
284k
                Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
623
284k
                Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
624
625
626
                /* Q_M only depends on E_orig and Q_div2:
627
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
628
                 * a change of current res band (HI or LO)
629
                 */
630
284k
                Q_M = E_orig + Q_orig - Q_orig_plus1;
631
632
633
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
634
                 * S_index_mapped can only be non-zero once per HI_RES band
635
                 */
636
284k
                if (S_index_mapped == 0)
637
269k
                {
638
269k
                    S_M[m] = LOG2_MIN_INF; /* -inf */
639
269k
                } else {
640
15.5k
                    S_M[m] = E_orig - Q_orig_plus1;
641
15.5k
                    S_M[m] = min(S_M[m], limGain[3]);
642
643
                    /* accumulate sinusoid part of the total energy */
644
15.5k
                    den += pow2_int(S_M[m]);
645
15.5k
                }
646
647
648
                /* calculate gain */
649
                /* ratio of the energy of the original signal and the energy
650
                 * of the HF generated signal
651
                 */
652
                /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
653
                /* scaled by exp */
654
284k
                G = E_orig - max(exp, E_curr);
655
284k
                if ((S_mapped == 0) && (delta == 1))
656
222k
                {
657
                    /* G = G * 1/(1+Q) */
658
222k
                    G -= Q_orig_plus1;
659
222k
                } else if (S_mapped == 1) {
660
                    /* G = G * Q/(1+Q) */
661
33.1k
                    G += Q_orig - Q_orig_plus1;
662
33.1k
                }
663
664
665
                /* limit the additional noise energy level */
666
                /* and apply the limiter */
667
284k
                if (G_max > G)
668
179k
                {
669
179k
                    Q_M_lim[m] = Q_M;
670
179k
                    G_lim[m] = G;
671
672
179k
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
673
157k
                    {
674
157k
                        Q_M_size++;
675
157k
                    }
676
179k
                } else {
677
                    /* G >= G_max */
678
105k
                    Q_M_lim[m] = Q_M + G_max - G;
679
105k
                    G_lim[m] = G_max;
680
681
                    /* accumulate limited Q_M */
682
105k
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
683
88.3k
                    {
684
88.3k
                        den += pow2_int(Q_M_lim[m]);
685
88.3k
                    }
686
105k
                }
687
688
689
                /* accumulate the total energy */
690
                /* E_curr changes for every m so we do need to accumulate every m */
691
284k
                den += pow2_int(E_curr + G_lim[m]);
692
284k
            }
693
694
            /* accumulate last range of equal Q_Ms */
695
39.6k
            if (Q_M_size > 0)
696
22.9k
            {
697
22.9k
                den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
698
22.9k
            }
699
700
39.6k
            if (den == 0)
701
29.5k
                log_den = LOG2_MIN_INF;
702
10.0k
            else
703
10.0k
                log_den = log2_int(den /*+ EPS*/);
704
705
            /* calculate the final gain */
706
            /* G_boost: [0..2.51188643] */
707
39.6k
            G_boost = log_acc1 - log_den;
708
39.6k
            G_boost = min(G_boost, REAL_CONST(1.328771237) /* log2(1.584893192 ^ 2) */);
709
710
711
324k
            for (m = ml1; m < ml2; m++)
712
284k
            {
713
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
714
284k
#ifndef SBR_LOW_POWER
715
284k
                adj->G_lim_boost[l][m] = pow2_fix((G_lim[m] + G_boost) >> 1);
716
#else
717
                /* sqrt() will be done after the aliasing reduction to save a
718
                 * few multiplies
719
                 */
720
                adj->G_lim_boost[l][m] = pow2_fix(G_lim[m] + G_boost);
721
#endif
722
284k
                adj->Q_M_lim_boost[l][m] = pow2_fix((Q_M_lim[m] + G_boost) >> 1);
723
724
284k
                adj->S_M_boost[l][m] = pow2_fix((S_M[m] + G_boost) >> 1);
725
284k
            }
726
39.6k
        }
727
16.7k
    }
728
9.55k
}
729
730
#else
731
732
//#define LOG2_TEST
733
734
#ifdef LOG2_TEST
735
736
#define LOG2_MIN_INF -100000
737
738
__inline float pow2(float val)
739
{
740
    return pow(2.0, val);
741
}
742
__inline float log2(float val)
743
{
744
    return log(val)/log(2.0);
745
}
746
747
#define RB 14
748
749
float QUANTISE2REAL(float val)
750
{
751
    __int32 ival = (__int32)(val * (1<<RB));
752
    return (float)ival / (float)((1<<RB));
753
}
754
755
float QUANTISE2INT(float val)
756
{
757
    return floor(val);
758
}
759
760
/* log2 values of [0..63] */
761
static const real_t log2_int_tab[] = {
762
    LOG2_MIN_INF,      0.000000000000000, 1.000000000000000, 1.584962500721156,
763
    2.000000000000000, 2.321928094887362, 2.584962500721156, 2.807354922057604,
764
    3.000000000000000, 3.169925001442313, 3.321928094887363, 3.459431618637297,
765
    3.584962500721156, 3.700439718141092, 3.807354922057604, 3.906890595608519,
766
    4.000000000000000, 4.087462841250339, 4.169925001442312, 4.247927513443585,
767
    4.321928094887362, 4.392317422778761, 4.459431618637297, 4.523561956057013,
768
    4.584962500721156, 4.643856189774724, 4.700439718141093, 4.754887502163468,
769
    4.807354922057604, 4.857980995127572, 4.906890595608519, 4.954196310386875,
770
    5.000000000000000, 5.044394119358453, 5.087462841250340, 5.129283016944966,
771
    5.169925001442312, 5.209453365628949, 5.247927513443585, 5.285402218862248,
772
    5.321928094887363, 5.357552004618084, 5.392317422778761, 5.426264754702098,
773
    5.459431618637297, 5.491853096329675, 5.523561956057013, 5.554588851677637,
774
    5.584962500721156, 5.614709844115208, 5.643856189774724, 5.672425341971495,
775
    5.700439718141093, 5.727920454563200, 5.754887502163469, 5.781359713524660,
776
    5.807354922057605, 5.832890014164742, 5.857980995127572, 5.882643049361842,
777
    5.906890595608518, 5.930737337562887, 5.954196310386876, 5.977279923499916
778
};
779
780
static const real_t pan_log2_tab[] = {
781
    1.000000000000000, 0.584962500721156, 0.321928094887362, 0.169925001442312, 0.087462841250339,
782
    0.044394119358453, 0.022367813028455, 0.011227255423254, 0.005624549193878, 0.002815015607054,
783
    0.001408194392808, 0.000704269011247, 0.000352177480301, 0.000176099486443, 0.000088052430122,
784
    0.000044026886827, 0.000022013611360, 0.000011006847667
785
};
786
787
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
788
{
789
    /* check for coupled energy/noise data */
790
    if (sbr->bs_coupling == 1)
791
    {
792
        real_t amp0 = (sbr->amp_res[0]) ? 1.0 : 0.5;
793
        real_t amp1 = (sbr->amp_res[1]) ? 1.0 : 0.5;
794
        float tmp = QUANTISE2REAL(7.0 + (real_t)sbr->E[0][k][l] * amp0);
795
        float pan;
796
797
        int E = (int)(sbr->E[1][k][l] * amp1);
798
799
        if (ch == 0)
800
        {
801
            if (E > 12)
802
            {
803
                /* negative */
804
                pan = QUANTISE2REAL(pan_log2_tab[-12 + E]);
805
            } else {
806
                /* positive */
807
                pan = QUANTISE2REAL(pan_log2_tab[12 - E] + (12 - E));
808
            }
809
        } else {
810
            if (E < 12)
811
            {
812
                /* negative */
813
                pan = QUANTISE2REAL(pan_log2_tab[-E + 12]);
814
            } else {
815
                /* positive */
816
                pan = QUANTISE2REAL(pan_log2_tab[E - 12] + (E - 12));
817
            }
818
        }
819
820
        /* tmp / pan in log2 */
821
        return QUANTISE2REAL(tmp - pan);
822
    } else {
823
        real_t amp = (sbr->amp_res[ch]) ? 1.0 : 0.5;
824
825
        return QUANTISE2REAL(6.0 + (real_t)sbr->E[ch][k][l] * amp);
826
    }
827
}
828
829
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
830
{
831
    /* check for coupled energy/noise data */
832
    if (sbr->bs_coupling == 1)
833
    {
834
        float tmp = QUANTISE2REAL(7.0 - (real_t)sbr->Q[0][k][l]);
835
        float pan;
836
837
        int Q = (int)(sbr->Q[1][k][l]);
838
839
        if (ch == 0)
840
        {
841
            if (Q > 12)
842
            {
843
                /* negative */
844
                pan = QUANTISE2REAL(pan_log2_tab[-12 + Q]);
845
            } else {
846
                /* positive */
847
                pan = QUANTISE2REAL(pan_log2_tab[12 - Q] + (12 - Q));
848
            }
849
        } else {
850
            if (Q < 12)
851
            {
852
                /* negative */
853
                pan = QUANTISE2REAL(pan_log2_tab[-Q + 12]);
854
            } else {
855
                /* positive */
856
                pan = QUANTISE2REAL(pan_log2_tab[Q - 12] + (Q - 12));
857
            }
858
        }
859
860
        /* tmp / pan in log2 */
861
        return QUANTISE2REAL(tmp - pan);
862
    } else {
863
        return QUANTISE2REAL(6.0 - (real_t)sbr->Q[ch][k][l]);
864
    }
865
}
866
867
static const real_t log_Qplus1_pan[31][13] = {
868
    { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
869
    { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
870
    { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
871
    { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
872
    { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
873
    { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
874
    { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
875
    { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
876
    { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
877
    { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
878
    { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
879
    { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
880
    { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
881
    { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
882
    { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
883
    { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
884
    { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
885
    { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
886
    { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
887
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
888
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
889
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
890
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
891
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
892
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
893
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
894
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
895
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
896
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
897
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
898
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
899
};
900
901
static const real_t log_Qplus1[31] = {
902
    REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
903
    REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
904
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
905
    REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
906
    REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
907
    REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
908
    REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
909
    REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
910
    REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
911
    REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
912
    REAL_CONST(0.000000000000000)
913
};
914
915
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
916
{
917
    /* check for coupled energy/noise data */
918
    if (sbr->bs_coupling == 1)
919
    {
920
        if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
921
            (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
922
        {
923
            if (ch == 0)
924
            {
925
                return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1]);
926
            } else {
927
                return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)]);
928
            }
929
        } else {
930
            return 0;
931
        }
932
    } else {
933
        if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
934
        {
935
            return QUANTISE2REAL(log_Qplus1[sbr->Q[ch][k][l]]);
936
        } else {
937
            return 0;
938
        }
939
    }
940
}
941
942
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
943
{
944
    /* log2 values of limiter gains */
945
    static real_t limGain[] = { -1.0, 0.0, 1.0, 33.219 };
946
    uint8_t m, l, k;
947
948
    uint8_t current_t_noise_band = 0;
949
    uint8_t S_mapped;
950
951
    ALIGN real_t Q_M_lim[MAX_M];
952
    ALIGN real_t G_lim[MAX_M];
953
    ALIGN real_t G_boost;
954
    ALIGN real_t S_M[MAX_M];
955
956
957
    for (l = 0; l < sbr->L_E[ch]; l++)
958
    {
959
        uint8_t current_f_noise_band = 0;
960
        uint8_t current_res_band = 0;
961
        uint8_t current_res_band2 = 0;
962
        uint8_t current_hi_res_band = 0;
963
964
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
965
966
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
967
968
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
969
        {
970
            current_t_noise_band++;
971
        }
972
973
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
974
        {
975
            real_t Q_M = 0;
976
            real_t G_max;
977
            real_t den = 0;
978
            real_t acc1 = 0;
979
            real_t acc2 = 0;
980
            uint8_t current_res_band_size = 0;
981
            uint8_t Q_M_size = 0;
982
983
            uint8_t ml1, ml2;
984
985
            /* bounds of current limiter bands */
986
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
987
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
988
989
            if (ml1 > MAX_M)
990
                ml1 = MAX_M;
991
992
            if (ml2 > MAX_M)
993
                ml2 = MAX_M;
994
995
996
            /* calculate the accumulated E_orig and E_curr over the limiter band */
997
            for (m = ml1; m < ml2; m++)
998
            {
999
                if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1000
                {
1001
                    current_res_band_size++;
1002
                } else {
1003
                    acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
1004
1005
                    current_res_band++;
1006
                    current_res_band_size = 1;
1007
                }
1008
1009
                acc2 += QUANTISE2INT(sbr->E_curr[ch][m][l]/1024.0);
1010
            }
1011
            acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
1012
1013
            acc1 = QUANTISE2REAL( log2(EPS + acc1) );
1014
1015
1016
            /* calculate the maximum gain */
1017
            /* ratio of the energy of the original signal and the energy
1018
             * of the HF generated signal
1019
             */
1020
            G_max = acc1 - QUANTISE2REAL(log2(EPS + acc2)) + QUANTISE2REAL(limGain[sbr->bs_limiter_gains]);
1021
            G_max = min(G_max, QUANTISE2REAL(limGain[3]));
1022
1023
1024
            for (m = ml1; m < ml2; m++)
1025
            {
1026
                real_t G;
1027
                real_t E_curr, E_orig;
1028
                real_t Q_orig, Q_orig_plus1;
1029
                uint8_t S_index_mapped;
1030
1031
1032
                /* check if m is on a noise band border */
1033
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
1034
                {
1035
                    /* step to next noise band */
1036
                    current_f_noise_band++;
1037
                }
1038
1039
1040
                /* check if m is on a resolution band border */
1041
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
1042
                {
1043
                    /* accumulate a whole range of equal Q_Ms */
1044
                    if (Q_M_size > 0)
1045
                        den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
1046
                    Q_M_size = 0;
1047
1048
                    /* step to next resolution band */
1049
                    current_res_band2++;
1050
1051
                    /* if we move to a new resolution band, we should check if we are
1052
                     * going to add a sinusoid in this band
1053
                     */
1054
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1055
                }
1056
1057
1058
                /* check if m is on a HI_RES band border */
1059
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
1060
                {
1061
                    /* step to next HI_RES band */
1062
                    current_hi_res_band++;
1063
                }
1064
1065
1066
                /* find S_index_mapped
1067
                 * S_index_mapped can only be 1 for the m in the middle of the
1068
                 * current HI_RES band
1069
                 */
1070
                S_index_mapped = 0;
1071
                if ((l >= sbr->l_A[ch]) ||
1072
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
1073
                {
1074
                    /* find the middle subband of the HI_RES frequency band */
1075
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
1076
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
1077
                }
1078
1079
1080
                /* find bitstream parameters */
1081
                if (sbr->E_curr[ch][m][l] == 0)
1082
                    E_curr = LOG2_MIN_INF;
1083
                else
1084
                    E_curr = -10 + log2(sbr->E_curr[ch][m][l]);
1085
                E_orig = -10 + find_log2_E(sbr, current_res_band2, l, ch);
1086
1087
                Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
1088
                Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
1089
1090
1091
                /* Q_M only depends on E_orig and Q_div2:
1092
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
1093
                 * a change of current res band (HI or LO)
1094
                 */
1095
                Q_M = E_orig + Q_orig - Q_orig_plus1;
1096
1097
1098
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
1099
                 * S_index_mapped can only be non-zero once per HI_RES band
1100
                 */
1101
                if (S_index_mapped == 0)
1102
                {
1103
                    S_M[m] = LOG2_MIN_INF; /* -inf */
1104
                } else {
1105
                    S_M[m] = E_orig - Q_orig_plus1;
1106
1107
                    /* accumulate sinusoid part of the total energy */
1108
                    den += pow2(S_M[m]);
1109
                }
1110
1111
1112
                /* calculate gain */
1113
                /* ratio of the energy of the original signal and the energy
1114
                 * of the HF generated signal
1115
                 */
1116
                /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
1117
                /* scaled by -10 */
1118
                G = E_orig - max(-10, E_curr);
1119
                if ((S_mapped == 0) && (delta == 1))
1120
                {
1121
                    /* G = G * 1/(1+Q) */
1122
                    G -= Q_orig_plus1;
1123
                } else if (S_mapped == 1) {
1124
                    /* G = G * Q/(1+Q) */
1125
                    G += Q_orig - Q_orig_plus1;
1126
                }
1127
1128
1129
                /* limit the additional noise energy level */
1130
                /* and apply the limiter */
1131
                if (G_max > G)
1132
                {
1133
                    Q_M_lim[m] = QUANTISE2REAL(Q_M);
1134
                    G_lim[m] = QUANTISE2REAL(G);
1135
1136
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1137
                    {
1138
                        Q_M_size++;
1139
                    }
1140
                } else {
1141
                    /* G > G_max */
1142
                    Q_M_lim[m] = QUANTISE2REAL(Q_M) + G_max - QUANTISE2REAL(G);
1143
                    G_lim[m] = G_max;
1144
1145
                    /* accumulate limited Q_M */
1146
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1147
                    {
1148
                        den += QUANTISE2INT(pow2(Q_M_lim[m]));
1149
                    }
1150
                }
1151
1152
1153
                /* accumulate the total energy */
1154
                /* E_curr changes for every m so we do need to accumulate every m */
1155
                den += QUANTISE2INT(pow2(E_curr + G_lim[m]));
1156
            }
1157
1158
            /* accumulate last range of equal Q_Ms */
1159
            if (Q_M_size > 0)
1160
            {
1161
                den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
1162
            }
1163
1164
1165
            /* calculate the final gain */
1166
            /* G_boost: [0..2.51188643] */
1167
            G_boost = acc1 - QUANTISE2REAL(log2(den + EPS));
1168
            G_boost = min(G_boost, QUANTISE2REAL(1.328771237) /* log2(1.584893192 ^ 2) */);
1169
1170
1171
            for (m = ml1; m < ml2; m++)
1172
            {
1173
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
1174
#ifndef SBR_LOW_POWER
1175
                adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2((G_lim[m] + G_boost) / 2.0));
1176
#else
1177
                /* sqrt() will be done after the aliasing reduction to save a
1178
                 * few multiplies
1179
                 */
1180
                adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2(G_lim[m] + G_boost));
1181
#endif
1182
                adj->Q_M_lim_boost[l][m] = QUANTISE2REAL(pow2((Q_M_lim[m] + 10 + G_boost) / 2.0));
1183
1184
                if (S_M[m] != LOG2_MIN_INF)
1185
                {
1186
                    adj->S_M_boost[l][m] = QUANTISE2REAL(pow2((S_M[m] + 10 + G_boost) / 2.0));
1187
                } else {
1188
                    adj->S_M_boost[l][m] = 0;
1189
                }
1190
            }
1191
        }
1192
    }
1193
}
1194
1195
#else
1196
1197
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
1198
14.5k
{
1199
14.5k
    static real_t limGain[] = { 0.5, 1.0, 2.0, 1e10 };
1200
14.5k
    uint8_t m, l, k;
1201
1202
14.5k
    uint8_t current_t_noise_band = 0;
1203
14.5k
    uint8_t S_mapped;
1204
1205
14.5k
    ALIGN real_t Q_M_lim[MAX_M];
1206
14.5k
    ALIGN real_t G_lim[MAX_M];
1207
14.5k
    ALIGN real_t G_boost;
1208
14.5k
    ALIGN real_t S_M[MAX_M];
1209
1210
39.2k
    for (l = 0; l < sbr->L_E[ch]; l++)
1211
24.6k
    {
1212
24.6k
        uint8_t current_f_noise_band = 0;
1213
24.6k
        uint8_t current_res_band = 0;
1214
24.6k
        uint8_t current_res_band2 = 0;
1215
24.6k
        uint8_t current_hi_res_band = 0;
1216
1217
24.6k
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
1218
1219
24.6k
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1220
1221
24.6k
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
1222
4.59k
        {
1223
4.59k
            current_t_noise_band++;
1224
4.59k
        }
1225
1226
72.0k
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
1227
47.4k
        {
1228
47.4k
            real_t G_max;
1229
47.4k
            real_t den = 0;
1230
47.4k
            real_t acc1 = 0;
1231
47.4k
            real_t acc2 = 0;
1232
1233
47.4k
            uint8_t ml1, ml2;
1234
1235
47.4k
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
1236
47.4k
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
1237
1238
47.4k
            if (ml1 > MAX_M)
1239
0
                ml1 = MAX_M;
1240
1241
47.4k
            if (ml2 > MAX_M)
1242
0
                ml2 = MAX_M;
1243
1244
1245
            /* calculate the accumulated E_orig and E_curr over the limiter band */
1246
337k
            for (m = ml1; m < ml2; m++)
1247
290k
            {
1248
290k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1249
79.8k
                {
1250
79.8k
                    current_res_band++;
1251
79.8k
                }
1252
290k
                acc1 += sbr->E_orig[ch][current_res_band][l];
1253
290k
                acc2 += sbr->E_curr[ch][m][l];
1254
290k
            }
1255
1256
1257
            /* calculate the maximum gain */
1258
            /* ratio of the energy of the original signal and the energy
1259
             * of the HF generated signal
1260
             */
1261
47.4k
            G_max = ((EPS + acc1) / (EPS + acc2)) * limGain[sbr->bs_limiter_gains];
1262
47.4k
            G_max = min(G_max, 1e10);
1263
1264
1265
337k
            for (m = ml1; m < ml2; m++)
1266
290k
            {
1267
290k
                real_t Q_M, G;
1268
290k
                real_t Q_div, Q_div2;
1269
290k
                uint8_t S_index_mapped;
1270
1271
1272
                /* check if m is on a noise band border */
1273
290k
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
1274
20.2k
                {
1275
                    /* step to next noise band */
1276
20.2k
                    current_f_noise_band++;
1277
20.2k
                }
1278
1279
1280
                /* check if m is on a resolution band border */
1281
290k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
1282
79.8k
                {
1283
                    /* step to next resolution band */
1284
79.8k
                    current_res_band2++;
1285
1286
                    /* if we move to a new resolution band, we should check if we are
1287
                     * going to add a sinusoid in this band
1288
                     */
1289
79.8k
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1290
79.8k
                }
1291
1292
1293
                /* check if m is on a HI_RES band border */
1294
290k
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
1295
134k
                {
1296
                    /* step to next HI_RES band */
1297
134k
                    current_hi_res_band++;
1298
134k
                }
1299
1300
1301
                /* find S_index_mapped
1302
                 * S_index_mapped can only be 1 for the m in the middle of the
1303
                 * current HI_RES band
1304
                 */
1305
290k
                S_index_mapped = 0;
1306
290k
                if ((l >= sbr->l_A[ch]) ||
1307
77.6k
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
1308
216k
                {
1309
                    /* find the middle subband of the HI_RES frequency band */
1310
216k
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
1311
112k
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
1312
216k
                }
1313
1314
1315
                /* Q_div: [0..1] (1/(1+Q_mapped)) */
1316
290k
                Q_div = sbr->Q_div[ch][current_f_noise_band][current_t_noise_band];
1317
1318
1319
                /* Q_div2: [0..1] (Q_mapped/(1+Q_mapped)) */
1320
290k
                Q_div2 = sbr->Q_div2[ch][current_f_noise_band][current_t_noise_band];
1321
1322
1323
                /* Q_M only depends on E_orig and Q_div2:
1324
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
1325
                 * a change of current noise band
1326
                 */
1327
290k
                Q_M = sbr->E_orig[ch][current_res_band2][l] * Q_div2;
1328
1329
1330
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
1331
                 * S_index_mapped can only be non-zero once per HI_RES band
1332
                 */
1333
290k
                if (S_index_mapped == 0)
1334
279k
                {
1335
279k
                    S_M[m] = 0;
1336
279k
                } else {
1337
11.2k
                    S_M[m] = sbr->E_orig[ch][current_res_band2][l] * Q_div;
1338
1339
                    /* accumulate sinusoid part of the total energy */
1340
11.2k
                    den += S_M[m];
1341
11.2k
                }
1342
1343
1344
                /* calculate gain */
1345
                /* ratio of the energy of the original signal and the energy
1346
                 * of the HF generated signal
1347
                 */
1348
290k
                G = sbr->E_orig[ch][current_res_band2][l] / (1.0 + sbr->E_curr[ch][m][l]);
1349
290k
                if ((S_mapped == 0) && (delta == 1))
1350
242k
                    G *= Q_div;
1351
48.0k
                else if (S_mapped == 1)
1352
25.8k
                    G *= Q_div2;
1353
1354
1355
                /* limit the additional noise energy level */
1356
                /* and apply the limiter */
1357
290k
                if (G <= G_max)
1358
251k
                {
1359
251k
                    Q_M_lim[m] = Q_M;
1360
251k
                    G_lim[m] = G;
1361
251k
                } else {
1362
38.6k
                    Q_M_lim[m] = Q_M * G_max / G;
1363
38.6k
                    G_lim[m] = G_max;
1364
38.6k
                }
1365
1366
1367
                /* accumulate the total energy */
1368
290k
                den += sbr->E_curr[ch][m][l] * G_lim[m];
1369
290k
                if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1370
262k
                    den += Q_M_lim[m];
1371
290k
            }
1372
1373
            /* G_boost: [0..2.51188643] */
1374
47.4k
            G_boost = (acc1 + EPS) / (den + EPS);
1375
47.4k
            G_boost = min(G_boost, 2.51188643 /* 1.584893192 ^ 2 */);
1376
1377
337k
            for (m = ml1; m < ml2; m++)
1378
290k
            {
1379
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
1380
290k
#ifndef SBR_LOW_POWER
1381
290k
                adj->G_lim_boost[l][m] = sqrt(G_lim[m] * G_boost);
1382
#else
1383
                /* sqrt() will be done after the aliasing reduction to save a
1384
                 * few multiplies
1385
                 */
1386
                adj->G_lim_boost[l][m] = G_lim[m] * G_boost;
1387
#endif
1388
290k
                adj->Q_M_lim_boost[l][m] = sqrt(Q_M_lim[m] * G_boost);
1389
1390
290k
                if (S_M[m] != 0)
1391
7.69k
                {
1392
7.69k
                    adj->S_M_boost[l][m] = sqrt(S_M[m] * G_boost);
1393
282k
                } else {
1394
282k
                    adj->S_M_boost[l][m] = 0;
1395
282k
                }
1396
290k
            }
1397
47.4k
        }
1398
24.6k
    }
1399
14.5k
}
1400
#endif // log2_test
1401
1402
#endif
1403
1404
#ifdef SBR_LOW_POWER
1405
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
1406
{
1407
    uint8_t l, k, i;
1408
    uint8_t grouping;
1409
    uint8_t S_mapped;
1410
1411
    for (l = 0; l < sbr->L_E[ch]; l++)
1412
    {
1413
        uint8_t current_res_band = 0;
1414
        i = 0;
1415
        grouping = 0;
1416
1417
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band);
1418
1419
        for (k = sbr->kx; k < sbr->kx + sbr->M - 1; k++)
1420
        {
1421
            if (k == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1422
            {
1423
                /* step to next resolution band */
1424
                current_res_band++;
1425
1426
                S_mapped = get_S_mapped(sbr, ch, l, current_res_band);
1427
            }
1428
1429
            if (deg[k + 1] && S_mapped == 0)
1430
            {
1431
                if (grouping == 0)
1432
                {
1433
                    sbr->f_group[l][i] = k;
1434
                    grouping = 1;
1435
                    i++;
1436
                }
1437
            } else {
1438
                if (grouping)
1439
                {
1440
                    if (S_mapped)
1441
                    {
1442
                        sbr->f_group[l][i] = k;
1443
                    } else {
1444
                        sbr->f_group[l][i] = k + 1;
1445
                    }
1446
                    grouping = 0;
1447
                    i++;
1448
                }
1449
            }
1450
        }
1451
1452
        if (grouping)
1453
        {
1454
            sbr->f_group[l][i] = sbr->kx + sbr->M;
1455
            i++;
1456
        }
1457
1458
        sbr->N_G[l] = (uint8_t)(i >> 1);
1459
    }
1460
}
1461
1462
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
1463
{
1464
    uint8_t l, k, m;
1465
    real_t E_total, E_total_est, G_target, acc;
1466
1467
    for (l = 0; l < sbr->L_E[ch]; l++)
1468
    {
1469
        for (k = 0; k < sbr->N_G[l]; k++)
1470
        {
1471
            E_total_est = E_total = 0;
1472
1473
            for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1474
            {
1475
                /* E_curr: integer */
1476
                /* G_lim_boost: fixed point */
1477
                /* E_total_est: integer */
1478
                /* E_total: integer */
1479
                E_total_est += sbr->E_curr[ch][m-sbr->kx][l];
1480
#ifdef FIXED_POINT
1481
                E_total += MUL_Q2(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]);
1482
#else
1483
                E_total += sbr->E_curr[ch][m-sbr->kx][l] * adj->G_lim_boost[l][m-sbr->kx];
1484
#endif
1485
            }
1486
1487
            /* G_target: fixed point */
1488
            if ((E_total_est + EPS) == 0)
1489
            {
1490
                G_target = 0;
1491
            } else {
1492
#ifdef FIXED_POINT
1493
                G_target = (((int64_t)(E_total))<<Q2_BITS)/(E_total_est + EPS);
1494
#else
1495
                G_target = E_total / (E_total_est + EPS);
1496
#endif
1497
            }
1498
            acc = 0;
1499
1500
            for (m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1501
            {
1502
                real_t alpha;
1503
1504
                /* alpha: (COEF) fixed point */
1505
                if (m < sbr->kx + sbr->M - 1)
1506
                {
1507
                    alpha = max(deg[m], deg[m + 1]);
1508
                } else {
1509
                    alpha = deg[m];
1510
                }
1511
1512
                adj->G_lim_boost[l][m-sbr->kx] = MUL_C(alpha, G_target) +
1513
                    MUL_C((COEF_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]);
1514
1515
                /* acc: integer */
1516
#ifdef FIXED_POINT
1517
                acc += MUL_Q2(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]);
1518
#else
1519
                acc += adj->G_lim_boost[l][m-sbr->kx] * sbr->E_curr[ch][m-sbr->kx][l];
1520
#endif
1521
            }
1522
1523
            /* acc: fixed point */
1524
            if (acc + EPS == 0)
1525
            {
1526
                acc = 0;
1527
            } else {
1528
#ifdef FIXED_POINT
1529
                acc = (((int64_t)(E_total))<<Q2_BITS)/(acc + EPS);
1530
#else
1531
                acc = E_total / (acc + EPS);
1532
#endif
1533
            }
1534
            for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1535
            {
1536
#ifdef FIXED_POINT
1537
                adj->G_lim_boost[l][m-sbr->kx] = MUL_Q2(acc, adj->G_lim_boost[l][m-sbr->kx]);
1538
#else
1539
                adj->G_lim_boost[l][m-sbr->kx] = acc * adj->G_lim_boost[l][m-sbr->kx];
1540
#endif
1541
            }
1542
        }
1543
    }
1544
1545
    for (l = 0; l < sbr->L_E[ch]; l++)
1546
    {
1547
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
1548
        {
1549
            for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
1550
                 m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
1551
            {
1552
#ifdef FIXED_POINT
1553
                 adj->G_lim_boost[l][m] = SBR_SQRT_Q2(adj->G_lim_boost[l][m]);
1554
#else
1555
                 adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]);
1556
#endif
1557
            }
1558
        }
1559
    }
1560
}
1561
#endif
1562
1563
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
1564
                        qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
1565
24.1k
{
1566
24.1k
    static real_t h_smooth[] = {
1567
24.1k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
24.1k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
24.1k
        FRAC_CONST(0.33333333333333)
1570
24.1k
    };
1571
24.1k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
24.1k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
24.1k
    uint8_t m, l, i, n;
1575
24.1k
    uint16_t fIndexNoise = 0;
1576
24.1k
    uint8_t fIndexSine = 0;
1577
24.1k
    uint8_t assembly_reset = 0;
1578
1579
24.1k
    real_t G_filt, Q_filt;
1580
1581
24.1k
    uint8_t h_SL;
1582
1583
1584
24.1k
    if (sbr->Reset == 1)
1585
23.3k
    {
1586
23.3k
        assembly_reset = 1;
1587
23.3k
        fIndexNoise = 0;
1588
23.3k
    } else {
1589
757
        fIndexNoise = sbr->index_noise_prev[ch];
1590
757
    }
1591
24.1k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
65.5k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
41.4k
    {
1596
41.4k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
41.4k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
41.4k
        h_SL = (no_noise ? 0 : h_SL);
1603
41.4k
#endif
1604
1605
41.4k
        if (assembly_reset)
1606
23.3k
        {
1607
116k
            for (n = 0; n < 4; n++)
1608
93.2k
            {
1609
93.2k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
93.2k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
93.2k
            }
1612
            /* reset ringbuffer index */
1613
23.3k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
23.3k
            assembly_reset = 0;
1615
23.3k
        }
1616
1617
796k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
755k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
755k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
755k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
11.4M
            for (m = 0; m < sbr->M; m++)
1629
10.7M
            {
1630
10.7M
                qmf_t psi;
1631
1632
10.7M
                G_filt = 0;
1633
10.7M
                Q_filt = 0;
1634
1635
10.7M
#ifndef SBR_LOW_POWER
1636
10.7M
                if (h_SL != 0)
1637
3.63M
                {
1638
3.63M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
21.8M
                    for (n = 0; n <= 4; n++)
1640
18.1M
                    {
1641
18.1M
                        real_t curr_h_smooth = h_smooth[n];
1642
18.1M
                        ri++;
1643
18.1M
                        if (ri >= 5)
1644
3.63M
                            ri -= 5;
1645
18.1M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
18.1M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
18.1M
                    }
1648
7.08M
               } else {
1649
7.08M
#endif
1650
7.08M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
7.08M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
7.08M
#ifndef SBR_LOW_POWER
1653
7.08M
                }
1654
10.7M
#endif
1655
10.7M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
1.12M
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
10.7M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
10.7M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
10.7M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
10.7M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
11.0k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
10.7M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
10.7M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
10.7M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
10.7M
#endif
1675
1676
10.7M
                {
1677
10.7M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
10.7M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
10.7M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
10.7M
#ifndef SBR_LOW_POWER
1682
10.7M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
10.7M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
10.7M
                }
1727
10.7M
            }
1728
1729
755k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
755k
            sbr->GQ_ringbuf_index[ch]++;
1733
755k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
162k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
755k
        }
1736
41.4k
    }
1737
1738
24.1k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
24.1k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
24.1k
}
sbr_hfadj.c:hf_assembly
Line
Count
Source
1565
9.55k
{
1566
9.55k
    static real_t h_smooth[] = {
1567
9.55k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
9.55k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
9.55k
        FRAC_CONST(0.33333333333333)
1570
9.55k
    };
1571
9.55k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
9.55k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
9.55k
    uint8_t m, l, i, n;
1575
9.55k
    uint16_t fIndexNoise = 0;
1576
9.55k
    uint8_t fIndexSine = 0;
1577
9.55k
    uint8_t assembly_reset = 0;
1578
1579
9.55k
    real_t G_filt, Q_filt;
1580
1581
9.55k
    uint8_t h_SL;
1582
1583
1584
9.55k
    if (sbr->Reset == 1)
1585
9.28k
    {
1586
9.28k
        assembly_reset = 1;
1587
9.28k
        fIndexNoise = 0;
1588
9.28k
    } else {
1589
262
        fIndexNoise = sbr->index_noise_prev[ch];
1590
262
    }
1591
9.55k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
26.3k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
16.7k
    {
1596
16.7k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
16.7k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
16.7k
        h_SL = (no_noise ? 0 : h_SL);
1603
16.7k
#endif
1604
1605
16.7k
        if (assembly_reset)
1606
9.27k
        {
1607
46.3k
            for (n = 0; n < 4; n++)
1608
37.0k
            {
1609
37.0k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
37.0k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
37.0k
            }
1612
            /* reset ringbuffer index */
1613
9.27k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
9.27k
            assembly_reset = 0;
1615
9.27k
        }
1616
1617
325k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
308k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
308k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
308k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
5.20M
            for (m = 0; m < sbr->M; m++)
1629
4.89M
            {
1630
4.89M
                qmf_t psi;
1631
1632
4.89M
                G_filt = 0;
1633
4.89M
                Q_filt = 0;
1634
1635
4.89M
#ifndef SBR_LOW_POWER
1636
4.89M
                if (h_SL != 0)
1637
1.86M
                {
1638
1.86M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
11.1M
                    for (n = 0; n <= 4; n++)
1640
9.30M
                    {
1641
9.30M
                        real_t curr_h_smooth = h_smooth[n];
1642
9.30M
                        ri++;
1643
9.30M
                        if (ri >= 5)
1644
1.86M
                            ri -= 5;
1645
9.30M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
9.30M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
9.30M
                    }
1648
3.03M
               } else {
1649
3.03M
#endif
1650
3.03M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
3.03M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
3.03M
#ifndef SBR_LOW_POWER
1653
3.03M
                }
1654
4.89M
#endif
1655
4.89M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
629k
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
4.89M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
4.89M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
4.89M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
4.89M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
5.03k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
4.89M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
4.89M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
4.89M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
4.89M
#endif
1675
1676
4.89M
                {
1677
4.89M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
4.89M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
4.89M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
4.89M
#ifndef SBR_LOW_POWER
1682
4.89M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
4.89M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
4.89M
                }
1727
4.89M
            }
1728
1729
308k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
308k
            sbr->GQ_ringbuf_index[ch]++;
1733
308k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
66.2k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
308k
        }
1736
16.7k
    }
1737
1738
9.55k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
9.55k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
9.55k
}
sbr_hfadj.c:hf_assembly
Line
Count
Source
1565
14.5k
{
1566
14.5k
    static real_t h_smooth[] = {
1567
14.5k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
14.5k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
14.5k
        FRAC_CONST(0.33333333333333)
1570
14.5k
    };
1571
14.5k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
14.5k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
14.5k
    uint8_t m, l, i, n;
1575
14.5k
    uint16_t fIndexNoise = 0;
1576
14.5k
    uint8_t fIndexSine = 0;
1577
14.5k
    uint8_t assembly_reset = 0;
1578
1579
14.5k
    real_t G_filt, Q_filt;
1580
1581
14.5k
    uint8_t h_SL;
1582
1583
1584
14.5k
    if (sbr->Reset == 1)
1585
14.0k
    {
1586
14.0k
        assembly_reset = 1;
1587
14.0k
        fIndexNoise = 0;
1588
14.0k
    } else {
1589
495
        fIndexNoise = sbr->index_noise_prev[ch];
1590
495
    }
1591
14.5k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
39.2k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
24.6k
    {
1596
24.6k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
24.6k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
24.6k
        h_SL = (no_noise ? 0 : h_SL);
1603
24.6k
#endif
1604
1605
24.6k
        if (assembly_reset)
1606
14.0k
        {
1607
70.2k
            for (n = 0; n < 4; n++)
1608
56.2k
            {
1609
56.2k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
56.2k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
56.2k
            }
1612
            /* reset ringbuffer index */
1613
14.0k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
14.0k
            assembly_reset = 0;
1615
14.0k
        }
1616
1617
471k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
446k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
446k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
446k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
6.26M
            for (m = 0; m < sbr->M; m++)
1629
5.81M
            {
1630
5.81M
                qmf_t psi;
1631
1632
5.81M
                G_filt = 0;
1633
5.81M
                Q_filt = 0;
1634
1635
5.81M
#ifndef SBR_LOW_POWER
1636
5.81M
                if (h_SL != 0)
1637
1.77M
                {
1638
1.77M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
10.6M
                    for (n = 0; n <= 4; n++)
1640
8.87M
                    {
1641
8.87M
                        real_t curr_h_smooth = h_smooth[n];
1642
8.87M
                        ri++;
1643
8.87M
                        if (ri >= 5)
1644
1.77M
                            ri -= 5;
1645
8.87M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
8.87M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
8.87M
                    }
1648
4.04M
               } else {
1649
4.04M
#endif
1650
4.04M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
4.04M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
4.04M
#ifndef SBR_LOW_POWER
1653
4.04M
                }
1654
5.81M
#endif
1655
5.81M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
496k
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
5.81M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
5.81M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
5.81M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
5.81M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
5.99k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
5.81M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
5.81M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
5.81M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
5.81M
#endif
1675
1676
5.81M
                {
1677
5.81M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
5.81M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
5.81M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
5.81M
#ifndef SBR_LOW_POWER
1682
5.81M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
5.81M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
5.81M
                }
1727
5.81M
            }
1728
1729
446k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
446k
            sbr->GQ_ringbuf_index[ch]++;
1733
446k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
95.9k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
446k
        }
1736
24.6k
    }
1737
1738
14.5k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
14.5k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
14.5k
}
1741
1742
#endif