Coverage Report

Created: 2025-11-24 06:22

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/proc/self/cwd/libfaad/sbr_hfadj.c
Line
Count
Source
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: sbr_hfadj.c,v 1.23 2008/09/19 22:50:20 menno Exp $
29
**/
30
31
/* High Frequency adjustment */
32
#include <float.h>
33
34
#include "common.h"
35
#include "structs.h"
36
37
#ifdef SBR_DEC
38
39
#include "sbr_syntax.h"
40
#include "sbr_hfadj.h"
41
42
#include "sbr_noise.h"
43
44
45
/* static function declarations */
46
static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
47
                                         qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
48
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch);
49
#ifdef SBR_LOW_POWER
50
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
51
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
52
#endif
53
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
54
55
56
uint8_t hf_adjustment(sbr_info *sbr, qmf_t Xsbr[MAX_NTSRHFG][64]
57
#ifdef SBR_LOW_POWER
58
                      ,real_t *deg /* aliasing degree */
59
#endif
60
                      ,uint8_t ch)
61
28.7k
{
62
28.7k
    ALIGN sbr_hfadj_info adj = {{{0}}};
63
28.7k
    uint8_t ret = 0;
64
65
28.7k
    if (sbr->bs_frame_class[ch] == FIXFIX)
66
7.63k
    {
67
7.63k
        sbr->l_A[ch] = -1;
68
21.0k
    } else if (sbr->bs_frame_class[ch] == VARFIX) {
69
9.97k
        if (sbr->bs_pointer[ch] > 1)
70
2.26k
            sbr->l_A[ch] = sbr->bs_pointer[ch] - 1;
71
7.70k
        else
72
7.70k
            sbr->l_A[ch] = -1;
73
11.1k
    } else {
74
11.1k
        if (sbr->bs_pointer[ch] == 0)
75
3.76k
            sbr->l_A[ch] = -1;
76
7.35k
        else
77
7.35k
            sbr->l_A[ch] = sbr->L_E[ch] + 1 - sbr->bs_pointer[ch];
78
11.1k
    }
79
80
28.7k
    ret = estimate_current_envelope(sbr, &adj, Xsbr, ch);
81
28.7k
    if (ret > 0)
82
877
        return 1;
83
84
27.8k
    calculate_gain(sbr, &adj, ch);
85
86
#ifdef SBR_LOW_POWER
87
    calc_gain_groups(sbr, &adj, deg, ch);
88
    aliasing_reduction(sbr, &adj, deg, ch);
89
#endif
90
91
27.8k
    hf_assembly(sbr, &adj, Xsbr, ch);
92
93
27.8k
    return 0;
94
28.7k
}
95
96
static uint8_t get_S_mapped(sbr_info *sbr, uint8_t ch, uint8_t l, uint8_t current_band)
97
230k
{
98
230k
    if (sbr->f[ch][l] == HI_RES)
99
97.8k
    {
100
        /* in case of using f_table_high we just have 1 to 1 mapping
101
         * from bs_add_harmonic[l][k]
102
         */
103
97.8k
        if ((l >= sbr->l_A[ch]) ||
104
27.8k
            (sbr->bs_add_harmonic_prev[ch][current_band] && sbr->bs_add_harmonic_flag_prev[ch]))
105
71.5k
        {
106
71.5k
            return sbr->bs_add_harmonic[ch][current_band];
107
71.5k
        }
108
132k
    } else {
109
132k
        uint8_t b, lb, ub;
110
111
        /* in case of f_table_low we check if any of the HI_RES bands
112
         * within this LO_RES band has bs_add_harmonic[l][k] turned on
113
         * (note that borders in the LO_RES table are also present in
114
         * the HI_RES table)
115
         */
116
117
        /* find first HI_RES band in current LO_RES band */
118
132k
        lb = 2*current_band - ((sbr->N_high & 1) ? 1 : 0);
119
        /* find first HI_RES band in next LO_RES band */
120
132k
        ub = 2*(current_band+1) - ((sbr->N_high & 1) ? 1 : 0);
121
122
        /* check all HI_RES bands in current LO_RES band for sinusoid */
123
344k
        for (b = lb; b < ub; b++)
124
223k
        {
125
223k
            if ((l >= sbr->l_A[ch]) ||
126
64.7k
                (sbr->bs_add_harmonic_prev[ch][b] && sbr->bs_add_harmonic_flag_prev[ch]))
127
160k
            {
128
160k
                if (sbr->bs_add_harmonic[ch][b] == 1)
129
10.7k
                    return 1;
130
160k
            }
131
223k
        }
132
132k
    }
133
134
147k
    return 0;
135
230k
}
136
137
static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
138
                                         qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
139
28.7k
{
140
28.7k
    uint8_t m, l, j, k, k_l, k_h, p;
141
28.7k
    real_t nrg, div;
142
28.7k
    (void)adj;  /* TODO: remove parameter? */
143
#ifdef FIXED_POINT
144
13.5k
    const real_t half = REAL_CONST(0.5);
145
    real_t limit;
146
    real_t mul;
147
#else
148
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
    const real_t limit = FLT_MAX;
150
#endif
151
152
28.7k
    if (sbr->bs_interpol_freq == 1)
153
19.5k
    {
154
52.5k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
33.2k
        {
156
33.2k
            uint8_t i, l_i, u_i;
157
158
33.2k
            l_i = sbr->t_E[ch][l];
159
33.2k
            u_i = sbr->t_E[ch][l+1];
160
161
33.2k
            div = (real_t)(u_i - l_i);
162
163
33.2k
            if (div <= 0)
164
1.12k
                div = 1;
165
#ifdef FIXED_POINT
166
13.9k
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
13.9k
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
#endif
169
170
418k
            for (m = 0; m < sbr->M; m++)
171
385k
            {
172
385k
                nrg = 0;
173
174
7.25M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
6.87M
                {
176
6.87M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
6.87M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
6.87M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
6.87M
                    nrg += MUL_C(re, re)
184
6.87M
#ifndef SBR_LOW_POWER
185
6.87M
                        + MUL_C(im, im)
186
6.87M
#endif
187
6.87M
                        ;
188
6.87M
                }
189
190
385k
                if (nrg < -limit || nrg > limit)
191
242
                    return 1;
192
#ifdef FIXED_POINT
193
185k
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
199k
                sbr->E_curr[ch][m][l] = nrg / div;
196
199k
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
199k
            }
205
33.2k
        }
206
19.5k
    } else {
207
23.1k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
14.5k
        {
209
110k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
96.5k
            {
211
96.5k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
96.5k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
363k
                for (k = k_l; k < k_h; k++)
215
267k
                {
216
267k
                    uint8_t i, l_i, u_i;
217
267k
                    nrg = 0;
218
219
267k
                    l_i = sbr->t_E[ch][l];
220
267k
                    u_i = sbr->t_E[ch][l+1];
221
222
267k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
267k
                    if (div <= 0)
225
9.89k
                        div = 1;
226
#ifdef FIXED_POINT
227
166k
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
166k
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
#endif
230
231
5.51M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
5.24M
                    {
233
25.4M
                        for (j = k_l; j < k_h; j++)
234
20.2M
                        {
235
20.2M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
20.2M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
20.2M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
20.2M
                            nrg += MUL_C(re, re)
243
20.2M
#ifndef SBR_LOW_POWER
244
20.2M
                                + MUL_C(im, im)
245
20.2M
#endif
246
20.2M
                                ;
247
20.2M
                        }
248
5.24M
                    }
249
250
267k
                    if (nrg < -limit || nrg > limit)
251
635
                        return 1;
252
#ifdef FIXED_POINT
253
166k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
100k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
100k
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
100k
                }
265
96.5k
            }
266
14.5k
        }
267
9.21k
    }
268
269
27.8k
    return 0;
270
28.7k
}
sbr_hfadj.c:estimate_current_envelope
Line
Count
Source
139
13.5k
{
140
13.5k
    uint8_t m, l, j, k, k_l, k_h, p;
141
13.5k
    real_t nrg, div;
142
13.5k
    (void)adj;  /* TODO: remove parameter? */
143
13.5k
#ifdef FIXED_POINT
144
13.5k
    const real_t half = REAL_CONST(0.5);
145
13.5k
    real_t limit;
146
13.5k
    real_t mul;
147
#else
148
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
    const real_t limit = FLT_MAX;
150
#endif
151
152
13.5k
    if (sbr->bs_interpol_freq == 1)
153
7.98k
    {
154
21.7k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
13.9k
        {
156
13.9k
            uint8_t i, l_i, u_i;
157
158
13.9k
            l_i = sbr->t_E[ch][l];
159
13.9k
            u_i = sbr->t_E[ch][l+1];
160
161
13.9k
            div = (real_t)(u_i - l_i);
162
163
13.9k
            if (div <= 0)
164
585
                div = 1;
165
13.9k
#ifdef FIXED_POINT
166
13.9k
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
13.9k
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
13.9k
#endif
169
170
199k
            for (m = 0; m < sbr->M; m++)
171
186k
            {
172
186k
                nrg = 0;
173
174
3.18M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
2.99M
                {
176
2.99M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
2.99M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
2.99M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
2.99M
                    nrg += MUL_C(re, re)
184
2.99M
#ifndef SBR_LOW_POWER
185
2.99M
                        + MUL_C(im, im)
186
2.99M
#endif
187
2.99M
                        ;
188
2.99M
                }
189
190
186k
                if (nrg < -limit || nrg > limit)
191
235
                    return 1;
192
185k
#ifdef FIXED_POINT
193
185k
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
                sbr->E_curr[ch][m][l] = nrg / div;
196
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
185k
            }
205
13.9k
        }
206
7.98k
    } else {
207
13.7k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
8.80k
        {
209
67.0k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
58.8k
            {
211
58.8k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
58.8k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
225k
                for (k = k_l; k < k_h; k++)
215
166k
                {
216
166k
                    uint8_t i, l_i, u_i;
217
166k
                    nrg = 0;
218
219
166k
                    l_i = sbr->t_E[ch][l];
220
166k
                    u_i = sbr->t_E[ch][l+1];
221
222
166k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
166k
                    if (div <= 0)
225
5.23k
                        div = 1;
226
166k
#ifdef FIXED_POINT
227
166k
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
166k
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
166k
#endif
230
231
3.36M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
3.19M
                    {
233
16.6M
                        for (j = k_l; j < k_h; j++)
234
13.4M
                        {
235
13.4M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
13.4M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
13.4M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
13.4M
                            nrg += MUL_C(re, re)
243
13.4M
#ifndef SBR_LOW_POWER
244
13.4M
                                + MUL_C(im, im)
245
13.4M
#endif
246
13.4M
                                ;
247
13.4M
                        }
248
3.19M
                    }
249
250
166k
                    if (nrg < -limit || nrg > limit)
251
629
                        return 1;
252
166k
#ifdef FIXED_POINT
253
166k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
166k
                }
265
58.8k
            }
266
8.80k
        }
267
5.55k
    }
268
269
12.6k
    return 0;
270
13.5k
}
sbr_hfadj.c:estimate_current_envelope
Line
Count
Source
139
15.1k
{
140
15.1k
    uint8_t m, l, j, k, k_l, k_h, p;
141
15.1k
    real_t nrg, div;
142
15.1k
    (void)adj;  /* TODO: remove parameter? */
143
#ifdef FIXED_POINT
144
    const real_t half = REAL_CONST(0.5);
145
    real_t limit;
146
    real_t mul;
147
#else
148
15.1k
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
15.1k
    const real_t limit = FLT_MAX;
150
15.1k
#endif
151
152
15.1k
    if (sbr->bs_interpol_freq == 1)
153
11.5k
    {
154
30.8k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
19.2k
        {
156
19.2k
            uint8_t i, l_i, u_i;
157
158
19.2k
            l_i = sbr->t_E[ch][l];
159
19.2k
            u_i = sbr->t_E[ch][l+1];
160
161
19.2k
            div = (real_t)(u_i - l_i);
162
163
19.2k
            if (div <= 0)
164
541
                div = 1;
165
#ifdef FIXED_POINT
166
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
#endif
169
170
218k
            for (m = 0; m < sbr->M; m++)
171
199k
            {
172
199k
                nrg = 0;
173
174
4.07M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
3.87M
                {
176
3.87M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
3.87M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
3.87M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
3.87M
                    nrg += MUL_C(re, re)
184
3.87M
#ifndef SBR_LOW_POWER
185
3.87M
                        + MUL_C(im, im)
186
3.87M
#endif
187
3.87M
                        ;
188
3.87M
                }
189
190
199k
                if (nrg < -limit || nrg > limit)
191
7
                    return 1;
192
#ifdef FIXED_POINT
193
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
199k
                sbr->E_curr[ch][m][l] = nrg / div;
196
199k
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
199k
            }
205
19.2k
        }
206
11.5k
    } else {
207
9.43k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
5.77k
        {
209
43.4k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
37.6k
            {
211
37.6k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
37.6k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
138k
                for (k = k_l; k < k_h; k++)
215
100k
                {
216
100k
                    uint8_t i, l_i, u_i;
217
100k
                    nrg = 0;
218
219
100k
                    l_i = sbr->t_E[ch][l];
220
100k
                    u_i = sbr->t_E[ch][l+1];
221
222
100k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
100k
                    if (div <= 0)
225
4.66k
                        div = 1;
226
#ifdef FIXED_POINT
227
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
#endif
230
231
2.15M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
2.05M
                    {
233
8.75M
                        for (j = k_l; j < k_h; j++)
234
6.70M
                        {
235
6.70M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
6.70M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
6.70M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
6.70M
                            nrg += MUL_C(re, re)
243
6.70M
#ifndef SBR_LOW_POWER
244
6.70M
                                + MUL_C(im, im)
245
6.70M
#endif
246
6.70M
                                ;
247
6.70M
                        }
248
2.05M
                    }
249
250
100k
                    if (nrg < -limit || nrg > limit)
251
6
                        return 1;
252
#ifdef FIXED_POINT
253
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
100k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
100k
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
100k
                }
265
37.6k
            }
266
5.77k
        }
267
3.66k
    }
268
269
15.1k
    return 0;
270
15.1k
}
271
272
#ifdef FIXED_POINT
273
#define EPS (1) /* smallest number available in fixed point */
274
#else
275
191k
#define EPS (1e-12)
276
#endif
277
278
279
280
#ifdef FIXED_POINT
281
282
/* log2 values of [0..63] */
283
static const real_t log2_int_tab[] = {
284
    LOG2_MIN_INF, REAL_CONST(0.000000000000000), REAL_CONST(1.000000000000000), REAL_CONST(1.584962500721156),
285
    REAL_CONST(2.000000000000000), REAL_CONST(2.321928094887362), REAL_CONST(2.584962500721156), REAL_CONST(2.807354922057604),
286
    REAL_CONST(3.000000000000000), REAL_CONST(3.169925001442313), REAL_CONST(3.321928094887363), REAL_CONST(3.459431618637297),
287
    REAL_CONST(3.584962500721156), REAL_CONST(3.700439718141092), REAL_CONST(3.807354922057604), REAL_CONST(3.906890595608519),
288
    REAL_CONST(4.000000000000000), REAL_CONST(4.087462841250339), REAL_CONST(4.169925001442312), REAL_CONST(4.247927513443585),
289
    REAL_CONST(4.321928094887362), REAL_CONST(4.392317422778761), REAL_CONST(4.459431618637297), REAL_CONST(4.523561956057013),
290
    REAL_CONST(4.584962500721156), REAL_CONST(4.643856189774724), REAL_CONST(4.700439718141093), REAL_CONST(4.754887502163468),
291
    REAL_CONST(4.807354922057604), REAL_CONST(4.857980995127572), REAL_CONST(4.906890595608519), REAL_CONST(4.954196310386875),
292
    REAL_CONST(5.000000000000000), REAL_CONST(5.044394119358453), REAL_CONST(5.087462841250340), REAL_CONST(5.129283016944966),
293
    REAL_CONST(5.169925001442312), REAL_CONST(5.209453365628949), REAL_CONST(5.247927513443585), REAL_CONST(5.285402218862248),
294
    REAL_CONST(5.321928094887363), REAL_CONST(5.357552004618084), REAL_CONST(5.392317422778761), REAL_CONST(5.426264754702098),
295
    REAL_CONST(5.459431618637297), REAL_CONST(5.491853096329675), REAL_CONST(5.523561956057013), REAL_CONST(5.554588851677637),
296
    REAL_CONST(5.584962500721156), REAL_CONST(5.614709844115208), REAL_CONST(5.643856189774724), REAL_CONST(5.672425341971495),
297
    REAL_CONST(5.700439718141093), REAL_CONST(5.727920454563200), REAL_CONST(5.754887502163469), REAL_CONST(5.781359713524660),
298
    REAL_CONST(5.807354922057605), REAL_CONST(5.832890014164742), REAL_CONST(5.857980995127572), REAL_CONST(5.882643049361842),
299
    REAL_CONST(5.906890595608518), REAL_CONST(5.930737337562887), REAL_CONST(5.954196310386876), REAL_CONST(5.977279923499916)
300
};
301
302
// pan_log2_tab[X] = log2(2**X + 1) - X
303
static const real_t pan_log2_tab[13] = {
304
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362), REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339),
305
    REAL_CONST(0.044394119358453), REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878), REAL_CONST(0.002815015607054),
306
    REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247), REAL_CONST(0.000352177480301)
307
};
308
309
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
310
494k
{
311
    /* check for coupled energy/noise data */
312
494k
    if (sbr->bs_coupling == 1)
313
218k
    {
314
218k
        int16_t e = sbr->E[0][k][l];
315
218k
        int16_t E = sbr->E[1][k][l];
316
218k
        uint8_t amp0 = (sbr->amp_res[0]) ? 0 : 1;
317
218k
        uint8_t amp1 = (sbr->amp_res[1]) ? 0 : 1;
318
218k
        real_t tmp, pan;
319
320
        /* E[1] should always be even so shifting is OK */
321
218k
        E >>= amp1;
322
218k
        if (e < 0 || e >= 64 || E < 0 || E > 24)
323
52.0k
            return LOG2_MIN_INF;
324
166k
        E -= 12;
325
326
166k
        if (ch != 0)  // L/R anti-symmetry
327
83.5k
            E = -E;
328
329
166k
        if (E >= 0)
330
84.9k
        {
331
            /* negative */
332
84.9k
            pan = pan_log2_tab[E];
333
84.9k
        } else {
334
            /* positive */
335
81.8k
            pan = pan_log2_tab[-E] + ((-E)<<REAL_BITS);
336
81.8k
        }
337
338
        /* tmp / pan in log2 */
339
166k
        tmp = (7 << REAL_BITS) + (e << (REAL_BITS-amp0));
340
166k
        return tmp - pan;
341
275k
    } else {
342
275k
        int16_t e = sbr->E[ch][k][l];
343
275k
        uint8_t amp = (sbr->amp_res[ch]) ? 0 : 1;
344
275k
        if (e < 0 || (e >> amp) >= 64)
345
39.1k
            return LOG2_MIN_INF;
346
236k
        return 6 * REAL_PRECISION + e * (REAL_PRECISION >> amp);
347
275k
    }
348
494k
}
349
350
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
351
342k
{
352
    /* check for coupled energy/noise data */
353
342k
    if (sbr->bs_coupling == 1)
354
155k
    {
355
155k
        int32_t q = sbr->Q[0][k][l];
356
155k
        int32_t Q = sbr->Q[1][k][l];
357
155k
        real_t tmp, pan;
358
359
155k
        if (q < 0 || q > 30 || Q < 0 || Q > 24)
360
28.7k
            return LOG2_MIN_INF;
361
126k
        Q -= 12;
362
363
126k
        if (ch != 0)  // L/R anti-symmetry
364
63.3k
            Q = -Q;
365
366
126k
        if (Q >= 0)
367
63.9k
        {
368
            /* negative */
369
63.9k
            pan = pan_log2_tab[Q];
370
63.9k
        } else {
371
            /* positive */
372
62.5k
            pan = pan_log2_tab[-Q] + ((-Q)<<REAL_BITS);
373
62.5k
        }
374
375
        /* tmp / pan in log2 */
376
126k
        tmp = (7 - q) * REAL_PRECISION;
377
126k
        return tmp - pan;
378
187k
    } else {
379
187k
        int32_t q = sbr->Q[ch][k][l];
380
187k
        if (q < 0 || q > 30)
381
30.2k
            return LOG2_MIN_INF;
382
156k
        return (6 - q) * REAL_PRECISION;
383
187k
    }
384
342k
}
385
386
static const real_t log_Qplus1_pan[31][13] = {
387
    { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
388
    { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
389
    { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
390
    { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
391
    { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
392
    { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
393
    { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
394
    { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
395
    { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
396
    { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
397
    { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
398
    { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
399
    { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
400
    { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
401
    { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
402
    { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
403
    { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
404
    { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
405
    { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
406
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
407
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
408
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
409
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
410
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
411
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
412
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
413
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
414
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
415
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
416
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
417
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
418
};
419
420
static const real_t log_Qplus1[31] = {
421
    REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
422
    REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
423
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
424
    REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
425
    REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
426
    REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
427
    REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
428
    REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
429
    REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
430
    REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
431
    REAL_CONST(0.000000000000000)
432
};
433
434
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
435
342k
{
436
    /* check for coupled energy/noise data */
437
342k
    if (sbr->bs_coupling == 1)
438
155k
    {
439
155k
        if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
440
148k
            (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
441
126k
        {
442
126k
            if (ch == 0)
443
63.1k
            {
444
63.1k
                return log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1];
445
63.3k
            } else {
446
63.3k
                return log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)];
447
63.3k
            }
448
126k
        } else {
449
28.7k
            return 0;
450
28.7k
        }
451
187k
    } else {
452
187k
        if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
453
156k
        {
454
156k
            return log_Qplus1[sbr->Q[ch][k][l]];
455
156k
        } else {
456
30.2k
            return 0;
457
30.2k
        }
458
187k
    }
459
342k
}
460
461
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
462
12.6k
{
463
    /* log2 values of limiter gains */
464
    /* Last one less than log2(1e10) due to FIXED POINT float limitations */
465
12.6k
    static real_t limGain[] = {
466
12.6k
        REAL_CONST(-1.0), REAL_CONST(0.0), REAL_CONST(1.0), REAL_CONST(21.0)
467
12.6k
    };
468
12.6k
    uint8_t m, l, k;
469
470
12.6k
    uint8_t current_t_noise_band = 0;
471
12.6k
    uint8_t S_mapped;
472
473
12.6k
    ALIGN real_t Q_M_lim[MAX_M];
474
12.6k
    ALIGN real_t G_lim[MAX_M];
475
12.6k
    ALIGN real_t G_boost;
476
12.6k
    ALIGN real_t S_M[MAX_M];
477
478
12.6k
    real_t exp = REAL_CONST(-10);
479
480
34.5k
    for (l = 0; l < sbr->L_E[ch]; l++)
481
21.9k
    {
482
21.9k
        uint8_t current_f_noise_band = 0;
483
21.9k
        uint8_t current_res_band = 0;
484
21.9k
        uint8_t current_res_band2 = 0;
485
21.9k
        uint8_t current_hi_res_band = 0;
486
487
21.9k
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
488
489
21.9k
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
490
491
21.9k
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
492
3.53k
        {
493
3.53k
            current_t_noise_band++;
494
3.53k
        }
495
496
72.1k
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
497
50.2k
        {
498
50.2k
            real_t Q_M = 0;
499
50.2k
            real_t G_max;
500
50.2k
            uint64_t den = 0, acc1 = 0, acc2 = 0;
501
50.2k
            uint8_t current_res_band_size = 0;
502
50.2k
            uint8_t Q_M_size = 0;
503
50.2k
            real_t log_e, log_den, log_acc1, log_acc2;
504
505
50.2k
            uint8_t ml1, ml2;
506
507
            /* bounds of current limiter bands */
508
50.2k
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
509
50.2k
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
510
511
50.2k
            if (ml1 > MAX_M)
512
0
                ml1 = MAX_M;
513
514
50.2k
            if (ml2 > MAX_M)
515
0
                ml2 = MAX_M;
516
517
518
            /* calculate the accumulated E_orig and E_curr over the limiter band */
519
392k
            for (m = ml1; m < ml2; m++)
520
342k
            {
521
342k
                if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
522
239k
                {
523
239k
                    current_res_band_size++;
524
239k
                } else {
525
102k
                    log_e = find_log2_E(sbr, current_res_band, l, ch);
526
102k
                    acc1 += pow2_int(exp + log2_int_tab[current_res_band_size] + log_e);
527
528
102k
                    current_res_band++;
529
102k
                    current_res_band_size = 1;
530
102k
                }
531
532
342k
                acc2 += sbr->E_curr[ch][m][l];
533
342k
            }
534
50.2k
            if (current_res_band_size) {
535
50.2k
                log_e = find_log2_E(sbr, current_res_band, l, ch);
536
50.2k
                acc1 += pow2_int(exp + log2_int_tab[current_res_band_size] + log_e);
537
50.2k
            }
538
539
540
50.2k
            if (acc1 == 0)
541
29.1k
                log_acc1 = LOG2_MIN_INF;
542
21.0k
            else
543
21.0k
                log_acc1 = log2_int(acc1);
544
545
50.2k
            if (acc2 == 0)
546
49.1k
                log_acc2 = LOG2_MIN_INF;
547
1.09k
            else
548
1.09k
                log_acc2 = log2_int(acc2);
549
550
            /* calculate the maximum gain */
551
            /* ratio of the energy of the original signal and the energy
552
             * of the HF generated signal
553
             */
554
50.2k
            G_max = log_acc1 - log_acc2 + limGain[sbr->bs_limiter_gains];
555
50.2k
            G_max = min(G_max, limGain[3]);
556
557
558
392k
            for (m = ml1; m < ml2; m++)
559
342k
            {
560
342k
                real_t G;
561
342k
                real_t E_curr, E_orig;
562
342k
                real_t Q_orig, Q_orig_plus1;
563
342k
                uint8_t S_index_mapped;
564
565
566
                /* check if m is on a noise band border */
567
342k
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
568
20.1k
                {
569
                    /* step to next noise band */
570
20.1k
                    current_f_noise_band++;
571
20.1k
                }
572
573
574
                /* check if m is on a resolution band border */
575
342k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
576
102k
                {
577
                    /* accumulate a whole range of equal Q_Ms */
578
102k
                    if (Q_M_size > 0)
579
45.9k
                        den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
580
102k
                    Q_M_size = 0;
581
582
                    /* step to next resolution band */
583
102k
                    current_res_band2++;
584
585
                    /* if we move to a new resolution band, we should check if we are
586
                     * going to add a sinusoid in this band
587
                     */
588
102k
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
589
102k
                }
590
591
592
                /* check if m is on a HI_RES band border */
593
342k
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
594
158k
                {
595
                    /* step to next HI_RES band */
596
158k
                    current_hi_res_band++;
597
158k
                }
598
599
600
                /* find S_index_mapped
601
                 * S_index_mapped can only be 1 for the m in the middle of the
602
                 * current HI_RES band
603
                 */
604
342k
                S_index_mapped = 0;
605
342k
                if ((l >= sbr->l_A[ch]) ||
606
80.4k
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
607
263k
                {
608
                    /* find the middle subband of the HI_RES frequency band */
609
263k
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
610
132k
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
611
263k
                }
612
613
614
                /* find bitstream parameters */
615
342k
                if (sbr->E_curr[ch][m][l] == 0)
616
333k
                    E_curr = LOG2_MIN_INF;
617
8.44k
                else
618
8.44k
                    E_curr = log2_int(sbr->E_curr[ch][m][l]);
619
342k
                E_orig = exp + find_log2_E(sbr, current_res_band2, l, ch);
620
621
622
342k
                Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
623
342k
                Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
624
625
626
                /* Q_M only depends on E_orig and Q_div2:
627
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
628
                 * a change of current res band (HI or LO)
629
                 */
630
342k
                Q_M = E_orig + Q_orig - Q_orig_plus1;
631
632
633
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
634
                 * S_index_mapped can only be non-zero once per HI_RES band
635
                 */
636
342k
                if (S_index_mapped == 0)
637
323k
                {
638
323k
                    S_M[m] = LOG2_MIN_INF; /* -inf */
639
323k
                } else {
640
19.2k
                    S_M[m] = E_orig - Q_orig_plus1;
641
19.2k
                    S_M[m] = min(S_M[m], limGain[3]);
642
643
                    /* accumulate sinusoid part of the total energy */
644
19.2k
                    den += pow2_int(S_M[m]);
645
19.2k
                }
646
647
648
                /* calculate gain */
649
                /* ratio of the energy of the original signal and the energy
650
                 * of the HF generated signal
651
                 */
652
                /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
653
                /* scaled by exp */
654
342k
                G = E_orig - max(exp, E_curr);
655
342k
                if ((S_mapped == 0) && (delta == 1))
656
269k
                {
657
                    /* G = G * 1/(1+Q) */
658
269k
                    G -= Q_orig_plus1;
659
269k
                } else if (S_mapped == 1) {
660
                    /* G = G * Q/(1+Q) */
661
43.3k
                    G += Q_orig - Q_orig_plus1;
662
43.3k
                }
663
664
665
                /* limit the additional noise energy level */
666
                /* and apply the limiter */
667
342k
                if (G_max > G)
668
218k
                {
669
218k
                    Q_M_lim[m] = Q_M;
670
218k
                    G_lim[m] = G;
671
672
218k
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
673
194k
                    {
674
194k
                        Q_M_size++;
675
194k
                    }
676
218k
                } else {
677
                    /* G >= G_max */
678
123k
                    Q_M_lim[m] = Q_M + G_max - G;
679
123k
                    G_lim[m] = G_max;
680
681
                    /* accumulate limited Q_M */
682
123k
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
683
105k
                    {
684
105k
                        den += pow2_int(Q_M_lim[m]);
685
105k
                    }
686
123k
                }
687
688
689
                /* accumulate the total energy */
690
                /* E_curr changes for every m so we do need to accumulate every m */
691
342k
                den += pow2_int(E_curr + G_lim[m]);
692
342k
            }
693
694
            /* accumulate last range of equal Q_Ms */
695
50.2k
            if (Q_M_size > 0)
696
30.3k
            {
697
30.3k
                den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
698
30.3k
            }
699
700
50.2k
            if (den == 0)
701
37.2k
                log_den = LOG2_MIN_INF;
702
13.0k
            else
703
13.0k
                log_den = log2_int(den /*+ EPS*/);
704
705
            /* calculate the final gain */
706
            /* G_boost: [0..2.51188643] */
707
50.2k
            G_boost = log_acc1 - log_den;
708
50.2k
            G_boost = min(G_boost, REAL_CONST(1.328771237) /* log2(1.584893192 ^ 2) */);
709
710
711
392k
            for (m = ml1; m < ml2; m++)
712
342k
            {
713
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
714
342k
#ifndef SBR_LOW_POWER
715
342k
                adj->G_lim_boost[l][m] = pow2_fix((G_lim[m] + G_boost) >> 1);
716
#else
717
                /* sqrt() will be done after the aliasing reduction to save a
718
                 * few multiplies
719
                 */
720
                adj->G_lim_boost[l][m] = pow2_fix(G_lim[m] + G_boost);
721
#endif
722
342k
                adj->Q_M_lim_boost[l][m] = pow2_fix((Q_M_lim[m] + G_boost) >> 1);
723
724
342k
                adj->S_M_boost[l][m] = pow2_fix((S_M[m] + G_boost) >> 1);
725
342k
            }
726
50.2k
        }
727
21.9k
    }
728
12.6k
}
729
730
#else
731
732
//#define LOG2_TEST
733
734
#ifdef LOG2_TEST
735
736
#define LOG2_MIN_INF -100000
737
738
__inline float pow2(float val)
739
{
740
    return pow(2.0, val);
741
}
742
__inline float log2(float val)
743
{
744
    return log(val)/log(2.0);
745
}
746
747
#define RB 14
748
749
float QUANTISE2REAL(float val)
750
{
751
    __int32 ival = (__int32)(val * (1<<RB));
752
    return (float)ival / (float)((1<<RB));
753
}
754
755
float QUANTISE2INT(float val)
756
{
757
    return floor(val);
758
}
759
760
/* log2 values of [0..63] */
761
static const real_t log2_int_tab[] = {
762
    LOG2_MIN_INF,      0.000000000000000, 1.000000000000000, 1.584962500721156,
763
    2.000000000000000, 2.321928094887362, 2.584962500721156, 2.807354922057604,
764
    3.000000000000000, 3.169925001442313, 3.321928094887363, 3.459431618637297,
765
    3.584962500721156, 3.700439718141092, 3.807354922057604, 3.906890595608519,
766
    4.000000000000000, 4.087462841250339, 4.169925001442312, 4.247927513443585,
767
    4.321928094887362, 4.392317422778761, 4.459431618637297, 4.523561956057013,
768
    4.584962500721156, 4.643856189774724, 4.700439718141093, 4.754887502163468,
769
    4.807354922057604, 4.857980995127572, 4.906890595608519, 4.954196310386875,
770
    5.000000000000000, 5.044394119358453, 5.087462841250340, 5.129283016944966,
771
    5.169925001442312, 5.209453365628949, 5.247927513443585, 5.285402218862248,
772
    5.321928094887363, 5.357552004618084, 5.392317422778761, 5.426264754702098,
773
    5.459431618637297, 5.491853096329675, 5.523561956057013, 5.554588851677637,
774
    5.584962500721156, 5.614709844115208, 5.643856189774724, 5.672425341971495,
775
    5.700439718141093, 5.727920454563200, 5.754887502163469, 5.781359713524660,
776
    5.807354922057605, 5.832890014164742, 5.857980995127572, 5.882643049361842,
777
    5.906890595608518, 5.930737337562887, 5.954196310386876, 5.977279923499916
778
};
779
780
static const real_t pan_log2_tab[] = {
781
    1.000000000000000, 0.584962500721156, 0.321928094887362, 0.169925001442312, 0.087462841250339,
782
    0.044394119358453, 0.022367813028455, 0.011227255423254, 0.005624549193878, 0.002815015607054,
783
    0.001408194392808, 0.000704269011247, 0.000352177480301, 0.000176099486443, 0.000088052430122,
784
    0.000044026886827, 0.000022013611360, 0.000011006847667
785
};
786
787
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
788
{
789
    /* check for coupled energy/noise data */
790
    if (sbr->bs_coupling == 1)
791
    {
792
        real_t amp0 = (sbr->amp_res[0]) ? 1.0 : 0.5;
793
        real_t amp1 = (sbr->amp_res[1]) ? 1.0 : 0.5;
794
        float tmp = QUANTISE2REAL(7.0 + (real_t)sbr->E[0][k][l] * amp0);
795
        float pan;
796
797
        int E = (int)(sbr->E[1][k][l] * amp1);
798
799
        if (ch == 0)
800
        {
801
            if (E > 12)
802
            {
803
                /* negative */
804
                pan = QUANTISE2REAL(pan_log2_tab[-12 + E]);
805
            } else {
806
                /* positive */
807
                pan = QUANTISE2REAL(pan_log2_tab[12 - E] + (12 - E));
808
            }
809
        } else {
810
            if (E < 12)
811
            {
812
                /* negative */
813
                pan = QUANTISE2REAL(pan_log2_tab[-E + 12]);
814
            } else {
815
                /* positive */
816
                pan = QUANTISE2REAL(pan_log2_tab[E - 12] + (E - 12));
817
            }
818
        }
819
820
        /* tmp / pan in log2 */
821
        return QUANTISE2REAL(tmp - pan);
822
    } else {
823
        real_t amp = (sbr->amp_res[ch]) ? 1.0 : 0.5;
824
825
        return QUANTISE2REAL(6.0 + (real_t)sbr->E[ch][k][l] * amp);
826
    }
827
}
828
829
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
830
{
831
    /* check for coupled energy/noise data */
832
    if (sbr->bs_coupling == 1)
833
    {
834
        float tmp = QUANTISE2REAL(7.0 - (real_t)sbr->Q[0][k][l]);
835
        float pan;
836
837
        int Q = (int)(sbr->Q[1][k][l]);
838
839
        if (ch == 0)
840
        {
841
            if (Q > 12)
842
            {
843
                /* negative */
844
                pan = QUANTISE2REAL(pan_log2_tab[-12 + Q]);
845
            } else {
846
                /* positive */
847
                pan = QUANTISE2REAL(pan_log2_tab[12 - Q] + (12 - Q));
848
            }
849
        } else {
850
            if (Q < 12)
851
            {
852
                /* negative */
853
                pan = QUANTISE2REAL(pan_log2_tab[-Q + 12]);
854
            } else {
855
                /* positive */
856
                pan = QUANTISE2REAL(pan_log2_tab[Q - 12] + (Q - 12));
857
            }
858
        }
859
860
        /* tmp / pan in log2 */
861
        return QUANTISE2REAL(tmp - pan);
862
    } else {
863
        return QUANTISE2REAL(6.0 - (real_t)sbr->Q[ch][k][l]);
864
    }
865
}
866
867
static const real_t log_Qplus1_pan[31][13] = {
868
    { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
869
    { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
870
    { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
871
    { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
872
    { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
873
    { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
874
    { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
875
    { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
876
    { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
877
    { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
878
    { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
879
    { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
880
    { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
881
    { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
882
    { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
883
    { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
884
    { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
885
    { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
886
    { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
887
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
888
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
889
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
890
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
891
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
892
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
893
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
894
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
895
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
896
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
897
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
898
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
899
};
900
901
static const real_t log_Qplus1[31] = {
902
    REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
903
    REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
904
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
905
    REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
906
    REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
907
    REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
908
    REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
909
    REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
910
    REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
911
    REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
912
    REAL_CONST(0.000000000000000)
913
};
914
915
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
916
{
917
    /* check for coupled energy/noise data */
918
    if (sbr->bs_coupling == 1)
919
    {
920
        if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
921
            (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
922
        {
923
            if (ch == 0)
924
            {
925
                return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1]);
926
            } else {
927
                return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)]);
928
            }
929
        } else {
930
            return 0;
931
        }
932
    } else {
933
        if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
934
        {
935
            return QUANTISE2REAL(log_Qplus1[sbr->Q[ch][k][l]]);
936
        } else {
937
            return 0;
938
        }
939
    }
940
}
941
942
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
943
{
944
    /* log2 values of limiter gains */
945
    static real_t limGain[] = { -1.0, 0.0, 1.0, 33.219 };
946
    uint8_t m, l, k;
947
948
    uint8_t current_t_noise_band = 0;
949
    uint8_t S_mapped;
950
951
    ALIGN real_t Q_M_lim[MAX_M];
952
    ALIGN real_t G_lim[MAX_M];
953
    ALIGN real_t G_boost;
954
    ALIGN real_t S_M[MAX_M];
955
956
957
    for (l = 0; l < sbr->L_E[ch]; l++)
958
    {
959
        uint8_t current_f_noise_band = 0;
960
        uint8_t current_res_band = 0;
961
        uint8_t current_res_band2 = 0;
962
        uint8_t current_hi_res_band = 0;
963
964
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
965
966
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
967
968
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
969
        {
970
            current_t_noise_band++;
971
        }
972
973
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
974
        {
975
            real_t Q_M = 0;
976
            real_t G_max;
977
            real_t den = 0;
978
            real_t acc1 = 0;
979
            real_t acc2 = 0;
980
            uint8_t current_res_band_size = 0;
981
            uint8_t Q_M_size = 0;
982
983
            uint8_t ml1, ml2;
984
985
            /* bounds of current limiter bands */
986
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
987
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
988
989
            if (ml1 > MAX_M)
990
                ml1 = MAX_M;
991
992
            if (ml2 > MAX_M)
993
                ml2 = MAX_M;
994
995
996
            /* calculate the accumulated E_orig and E_curr over the limiter band */
997
            for (m = ml1; m < ml2; m++)
998
            {
999
                if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1000
                {
1001
                    current_res_band_size++;
1002
                } else {
1003
                    acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
1004
1005
                    current_res_band++;
1006
                    current_res_band_size = 1;
1007
                }
1008
1009
                acc2 += QUANTISE2INT(sbr->E_curr[ch][m][l]/1024.0);
1010
            }
1011
            acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
1012
1013
            acc1 = QUANTISE2REAL( log2(EPS + acc1) );
1014
1015
1016
            /* calculate the maximum gain */
1017
            /* ratio of the energy of the original signal and the energy
1018
             * of the HF generated signal
1019
             */
1020
            G_max = acc1 - QUANTISE2REAL(log2(EPS + acc2)) + QUANTISE2REAL(limGain[sbr->bs_limiter_gains]);
1021
            G_max = min(G_max, QUANTISE2REAL(limGain[3]));
1022
1023
1024
            for (m = ml1; m < ml2; m++)
1025
            {
1026
                real_t G;
1027
                real_t E_curr, E_orig;
1028
                real_t Q_orig, Q_orig_plus1;
1029
                uint8_t S_index_mapped;
1030
1031
1032
                /* check if m is on a noise band border */
1033
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
1034
                {
1035
                    /* step to next noise band */
1036
                    current_f_noise_band++;
1037
                }
1038
1039
1040
                /* check if m is on a resolution band border */
1041
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
1042
                {
1043
                    /* accumulate a whole range of equal Q_Ms */
1044
                    if (Q_M_size > 0)
1045
                        den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
1046
                    Q_M_size = 0;
1047
1048
                    /* step to next resolution band */
1049
                    current_res_band2++;
1050
1051
                    /* if we move to a new resolution band, we should check if we are
1052
                     * going to add a sinusoid in this band
1053
                     */
1054
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1055
                }
1056
1057
1058
                /* check if m is on a HI_RES band border */
1059
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
1060
                {
1061
                    /* step to next HI_RES band */
1062
                    current_hi_res_band++;
1063
                }
1064
1065
1066
                /* find S_index_mapped
1067
                 * S_index_mapped can only be 1 for the m in the middle of the
1068
                 * current HI_RES band
1069
                 */
1070
                S_index_mapped = 0;
1071
                if ((l >= sbr->l_A[ch]) ||
1072
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
1073
                {
1074
                    /* find the middle subband of the HI_RES frequency band */
1075
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
1076
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
1077
                }
1078
1079
1080
                /* find bitstream parameters */
1081
                if (sbr->E_curr[ch][m][l] == 0)
1082
                    E_curr = LOG2_MIN_INF;
1083
                else
1084
                    E_curr = -10 + log2(sbr->E_curr[ch][m][l]);
1085
                E_orig = -10 + find_log2_E(sbr, current_res_band2, l, ch);
1086
1087
                Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
1088
                Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
1089
1090
1091
                /* Q_M only depends on E_orig and Q_div2:
1092
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
1093
                 * a change of current res band (HI or LO)
1094
                 */
1095
                Q_M = E_orig + Q_orig - Q_orig_plus1;
1096
1097
1098
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
1099
                 * S_index_mapped can only be non-zero once per HI_RES band
1100
                 */
1101
                if (S_index_mapped == 0)
1102
                {
1103
                    S_M[m] = LOG2_MIN_INF; /* -inf */
1104
                } else {
1105
                    S_M[m] = E_orig - Q_orig_plus1;
1106
1107
                    /* accumulate sinusoid part of the total energy */
1108
                    den += pow2(S_M[m]);
1109
                }
1110
1111
1112
                /* calculate gain */
1113
                /* ratio of the energy of the original signal and the energy
1114
                 * of the HF generated signal
1115
                 */
1116
                /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
1117
                /* scaled by -10 */
1118
                G = E_orig - max(-10, E_curr);
1119
                if ((S_mapped == 0) && (delta == 1))
1120
                {
1121
                    /* G = G * 1/(1+Q) */
1122
                    G -= Q_orig_plus1;
1123
                } else if (S_mapped == 1) {
1124
                    /* G = G * Q/(1+Q) */
1125
                    G += Q_orig - Q_orig_plus1;
1126
                }
1127
1128
1129
                /* limit the additional noise energy level */
1130
                /* and apply the limiter */
1131
                if (G_max > G)
1132
                {
1133
                    Q_M_lim[m] = QUANTISE2REAL(Q_M);
1134
                    G_lim[m] = QUANTISE2REAL(G);
1135
1136
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1137
                    {
1138
                        Q_M_size++;
1139
                    }
1140
                } else {
1141
                    /* G > G_max */
1142
                    Q_M_lim[m] = QUANTISE2REAL(Q_M) + G_max - QUANTISE2REAL(G);
1143
                    G_lim[m] = G_max;
1144
1145
                    /* accumulate limited Q_M */
1146
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1147
                    {
1148
                        den += QUANTISE2INT(pow2(Q_M_lim[m]));
1149
                    }
1150
                }
1151
1152
1153
                /* accumulate the total energy */
1154
                /* E_curr changes for every m so we do need to accumulate every m */
1155
                den += QUANTISE2INT(pow2(E_curr + G_lim[m]));
1156
            }
1157
1158
            /* accumulate last range of equal Q_Ms */
1159
            if (Q_M_size > 0)
1160
            {
1161
                den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
1162
            }
1163
1164
1165
            /* calculate the final gain */
1166
            /* G_boost: [0..2.51188643] */
1167
            G_boost = acc1 - QUANTISE2REAL(log2(den + EPS));
1168
            G_boost = min(G_boost, QUANTISE2REAL(1.328771237) /* log2(1.584893192 ^ 2) */);
1169
1170
1171
            for (m = ml1; m < ml2; m++)
1172
            {
1173
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
1174
#ifndef SBR_LOW_POWER
1175
                adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2((G_lim[m] + G_boost) / 2.0));
1176
#else
1177
                /* sqrt() will be done after the aliasing reduction to save a
1178
                 * few multiplies
1179
                 */
1180
                adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2(G_lim[m] + G_boost));
1181
#endif
1182
                adj->Q_M_lim_boost[l][m] = QUANTISE2REAL(pow2((Q_M_lim[m] + 10 + G_boost) / 2.0));
1183
1184
                if (S_M[m] != LOG2_MIN_INF)
1185
                {
1186
                    adj->S_M_boost[l][m] = QUANTISE2REAL(pow2((S_M[m] + 10 + G_boost) / 2.0));
1187
                } else {
1188
                    adj->S_M_boost[l][m] = 0;
1189
                }
1190
            }
1191
        }
1192
    }
1193
}
1194
1195
#else
1196
1197
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
1198
15.1k
{
1199
15.1k
    static real_t limGain[] = { 0.5, 1.0, 2.0, 1e10 };
1200
15.1k
    uint8_t m, l, k;
1201
1202
15.1k
    uint8_t current_t_noise_band = 0;
1203
15.1k
    uint8_t S_mapped;
1204
1205
15.1k
    ALIGN real_t Q_M_lim[MAX_M];
1206
15.1k
    ALIGN real_t G_lim[MAX_M];
1207
15.1k
    ALIGN real_t G_boost;
1208
15.1k
    ALIGN real_t S_M[MAX_M];
1209
1210
40.2k
    for (l = 0; l < sbr->L_E[ch]; l++)
1211
25.0k
    {
1212
25.0k
        uint8_t current_f_noise_band = 0;
1213
25.0k
        uint8_t current_res_band = 0;
1214
25.0k
        uint8_t current_res_band2 = 0;
1215
25.0k
        uint8_t current_hi_res_band = 0;
1216
1217
25.0k
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
1218
1219
25.0k
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1220
1221
25.0k
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
1222
4.54k
        {
1223
4.54k
            current_t_noise_band++;
1224
4.54k
        }
1225
1226
73.0k
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
1227
47.9k
        {
1228
47.9k
            real_t G_max;
1229
47.9k
            real_t den = 0;
1230
47.9k
            real_t acc1 = 0;
1231
47.9k
            real_t acc2 = 0;
1232
1233
47.9k
            uint8_t ml1, ml2;
1234
1235
47.9k
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
1236
47.9k
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
1237
1238
47.9k
            if (ml1 > MAX_M)
1239
0
                ml1 = MAX_M;
1240
1241
47.9k
            if (ml2 > MAX_M)
1242
0
                ml2 = MAX_M;
1243
1244
1245
            /* calculate the accumulated E_orig and E_curr over the limiter band */
1246
336k
            for (m = ml1; m < ml2; m++)
1247
288k
            {
1248
288k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1249
80.8k
                {
1250
80.8k
                    current_res_band++;
1251
80.8k
                }
1252
288k
                acc1 += sbr->E_orig[ch][current_res_band][l];
1253
288k
                acc2 += sbr->E_curr[ch][m][l];
1254
288k
            }
1255
1256
1257
            /* calculate the maximum gain */
1258
            /* ratio of the energy of the original signal and the energy
1259
             * of the HF generated signal
1260
             */
1261
47.9k
            G_max = ((EPS + acc1) / (EPS + acc2)) * limGain[sbr->bs_limiter_gains];
1262
47.9k
            G_max = min(G_max, 1e10);
1263
1264
1265
336k
            for (m = ml1; m < ml2; m++)
1266
288k
            {
1267
288k
                real_t Q_M, G;
1268
288k
                real_t Q_div, Q_div2;
1269
288k
                uint8_t S_index_mapped;
1270
1271
1272
                /* check if m is on a noise band border */
1273
288k
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
1274
19.8k
                {
1275
                    /* step to next noise band */
1276
19.8k
                    current_f_noise_band++;
1277
19.8k
                }
1278
1279
1280
                /* check if m is on a resolution band border */
1281
288k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
1282
80.8k
                {
1283
                    /* step to next resolution band */
1284
80.8k
                    current_res_band2++;
1285
1286
                    /* if we move to a new resolution band, we should check if we are
1287
                     * going to add a sinusoid in this band
1288
                     */
1289
80.8k
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1290
80.8k
                }
1291
1292
1293
                /* check if m is on a HI_RES band border */
1294
288k
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
1295
138k
                {
1296
                    /* step to next HI_RES band */
1297
138k
                    current_hi_res_band++;
1298
138k
                }
1299
1300
1301
                /* find S_index_mapped
1302
                 * S_index_mapped can only be 1 for the m in the middle of the
1303
                 * current HI_RES band
1304
                 */
1305
288k
                S_index_mapped = 0;
1306
288k
                if ((l >= sbr->l_A[ch]) ||
1307
73.0k
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
1308
218k
                {
1309
                    /* find the middle subband of the HI_RES frequency band */
1310
218k
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
1311
117k
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
1312
218k
                }
1313
1314
1315
                /* Q_div: [0..1] (1/(1+Q_mapped)) */
1316
288k
                Q_div = sbr->Q_div[ch][current_f_noise_band][current_t_noise_band];
1317
1318
1319
                /* Q_div2: [0..1] (Q_mapped/(1+Q_mapped)) */
1320
288k
                Q_div2 = sbr->Q_div2[ch][current_f_noise_band][current_t_noise_band];
1321
1322
1323
                /* Q_M only depends on E_orig and Q_div2:
1324
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
1325
                 * a change of current noise band
1326
                 */
1327
288k
                Q_M = sbr->E_orig[ch][current_res_band2][l] * Q_div2;
1328
1329
1330
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
1331
                 * S_index_mapped can only be non-zero once per HI_RES band
1332
                 */
1333
288k
                if (S_index_mapped == 0)
1334
276k
                {
1335
276k
                    S_M[m] = 0;
1336
276k
                } else {
1337
12.2k
                    S_M[m] = sbr->E_orig[ch][current_res_band2][l] * Q_div;
1338
1339
                    /* accumulate sinusoid part of the total energy */
1340
12.2k
                    den += S_M[m];
1341
12.2k
                }
1342
1343
1344
                /* calculate gain */
1345
                /* ratio of the energy of the original signal and the energy
1346
                 * of the HF generated signal
1347
                 */
1348
288k
                G = sbr->E_orig[ch][current_res_band2][l] / (1.0 + sbr->E_curr[ch][m][l]);
1349
288k
                if ((S_mapped == 0) && (delta == 1))
1350
242k
                    G *= Q_div;
1351
45.5k
                else if (S_mapped == 1)
1352
27.4k
                    G *= Q_div2;
1353
1354
1355
                /* limit the additional noise energy level */
1356
                /* and apply the limiter */
1357
288k
                if (G <= G_max)
1358
253k
                {
1359
253k
                    Q_M_lim[m] = Q_M;
1360
253k
                    G_lim[m] = G;
1361
253k
                } else {
1362
35.1k
                    Q_M_lim[m] = Q_M * G_max / G;
1363
35.1k
                    G_lim[m] = G_max;
1364
35.1k
                }
1365
1366
1367
                /* accumulate the total energy */
1368
288k
                den += sbr->E_curr[ch][m][l] * G_lim[m];
1369
288k
                if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1370
262k
                    den += Q_M_lim[m];
1371
288k
            }
1372
1373
            /* G_boost: [0..2.51188643] */
1374
47.9k
            G_boost = (acc1 + EPS) / (den + EPS);
1375
47.9k
            G_boost = min(G_boost, 2.51188643 /* 1.584893192 ^ 2 */);
1376
1377
336k
            for (m = ml1; m < ml2; m++)
1378
288k
            {
1379
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
1380
288k
#ifndef SBR_LOW_POWER
1381
288k
                adj->G_lim_boost[l][m] = sqrt(G_lim[m] * G_boost);
1382
#else
1383
                /* sqrt() will be done after the aliasing reduction to save a
1384
                 * few multiplies
1385
                 */
1386
                adj->G_lim_boost[l][m] = G_lim[m] * G_boost;
1387
#endif
1388
288k
                adj->Q_M_lim_boost[l][m] = sqrt(Q_M_lim[m] * G_boost);
1389
1390
288k
                if (S_M[m] != 0)
1391
8.90k
                {
1392
8.90k
                    adj->S_M_boost[l][m] = sqrt(S_M[m] * G_boost);
1393
279k
                } else {
1394
279k
                    adj->S_M_boost[l][m] = 0;
1395
279k
                }
1396
288k
            }
1397
47.9k
        }
1398
25.0k
    }
1399
15.1k
}
1400
#endif // log2_test
1401
1402
#endif
1403
1404
#ifdef SBR_LOW_POWER
1405
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
1406
{
1407
    uint8_t l, k, i;
1408
    uint8_t grouping;
1409
    uint8_t S_mapped;
1410
1411
    for (l = 0; l < sbr->L_E[ch]; l++)
1412
    {
1413
        uint8_t current_res_band = 0;
1414
        i = 0;
1415
        grouping = 0;
1416
1417
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band);
1418
1419
        for (k = sbr->kx; k < sbr->kx + sbr->M - 1; k++)
1420
        {
1421
            if (k == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1422
            {
1423
                /* step to next resolution band */
1424
                current_res_band++;
1425
1426
                S_mapped = get_S_mapped(sbr, ch, l, current_res_band);
1427
            }
1428
1429
            if (deg[k + 1] && S_mapped == 0)
1430
            {
1431
                if (grouping == 0)
1432
                {
1433
                    sbr->f_group[l][i] = k;
1434
                    grouping = 1;
1435
                    i++;
1436
                }
1437
            } else {
1438
                if (grouping)
1439
                {
1440
                    if (S_mapped)
1441
                    {
1442
                        sbr->f_group[l][i] = k;
1443
                    } else {
1444
                        sbr->f_group[l][i] = k + 1;
1445
                    }
1446
                    grouping = 0;
1447
                    i++;
1448
                }
1449
            }
1450
        }
1451
1452
        if (grouping)
1453
        {
1454
            sbr->f_group[l][i] = sbr->kx + sbr->M;
1455
            i++;
1456
        }
1457
1458
        sbr->N_G[l] = (uint8_t)(i >> 1);
1459
    }
1460
}
1461
1462
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
1463
{
1464
    uint8_t l, k, m;
1465
    real_t E_total, E_total_est, G_target, acc;
1466
1467
    for (l = 0; l < sbr->L_E[ch]; l++)
1468
    {
1469
        for (k = 0; k < sbr->N_G[l]; k++)
1470
        {
1471
            E_total_est = E_total = 0;
1472
1473
            for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1474
            {
1475
                /* E_curr: integer */
1476
                /* G_lim_boost: fixed point */
1477
                /* E_total_est: integer */
1478
                /* E_total: integer */
1479
                E_total_est += sbr->E_curr[ch][m-sbr->kx][l];
1480
#ifdef FIXED_POINT
1481
                E_total += MUL_Q2(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]);
1482
#else
1483
                E_total += sbr->E_curr[ch][m-sbr->kx][l] * adj->G_lim_boost[l][m-sbr->kx];
1484
#endif
1485
            }
1486
1487
            /* G_target: fixed point */
1488
            if ((E_total_est + EPS) == 0)
1489
            {
1490
                G_target = 0;
1491
            } else {
1492
#ifdef FIXED_POINT
1493
                G_target = (((int64_t)(E_total))<<Q2_BITS)/(E_total_est + EPS);
1494
#else
1495
                G_target = E_total / (E_total_est + EPS);
1496
#endif
1497
            }
1498
            acc = 0;
1499
1500
            for (m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1501
            {
1502
                real_t alpha;
1503
1504
                /* alpha: (COEF) fixed point */
1505
                if (m < sbr->kx + sbr->M - 1)
1506
                {
1507
                    alpha = max(deg[m], deg[m + 1]);
1508
                } else {
1509
                    alpha = deg[m];
1510
                }
1511
1512
                adj->G_lim_boost[l][m-sbr->kx] = MUL_C(alpha, G_target) +
1513
                    MUL_C((COEF_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]);
1514
1515
                /* acc: integer */
1516
#ifdef FIXED_POINT
1517
                acc += MUL_Q2(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]);
1518
#else
1519
                acc += adj->G_lim_boost[l][m-sbr->kx] * sbr->E_curr[ch][m-sbr->kx][l];
1520
#endif
1521
            }
1522
1523
            /* acc: fixed point */
1524
            if (acc + EPS == 0)
1525
            {
1526
                acc = 0;
1527
            } else {
1528
#ifdef FIXED_POINT
1529
                acc = (((int64_t)(E_total))<<Q2_BITS)/(acc + EPS);
1530
#else
1531
                acc = E_total / (acc + EPS);
1532
#endif
1533
            }
1534
            for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1535
            {
1536
#ifdef FIXED_POINT
1537
                adj->G_lim_boost[l][m-sbr->kx] = MUL_Q2(acc, adj->G_lim_boost[l][m-sbr->kx]);
1538
#else
1539
                adj->G_lim_boost[l][m-sbr->kx] = acc * adj->G_lim_boost[l][m-sbr->kx];
1540
#endif
1541
            }
1542
        }
1543
    }
1544
1545
    for (l = 0; l < sbr->L_E[ch]; l++)
1546
    {
1547
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
1548
        {
1549
            for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
1550
                 m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
1551
            {
1552
#ifdef FIXED_POINT
1553
                 adj->G_lim_boost[l][m] = SBR_SQRT_Q2(adj->G_lim_boost[l][m]);
1554
#else
1555
                 adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]);
1556
#endif
1557
            }
1558
        }
1559
    }
1560
}
1561
#endif
1562
1563
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
1564
                        qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
1565
27.8k
{
1566
27.8k
    static real_t h_smooth[] = {
1567
27.8k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
27.8k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
27.8k
        FRAC_CONST(0.33333333333333)
1570
27.8k
    };
1571
27.8k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
27.8k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
27.8k
    uint8_t m, l, i, n;
1575
27.8k
    uint16_t fIndexNoise = 0;
1576
27.8k
    uint8_t fIndexSine = 0;
1577
27.8k
    uint8_t assembly_reset = 0;
1578
1579
27.8k
    real_t G_filt, Q_filt;
1580
1581
27.8k
    uint8_t h_SL;
1582
1583
1584
27.8k
    if (sbr->Reset == 1)
1585
27.1k
    {
1586
27.1k
        assembly_reset = 1;
1587
27.1k
        fIndexNoise = 0;
1588
27.1k
    } else {
1589
699
        fIndexNoise = sbr->index_noise_prev[ch];
1590
699
    }
1591
27.8k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
74.7k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
46.9k
    {
1596
46.9k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
46.9k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
46.9k
        h_SL = (no_noise ? 0 : h_SL);
1603
46.9k
#endif
1604
1605
46.9k
        if (assembly_reset)
1606
27.0k
        {
1607
135k
            for (n = 0; n < 4; n++)
1608
108k
            {
1609
108k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
108k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
108k
            }
1612
            /* reset ringbuffer index */
1613
27.0k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
27.0k
            assembly_reset = 0;
1615
27.0k
        }
1616
1617
913k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
866k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
866k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
866k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
12.8M
            for (m = 0; m < sbr->M; m++)
1629
12.0M
            {
1630
12.0M
                qmf_t psi;
1631
1632
12.0M
                G_filt = 0;
1633
12.0M
                Q_filt = 0;
1634
1635
12.0M
#ifndef SBR_LOW_POWER
1636
12.0M
                if (h_SL != 0)
1637
4.53M
                {
1638
4.53M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
27.1M
                    for (n = 0; n <= 4; n++)
1640
22.6M
                    {
1641
22.6M
                        real_t curr_h_smooth = h_smooth[n];
1642
22.6M
                        ri++;
1643
22.6M
                        if (ri >= 5)
1644
4.53M
                            ri -= 5;
1645
22.6M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
22.6M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
22.6M
                    }
1648
7.48M
               } else {
1649
7.48M
#endif
1650
7.48M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
7.48M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
7.48M
#ifndef SBR_LOW_POWER
1653
7.48M
                }
1654
12.0M
#endif
1655
12.0M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
1.16M
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
12.0M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
12.0M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
12.0M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
12.0M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
15.2k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
12.0M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
12.0M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
12.0M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
12.0M
#endif
1675
1676
12.0M
                {
1677
12.0M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
12.0M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
12.0M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
12.0M
#ifndef SBR_LOW_POWER
1682
12.0M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
12.0M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
12.0M
                }
1727
12.0M
            }
1728
1729
866k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
866k
            sbr->GQ_ringbuf_index[ch]++;
1733
866k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
186k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
866k
        }
1736
46.9k
    }
1737
1738
27.8k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
27.8k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
27.8k
}
sbr_hfadj.c:hf_assembly
Line
Count
Source
1565
12.6k
{
1566
12.6k
    static real_t h_smooth[] = {
1567
12.6k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
12.6k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
12.6k
        FRAC_CONST(0.33333333333333)
1570
12.6k
    };
1571
12.6k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
12.6k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
12.6k
    uint8_t m, l, i, n;
1575
12.6k
    uint16_t fIndexNoise = 0;
1576
12.6k
    uint8_t fIndexSine = 0;
1577
12.6k
    uint8_t assembly_reset = 0;
1578
1579
12.6k
    real_t G_filt, Q_filt;
1580
1581
12.6k
    uint8_t h_SL;
1582
1583
1584
12.6k
    if (sbr->Reset == 1)
1585
12.4k
    {
1586
12.4k
        assembly_reset = 1;
1587
12.4k
        fIndexNoise = 0;
1588
12.4k
    } else {
1589
274
        fIndexNoise = sbr->index_noise_prev[ch];
1590
274
    }
1591
12.6k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
34.5k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
21.9k
    {
1596
21.9k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
21.9k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
21.9k
        h_SL = (no_noise ? 0 : h_SL);
1603
21.9k
#endif
1604
1605
21.9k
        if (assembly_reset)
1606
12.3k
        {
1607
61.8k
            for (n = 0; n < 4; n++)
1608
49.4k
            {
1609
49.4k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
49.4k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
49.4k
            }
1612
            /* reset ringbuffer index */
1613
12.3k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
12.3k
            assembly_reset = 0;
1615
12.3k
        }
1616
1617
424k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
402k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
402k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
402k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
6.49M
            for (m = 0; m < sbr->M; m++)
1629
6.09M
            {
1630
6.09M
                qmf_t psi;
1631
1632
6.09M
                G_filt = 0;
1633
6.09M
                Q_filt = 0;
1634
1635
6.09M
#ifndef SBR_LOW_POWER
1636
6.09M
                if (h_SL != 0)
1637
2.80M
                {
1638
2.80M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
16.8M
                    for (n = 0; n <= 4; n++)
1640
14.0M
                    {
1641
14.0M
                        real_t curr_h_smooth = h_smooth[n];
1642
14.0M
                        ri++;
1643
14.0M
                        if (ri >= 5)
1644
2.80M
                            ri -= 5;
1645
14.0M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
14.0M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
14.0M
                    }
1648
3.29M
               } else {
1649
3.29M
#endif
1650
3.29M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
3.29M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
3.29M
#ifndef SBR_LOW_POWER
1653
3.29M
                }
1654
6.09M
#endif
1655
6.09M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
701k
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
6.09M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
6.09M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
6.09M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
6.09M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
8.75k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
6.09M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
6.09M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
6.09M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
6.09M
#endif
1675
1676
6.09M
                {
1677
6.09M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
6.09M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
6.09M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
6.09M
#ifndef SBR_LOW_POWER
1682
6.09M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
6.09M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
6.09M
                }
1727
6.09M
            }
1728
1729
402k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
402k
            sbr->GQ_ringbuf_index[ch]++;
1733
402k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
86.7k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
402k
        }
1736
21.9k
    }
1737
1738
12.6k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
12.6k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
12.6k
}
sbr_hfadj.c:hf_assembly
Line
Count
Source
1565
15.1k
{
1566
15.1k
    static real_t h_smooth[] = {
1567
15.1k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
15.1k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
15.1k
        FRAC_CONST(0.33333333333333)
1570
15.1k
    };
1571
15.1k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
15.1k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
15.1k
    uint8_t m, l, i, n;
1575
15.1k
    uint16_t fIndexNoise = 0;
1576
15.1k
    uint8_t fIndexSine = 0;
1577
15.1k
    uint8_t assembly_reset = 0;
1578
1579
15.1k
    real_t G_filt, Q_filt;
1580
1581
15.1k
    uint8_t h_SL;
1582
1583
1584
15.1k
    if (sbr->Reset == 1)
1585
14.7k
    {
1586
14.7k
        assembly_reset = 1;
1587
14.7k
        fIndexNoise = 0;
1588
14.7k
    } else {
1589
425
        fIndexNoise = sbr->index_noise_prev[ch];
1590
425
    }
1591
15.1k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
40.2k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
25.0k
    {
1596
25.0k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
25.0k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
25.0k
        h_SL = (no_noise ? 0 : h_SL);
1603
25.0k
#endif
1604
1605
25.0k
        if (assembly_reset)
1606
14.7k
        {
1607
73.5k
            for (n = 0; n < 4; n++)
1608
58.8k
            {
1609
58.8k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
58.8k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
58.8k
            }
1612
            /* reset ringbuffer index */
1613
14.7k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
14.7k
            assembly_reset = 0;
1615
14.7k
        }
1616
1617
488k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
463k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
463k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
463k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
6.38M
            for (m = 0; m < sbr->M; m++)
1629
5.91M
            {
1630
5.91M
                qmf_t psi;
1631
1632
5.91M
                G_filt = 0;
1633
5.91M
                Q_filt = 0;
1634
1635
5.91M
#ifndef SBR_LOW_POWER
1636
5.91M
                if (h_SL != 0)
1637
1.72M
                {
1638
1.72M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
10.3M
                    for (n = 0; n <= 4; n++)
1640
8.64M
                    {
1641
8.64M
                        real_t curr_h_smooth = h_smooth[n];
1642
8.64M
                        ri++;
1643
8.64M
                        if (ri >= 5)
1644
1.72M
                            ri -= 5;
1645
8.64M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
8.64M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
8.64M
                    }
1648
4.18M
               } else {
1649
4.18M
#endif
1650
4.18M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
4.18M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
4.18M
#ifndef SBR_LOW_POWER
1653
4.18M
                }
1654
5.91M
#endif
1655
5.91M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
459k
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
5.91M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
5.91M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
5.91M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
5.91M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
6.53k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
5.91M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
5.91M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
5.91M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
5.91M
#endif
1675
1676
5.91M
                {
1677
5.91M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
5.91M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
5.91M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
5.91M
#ifndef SBR_LOW_POWER
1682
5.91M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
5.91M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
5.91M
                }
1727
5.91M
            }
1728
1729
463k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
463k
            sbr->GQ_ringbuf_index[ch]++;
1733
463k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
99.6k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
463k
        }
1736
25.0k
    }
1737
1738
15.1k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
15.1k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
15.1k
}
1741
1742
#endif