Coverage Report

Created: 2025-12-31 06:11

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/proc/self/cwd/libfaad/sbr_hfadj.c
Line
Count
Source
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: sbr_hfadj.c,v 1.23 2008/09/19 22:50:20 menno Exp $
29
**/
30
31
/* High Frequency adjustment */
32
#include <float.h>
33
34
#include "common.h"
35
#include "structs.h"
36
37
#ifdef SBR_DEC
38
39
#include "sbr_syntax.h"
40
#include "sbr_hfadj.h"
41
42
#include "sbr_noise.h"
43
44
45
/* static function declarations */
46
static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
47
                                         qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
48
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch);
49
#ifdef SBR_LOW_POWER
50
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
51
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
52
#endif
53
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
54
55
56
uint8_t hf_adjustment(sbr_info *sbr, qmf_t Xsbr[MAX_NTSRHFG][64]
57
#ifdef SBR_LOW_POWER
58
                      ,real_t *deg /* aliasing degree */
59
#endif
60
                      ,uint8_t ch)
61
29.8k
{
62
29.8k
    ALIGN sbr_hfadj_info adj = {{{0}}};
63
29.8k
    uint8_t ret = 0;
64
65
29.8k
    if (sbr->bs_frame_class[ch] == FIXFIX)
66
7.85k
    {
67
7.85k
        sbr->l_A[ch] = -1;
68
22.0k
    } else if (sbr->bs_frame_class[ch] == VARFIX) {
69
10.5k
        if (sbr->bs_pointer[ch] > 1)
70
2.91k
            sbr->l_A[ch] = sbr->bs_pointer[ch] - 1;
71
7.59k
        else
72
7.59k
            sbr->l_A[ch] = -1;
73
11.5k
    } else {
74
11.5k
        if (sbr->bs_pointer[ch] == 0)
75
3.87k
            sbr->l_A[ch] = -1;
76
7.63k
        else
77
7.63k
            sbr->l_A[ch] = sbr->L_E[ch] + 1 - sbr->bs_pointer[ch];
78
11.5k
    }
79
80
29.8k
    ret = estimate_current_envelope(sbr, &adj, Xsbr, ch);
81
29.8k
    if (ret > 0)
82
887
        return 1;
83
84
28.9k
    calculate_gain(sbr, &adj, ch);
85
86
#ifdef SBR_LOW_POWER
87
    calc_gain_groups(sbr, &adj, deg, ch);
88
    aliasing_reduction(sbr, &adj, deg, ch);
89
#endif
90
91
28.9k
    hf_assembly(sbr, &adj, Xsbr, ch);
92
93
28.9k
    return 0;
94
29.8k
}
95
96
static uint8_t get_S_mapped(sbr_info *sbr, uint8_t ch, uint8_t l, uint8_t current_band)
97
234k
{
98
234k
    if (sbr->f[ch][l] == HI_RES)
99
98.7k
    {
100
        /* in case of using f_table_high we just have 1 to 1 mapping
101
         * from bs_add_harmonic[l][k]
102
         */
103
98.7k
        if ((l >= sbr->l_A[ch]) ||
104
34.1k
            (sbr->bs_add_harmonic_prev[ch][current_band] && sbr->bs_add_harmonic_flag_prev[ch]))
105
66.9k
        {
106
66.9k
            return sbr->bs_add_harmonic[ch][current_band];
107
66.9k
        }
108
135k
    } else {
109
135k
        uint8_t b, lb, ub;
110
111
        /* in case of f_table_low we check if any of the HI_RES bands
112
         * within this LO_RES band has bs_add_harmonic[l][k] turned on
113
         * (note that borders in the LO_RES table are also present in
114
         * the HI_RES table)
115
         */
116
117
        /* find first HI_RES band in current LO_RES band */
118
135k
        lb = 2*current_band - ((sbr->N_high & 1) ? 1 : 0);
119
        /* find first HI_RES band in next LO_RES band */
120
135k
        ub = 2*(current_band+1) - ((sbr->N_high & 1) ? 1 : 0);
121
122
        /* check all HI_RES bands in current LO_RES band for sinusoid */
123
351k
        for (b = lb; b < ub; b++)
124
228k
        {
125
228k
            if ((l >= sbr->l_A[ch]) ||
126
69.7k
                (sbr->bs_add_harmonic_prev[ch][b] && sbr->bs_add_harmonic_flag_prev[ch]))
127
160k
            {
128
160k
                if (sbr->bs_add_harmonic[ch][b] == 1)
129
11.8k
                    return 1;
130
160k
            }
131
228k
        }
132
135k
    }
133
134
155k
    return 0;
135
234k
}
136
137
static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
138
                                         qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
139
29.8k
{
140
29.8k
    uint8_t m, l, j, k, k_l, k_h, p;
141
29.8k
    real_t nrg, div;
142
29.8k
    (void)adj;  /* TODO: remove parameter? */
143
#ifdef FIXED_POINT
144
14.2k
    const real_t half = REAL_CONST(0.5);
145
    real_t limit;
146
    real_t mul;
147
#else
148
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
    const real_t limit = FLT_MAX;
150
#endif
151
152
29.8k
    if (sbr->bs_interpol_freq == 1)
153
20.0k
    {
154
55.4k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
35.6k
        {
156
35.6k
            uint8_t i, l_i, u_i;
157
158
35.6k
            l_i = sbr->t_E[ch][l];
159
35.6k
            u_i = sbr->t_E[ch][l+1];
160
161
35.6k
            div = (real_t)(u_i - l_i);
162
163
35.6k
            if (div <= 0)
164
1.34k
                div = 1;
165
#ifdef FIXED_POINT
166
15.4k
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
15.4k
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
#endif
169
170
440k
            for (m = 0; m < sbr->M; m++)
171
404k
            {
172
404k
                nrg = 0;
173
174
7.29M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
6.89M
                {
176
6.89M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
6.89M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
6.89M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
6.89M
                    nrg += MUL_C(re, re)
184
6.89M
#ifndef SBR_LOW_POWER
185
6.89M
                        + MUL_C(im, im)
186
6.89M
#endif
187
6.89M
                        ;
188
6.89M
                }
189
190
404k
                if (nrg < -limit || nrg > limit)
191
255
                    return 1;
192
#ifdef FIXED_POINT
193
200k
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
203k
                sbr->E_curr[ch][m][l] = nrg / div;
196
203k
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
203k
            }
205
35.6k
        }
206
20.0k
    } else {
207
24.8k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
15.6k
        {
209
112k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
97.9k
            {
211
97.9k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
97.9k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
361k
                for (k = k_l; k < k_h; k++)
215
264k
                {
216
264k
                    uint8_t i, l_i, u_i;
217
264k
                    nrg = 0;
218
219
264k
                    l_i = sbr->t_E[ch][l];
220
264k
                    u_i = sbr->t_E[ch][l+1];
221
222
264k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
264k
                    if (div <= 0)
225
8.33k
                        div = 1;
226
#ifdef FIXED_POINT
227
150k
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
150k
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
#endif
230
231
5.66M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
5.40M
                    {
233
25.6M
                        for (j = k_l; j < k_h; j++)
234
20.2M
                        {
235
20.2M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
20.2M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
20.2M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
20.2M
                            nrg += MUL_C(re, re)
243
20.2M
#ifndef SBR_LOW_POWER
244
20.2M
                                + MUL_C(im, im)
245
20.2M
#endif
246
20.2M
                                ;
247
20.2M
                        }
248
5.40M
                    }
249
250
264k
                    if (nrg < -limit || nrg > limit)
251
632
                        return 1;
252
#ifdef FIXED_POINT
253
150k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
113k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
113k
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
113k
                }
265
97.9k
            }
266
15.6k
        }
267
9.84k
    }
268
269
28.9k
    return 0;
270
29.8k
}
sbr_hfadj.c:estimate_current_envelope
Line
Count
Source
139
14.2k
{
140
14.2k
    uint8_t m, l, j, k, k_l, k_h, p;
141
14.2k
    real_t nrg, div;
142
14.2k
    (void)adj;  /* TODO: remove parameter? */
143
14.2k
#ifdef FIXED_POINT
144
14.2k
    const real_t half = REAL_CONST(0.5);
145
14.2k
    real_t limit;
146
14.2k
    real_t mul;
147
#else
148
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
    const real_t limit = FLT_MAX;
150
#endif
151
152
14.2k
    if (sbr->bs_interpol_freq == 1)
153
8.56k
    {
154
23.7k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
15.4k
        {
156
15.4k
            uint8_t i, l_i, u_i;
157
158
15.4k
            l_i = sbr->t_E[ch][l];
159
15.4k
            u_i = sbr->t_E[ch][l+1];
160
161
15.4k
            div = (real_t)(u_i - l_i);
162
163
15.4k
            if (div <= 0)
164
645
                div = 1;
165
15.4k
#ifdef FIXED_POINT
166
15.4k
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
15.4k
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
15.4k
#endif
169
170
216k
            for (m = 0; m < sbr->M; m++)
171
201k
            {
172
201k
                nrg = 0;
173
174
3.39M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
3.19M
                {
176
3.19M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
3.19M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
3.19M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
3.19M
                    nrg += MUL_C(re, re)
184
3.19M
#ifndef SBR_LOW_POWER
185
3.19M
                        + MUL_C(im, im)
186
3.19M
#endif
187
3.19M
                        ;
188
3.19M
                }
189
190
201k
                if (nrg < -limit || nrg > limit)
191
248
                    return 1;
192
200k
#ifdef FIXED_POINT
193
200k
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
                sbr->E_curr[ch][m][l] = nrg / div;
196
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
200k
            }
205
15.4k
        }
206
8.56k
    } else {
207
14.2k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
9.21k
        {
209
61.3k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
52.7k
            {
211
52.7k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
52.7k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
203k
                for (k = k_l; k < k_h; k++)
215
150k
                {
216
150k
                    uint8_t i, l_i, u_i;
217
150k
                    nrg = 0;
218
219
150k
                    l_i = sbr->t_E[ch][l];
220
150k
                    u_i = sbr->t_E[ch][l+1];
221
222
150k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
150k
                    if (div <= 0)
225
4.29k
                        div = 1;
226
150k
#ifdef FIXED_POINT
227
150k
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
150k
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
150k
#endif
230
231
3.18M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
3.03M
                    {
233
15.8M
                        for (j = k_l; j < k_h; j++)
234
12.8M
                        {
235
12.8M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
12.8M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
12.8M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
12.8M
                            nrg += MUL_C(re, re)
243
12.8M
#ifndef SBR_LOW_POWER
244
12.8M
                                + MUL_C(im, im)
245
12.8M
#endif
246
12.8M
                                ;
247
12.8M
                        }
248
3.03M
                    }
249
250
150k
                    if (nrg < -limit || nrg > limit)
251
624
                        return 1;
252
150k
#ifdef FIXED_POINT
253
150k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
150k
                }
265
52.7k
            }
266
9.21k
        }
267
5.69k
    }
268
269
13.3k
    return 0;
270
14.2k
}
sbr_hfadj.c:estimate_current_envelope
Line
Count
Source
139
15.6k
{
140
15.6k
    uint8_t m, l, j, k, k_l, k_h, p;
141
15.6k
    real_t nrg, div;
142
15.6k
    (void)adj;  /* TODO: remove parameter? */
143
#ifdef FIXED_POINT
144
    const real_t half = REAL_CONST(0.5);
145
    real_t limit;
146
    real_t mul;
147
#else
148
15.6k
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
15.6k
    const real_t limit = FLT_MAX;
150
15.6k
#endif
151
152
15.6k
    if (sbr->bs_interpol_freq == 1)
153
11.4k
    {
154
31.6k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
20.1k
        {
156
20.1k
            uint8_t i, l_i, u_i;
157
158
20.1k
            l_i = sbr->t_E[ch][l];
159
20.1k
            u_i = sbr->t_E[ch][l+1];
160
161
20.1k
            div = (real_t)(u_i - l_i);
162
163
20.1k
            if (div <= 0)
164
704
                div = 1;
165
#ifdef FIXED_POINT
166
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
#endif
169
170
223k
            for (m = 0; m < sbr->M; m++)
171
203k
            {
172
203k
                nrg = 0;
173
174
3.90M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
3.70M
                {
176
3.70M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
3.70M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
3.70M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
3.70M
                    nrg += MUL_C(re, re)
184
3.70M
#ifndef SBR_LOW_POWER
185
3.70M
                        + MUL_C(im, im)
186
3.70M
#endif
187
3.70M
                        ;
188
3.70M
                }
189
190
203k
                if (nrg < -limit || nrg > limit)
191
7
                    return 1;
192
#ifdef FIXED_POINT
193
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
203k
                sbr->E_curr[ch][m][l] = nrg / div;
196
203k
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
203k
            }
205
20.1k
        }
206
11.4k
    } else {
207
10.5k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
6.43k
        {
209
51.5k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
45.1k
            {
211
45.1k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
45.1k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
158k
                for (k = k_l; k < k_h; k++)
215
113k
                {
216
113k
                    uint8_t i, l_i, u_i;
217
113k
                    nrg = 0;
218
219
113k
                    l_i = sbr->t_E[ch][l];
220
113k
                    u_i = sbr->t_E[ch][l+1];
221
222
113k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
113k
                    if (div <= 0)
225
4.03k
                        div = 1;
226
#ifdef FIXED_POINT
227
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
#endif
230
231
2.48M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
2.36M
                    {
233
9.80M
                        for (j = k_l; j < k_h; j++)
234
7.43M
                        {
235
7.43M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
7.43M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
7.43M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
7.43M
                            nrg += MUL_C(re, re)
243
7.43M
#ifndef SBR_LOW_POWER
244
7.43M
                                + MUL_C(im, im)
245
7.43M
#endif
246
7.43M
                                ;
247
7.43M
                        }
248
2.36M
                    }
249
250
113k
                    if (nrg < -limit || nrg > limit)
251
8
                        return 1;
252
#ifdef FIXED_POINT
253
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
113k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
113k
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
113k
                }
265
45.1k
            }
266
6.43k
        }
267
4.15k
    }
268
269
15.6k
    return 0;
270
15.6k
}
271
272
#ifdef FIXED_POINT
273
#define EPS (1) /* smallest number available in fixed point */
274
#else
275
202k
#define EPS (1e-12)
276
#endif
277
278
279
280
#ifdef FIXED_POINT
281
282
/* log2 values of [0..63] */
283
static const real_t log2_int_tab[] = {
284
    LOG2_MIN_INF, REAL_CONST(0.000000000000000), REAL_CONST(1.000000000000000), REAL_CONST(1.584962500721156),
285
    REAL_CONST(2.000000000000000), REAL_CONST(2.321928094887362), REAL_CONST(2.584962500721156), REAL_CONST(2.807354922057604),
286
    REAL_CONST(3.000000000000000), REAL_CONST(3.169925001442313), REAL_CONST(3.321928094887363), REAL_CONST(3.459431618637297),
287
    REAL_CONST(3.584962500721156), REAL_CONST(3.700439718141092), REAL_CONST(3.807354922057604), REAL_CONST(3.906890595608519),
288
    REAL_CONST(4.000000000000000), REAL_CONST(4.087462841250339), REAL_CONST(4.169925001442312), REAL_CONST(4.247927513443585),
289
    REAL_CONST(4.321928094887362), REAL_CONST(4.392317422778761), REAL_CONST(4.459431618637297), REAL_CONST(4.523561956057013),
290
    REAL_CONST(4.584962500721156), REAL_CONST(4.643856189774724), REAL_CONST(4.700439718141093), REAL_CONST(4.754887502163468),
291
    REAL_CONST(4.807354922057604), REAL_CONST(4.857980995127572), REAL_CONST(4.906890595608519), REAL_CONST(4.954196310386875),
292
    REAL_CONST(5.000000000000000), REAL_CONST(5.044394119358453), REAL_CONST(5.087462841250340), REAL_CONST(5.129283016944966),
293
    REAL_CONST(5.169925001442312), REAL_CONST(5.209453365628949), REAL_CONST(5.247927513443585), REAL_CONST(5.285402218862248),
294
    REAL_CONST(5.321928094887363), REAL_CONST(5.357552004618084), REAL_CONST(5.392317422778761), REAL_CONST(5.426264754702098),
295
    REAL_CONST(5.459431618637297), REAL_CONST(5.491853096329675), REAL_CONST(5.523561956057013), REAL_CONST(5.554588851677637),
296
    REAL_CONST(5.584962500721156), REAL_CONST(5.614709844115208), REAL_CONST(5.643856189774724), REAL_CONST(5.672425341971495),
297
    REAL_CONST(5.700439718141093), REAL_CONST(5.727920454563200), REAL_CONST(5.754887502163469), REAL_CONST(5.781359713524660),
298
    REAL_CONST(5.807354922057605), REAL_CONST(5.832890014164742), REAL_CONST(5.857980995127572), REAL_CONST(5.882643049361842),
299
    REAL_CONST(5.906890595608518), REAL_CONST(5.930737337562887), REAL_CONST(5.954196310386876), REAL_CONST(5.977279923499916)
300
};
301
302
// pan_log2_tab[X] = log2(2**X + 1) - X
303
static const real_t pan_log2_tab[13] = {
304
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362), REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339),
305
    REAL_CONST(0.044394119358453), REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878), REAL_CONST(0.002815015607054),
306
    REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247), REAL_CONST(0.000352177480301)
307
};
308
309
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
310
487k
{
311
    /* check for coupled energy/noise data */
312
487k
    if (sbr->bs_coupling == 1)
313
223k
    {
314
223k
        int16_t e = sbr->E[0][k][l];
315
223k
        int16_t E = sbr->E[1][k][l];
316
223k
        uint8_t amp0 = (sbr->amp_res[0]) ? 0 : 1;
317
223k
        uint8_t amp1 = (sbr->amp_res[1]) ? 0 : 1;
318
223k
        real_t tmp, pan;
319
320
        /* E[1] should always be even so shifting is OK */
321
223k
        E >>= amp1;
322
223k
        if (e < 0 || e >= 64 || E < 0 || E > 24)
323
55.1k
            return LOG2_MIN_INF;
324
168k
        E -= 12;
325
326
168k
        if (ch != 0)  // L/R anti-symmetry
327
84.5k
            E = -E;
328
329
168k
        if (E >= 0)
330
85.6k
        {
331
            /* negative */
332
85.6k
            pan = pan_log2_tab[E];
333
85.6k
        } else {
334
            /* positive */
335
82.4k
            pan = pan_log2_tab[-E] + ((-E)<<REAL_BITS);
336
82.4k
        }
337
338
        /* tmp / pan in log2 */
339
168k
        tmp = (7 << REAL_BITS) + (e << (REAL_BITS-amp0));
340
168k
        return tmp - pan;
341
264k
    } else {
342
264k
        int16_t e = sbr->E[ch][k][l];
343
264k
        uint8_t amp = (sbr->amp_res[ch]) ? 0 : 1;
344
264k
        if (e < 0 || (e >> amp) >= 64)
345
40.2k
            return LOG2_MIN_INF;
346
223k
        return 6 * REAL_PRECISION + e * (REAL_PRECISION >> amp);
347
264k
    }
348
487k
}
349
350
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
351
340k
{
352
    /* check for coupled energy/noise data */
353
340k
    if (sbr->bs_coupling == 1)
354
158k
    {
355
158k
        int32_t q = sbr->Q[0][k][l];
356
158k
        int32_t Q = sbr->Q[1][k][l];
357
158k
        real_t tmp, pan;
358
359
158k
        if (q < 0 || q > 30 || Q < 0 || Q > 24)
360
28.3k
            return LOG2_MIN_INF;
361
130k
        Q -= 12;
362
363
130k
        if (ch != 0)  // L/R anti-symmetry
364
65.5k
            Q = -Q;
365
366
130k
        if (Q >= 0)
367
65.9k
        {
368
            /* negative */
369
65.9k
            pan = pan_log2_tab[Q];
370
65.9k
        } else {
371
            /* positive */
372
64.3k
            pan = pan_log2_tab[-Q] + ((-Q)<<REAL_BITS);
373
64.3k
        }
374
375
        /* tmp / pan in log2 */
376
130k
        tmp = (7 - q) * REAL_PRECISION;
377
130k
        return tmp - pan;
378
181k
    } else {
379
181k
        int32_t q = sbr->Q[ch][k][l];
380
181k
        if (q < 0 || q > 30)
381
27.9k
            return LOG2_MIN_INF;
382
153k
        return (6 - q) * REAL_PRECISION;
383
181k
    }
384
340k
}
385
386
static const real_t log_Qplus1_pan[31][13] = {
387
    { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
388
    { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
389
    { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
390
    { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
391
    { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
392
    { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
393
    { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
394
    { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
395
    { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
396
    { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
397
    { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
398
    { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
399
    { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
400
    { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
401
    { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
402
    { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
403
    { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
404
    { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
405
    { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
406
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
407
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
408
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
409
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
410
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
411
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
412
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
413
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
414
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
415
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
416
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
417
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
418
};
419
420
static const real_t log_Qplus1[31] = {
421
    REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
422
    REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
423
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
424
    REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
425
    REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
426
    REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
427
    REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
428
    REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
429
    REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
430
    REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
431
    REAL_CONST(0.000000000000000)
432
};
433
434
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
435
340k
{
436
    /* check for coupled energy/noise data */
437
340k
    if (sbr->bs_coupling == 1)
438
158k
    {
439
158k
        if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
440
152k
            (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
441
130k
        {
442
130k
            if (ch == 0)
443
64.7k
            {
444
64.7k
                return log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1];
445
65.5k
            } else {
446
65.5k
                return log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)];
447
65.5k
            }
448
130k
        } else {
449
28.3k
            return 0;
450
28.3k
        }
451
181k
    } else {
452
181k
        if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
453
153k
        {
454
153k
            return log_Qplus1[sbr->Q[ch][k][l]];
455
153k
        } else {
456
27.9k
            return 0;
457
27.9k
        }
458
181k
    }
459
340k
}
460
461
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
462
13.3k
{
463
    /* log2 values of limiter gains */
464
    /* Last one less than log2(1e10) due to FIXED POINT float limitations */
465
13.3k
    static real_t limGain[] = {
466
13.3k
        REAL_CONST(-1.0), REAL_CONST(0.0), REAL_CONST(1.0), REAL_CONST(21.0)
467
13.3k
    };
468
13.3k
    uint8_t m, l, k;
469
470
13.3k
    uint8_t current_t_noise_band = 0;
471
13.3k
    uint8_t S_mapped;
472
473
13.3k
    ALIGN real_t Q_M_lim[MAX_M];
474
13.3k
    ALIGN real_t G_lim[MAX_M];
475
13.3k
    ALIGN real_t G_boost;
476
13.3k
    ALIGN real_t S_M[MAX_M];
477
478
13.3k
    real_t exp = REAL_CONST(-10);
479
480
37.1k
    for (l = 0; l < sbr->L_E[ch]; l++)
481
23.7k
    {
482
23.7k
        uint8_t current_f_noise_band = 0;
483
23.7k
        uint8_t current_res_band = 0;
484
23.7k
        uint8_t current_res_band2 = 0;
485
23.7k
        uint8_t current_hi_res_band = 0;
486
487
23.7k
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
488
489
23.7k
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
490
491
23.7k
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
492
3.94k
        {
493
3.94k
            current_t_noise_band++;
494
3.94k
        }
495
496
75.5k
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
497
51.8k
        {
498
51.8k
            real_t Q_M = 0;
499
51.8k
            real_t G_max;
500
51.8k
            uint64_t den = 0, acc1 = 0, acc2 = 0;
501
51.8k
            uint8_t current_res_band_size = 0;
502
51.8k
            uint8_t Q_M_size = 0;
503
51.8k
            real_t log_e, log_den, log_acc1, log_acc2;
504
505
51.8k
            uint8_t ml1, ml2;
506
507
            /* bounds of current limiter bands */
508
51.8k
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
509
51.8k
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
510
511
51.8k
            if (ml1 > MAX_M)
512
0
                ml1 = MAX_M;
513
514
51.8k
            if (ml2 > MAX_M)
515
0
                ml2 = MAX_M;
516
517
518
            /* calculate the accumulated E_orig and E_curr over the limiter band */
519
392k
            for (m = ml1; m < ml2; m++)
520
340k
            {
521
340k
                if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
522
244k
                {
523
244k
                    current_res_band_size++;
524
244k
                } else {
525
95.3k
                    log_e = find_log2_E(sbr, current_res_band, l, ch);
526
95.3k
                    acc1 += pow2_int(exp + log2_int_tab[current_res_band_size] + log_e);
527
528
95.3k
                    current_res_band++;
529
95.3k
                    current_res_band_size = 1;
530
95.3k
                }
531
532
340k
                acc2 += sbr->E_curr[ch][m][l];
533
340k
            }
534
51.8k
            if (current_res_band_size) {
535
51.8k
                log_e = find_log2_E(sbr, current_res_band, l, ch);
536
51.8k
                acc1 += pow2_int(exp + log2_int_tab[current_res_band_size] + log_e);
537
51.8k
            }
538
539
540
51.8k
            if (acc1 == 0)
541
30.9k
                log_acc1 = LOG2_MIN_INF;
542
20.8k
            else
543
20.8k
                log_acc1 = log2_int(acc1);
544
545
51.8k
            if (acc2 == 0)
546
50.7k
                log_acc2 = LOG2_MIN_INF;
547
1.08k
            else
548
1.08k
                log_acc2 = log2_int(acc2);
549
550
            /* calculate the maximum gain */
551
            /* ratio of the energy of the original signal and the energy
552
             * of the HF generated signal
553
             */
554
51.8k
            G_max = log_acc1 - log_acc2 + limGain[sbr->bs_limiter_gains];
555
51.8k
            G_max = min(G_max, limGain[3]);
556
557
558
392k
            for (m = ml1; m < ml2; m++)
559
340k
            {
560
340k
                real_t G;
561
340k
                real_t E_curr, E_orig;
562
340k
                real_t Q_orig, Q_orig_plus1;
563
340k
                uint8_t S_index_mapped;
564
565
566
                /* check if m is on a noise band border */
567
340k
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
568
19.8k
                {
569
                    /* step to next noise band */
570
19.8k
                    current_f_noise_band++;
571
19.8k
                }
572
573
574
                /* check if m is on a resolution band border */
575
340k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
576
95.1k
                {
577
                    /* accumulate a whole range of equal Q_Ms */
578
95.1k
                    if (Q_M_size > 0)
579
42.6k
                        den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
580
95.1k
                    Q_M_size = 0;
581
582
                    /* step to next resolution band */
583
95.1k
                    current_res_band2++;
584
585
                    /* if we move to a new resolution band, we should check if we are
586
                     * going to add a sinusoid in this band
587
                     */
588
95.1k
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
589
95.1k
                }
590
591
592
                /* check if m is on a HI_RES band border */
593
340k
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
594
151k
                {
595
                    /* step to next HI_RES band */
596
151k
                    current_hi_res_band++;
597
151k
                }
598
599
600
                /* find S_index_mapped
601
                 * S_index_mapped can only be 1 for the m in the middle of the
602
                 * current HI_RES band
603
                 */
604
340k
                S_index_mapped = 0;
605
340k
                if ((l >= sbr->l_A[ch]) ||
606
88.4k
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
607
253k
                {
608
                    /* find the middle subband of the HI_RES frequency band */
609
253k
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
610
124k
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
611
253k
                }
612
613
614
                /* find bitstream parameters */
615
340k
                if (sbr->E_curr[ch][m][l] == 0)
616
331k
                    E_curr = LOG2_MIN_INF;
617
8.58k
                else
618
8.58k
                    E_curr = log2_int(sbr->E_curr[ch][m][l]);
619
340k
                E_orig = exp + find_log2_E(sbr, current_res_band2, l, ch);
620
621
622
340k
                Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
623
340k
                Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
624
625
626
                /* Q_M only depends on E_orig and Q_div2:
627
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
628
                 * a change of current res band (HI or LO)
629
                 */
630
340k
                Q_M = E_orig + Q_orig - Q_orig_plus1;
631
632
633
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
634
                 * S_index_mapped can only be non-zero once per HI_RES band
635
                 */
636
340k
                if (S_index_mapped == 0)
637
324k
                {
638
324k
                    S_M[m] = LOG2_MIN_INF; /* -inf */
639
324k
                } else {
640
16.0k
                    S_M[m] = E_orig - Q_orig_plus1;
641
16.0k
                    S_M[m] = min(S_M[m], limGain[3]);
642
643
                    /* accumulate sinusoid part of the total energy */
644
16.0k
                    den += pow2_int(S_M[m]);
645
16.0k
                }
646
647
648
                /* calculate gain */
649
                /* ratio of the energy of the original signal and the energy
650
                 * of the HF generated signal
651
                 */
652
                /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
653
                /* scaled by exp */
654
340k
                G = E_orig - max(exp, E_curr);
655
340k
                if ((S_mapped == 0) && (delta == 1))
656
271k
                {
657
                    /* G = G * 1/(1+Q) */
658
271k
                    G -= Q_orig_plus1;
659
271k
                } else if (S_mapped == 1) {
660
                    /* G = G * Q/(1+Q) */
661
37.4k
                    G += Q_orig - Q_orig_plus1;
662
37.4k
                }
663
664
665
                /* limit the additional noise energy level */
666
                /* and apply the limiter */
667
340k
                if (G_max > G)
668
217k
                {
669
217k
                    Q_M_lim[m] = Q_M;
670
217k
                    G_lim[m] = G;
671
672
217k
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
673
193k
                    {
674
193k
                        Q_M_size++;
675
193k
                    }
676
217k
                } else {
677
                    /* G >= G_max */
678
123k
                    Q_M_lim[m] = Q_M + G_max - G;
679
123k
                    G_lim[m] = G_max;
680
681
                    /* accumulate limited Q_M */
682
123k
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
683
103k
                    {
684
103k
                        den += pow2_int(Q_M_lim[m]);
685
103k
                    }
686
123k
                }
687
688
689
                /* accumulate the total energy */
690
                /* E_curr changes for every m so we do need to accumulate every m */
691
340k
                den += pow2_int(E_curr + G_lim[m]);
692
340k
            }
693
694
            /* accumulate last range of equal Q_Ms */
695
51.8k
            if (Q_M_size > 0)
696
30.5k
            {
697
30.5k
                den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
698
30.5k
            }
699
700
51.8k
            if (den == 0)
701
38.8k
                log_den = LOG2_MIN_INF;
702
12.9k
            else
703
12.9k
                log_den = log2_int(den /*+ EPS*/);
704
705
            /* calculate the final gain */
706
            /* G_boost: [0..2.51188643] */
707
51.8k
            G_boost = log_acc1 - log_den;
708
51.8k
            G_boost = min(G_boost, REAL_CONST(1.328771237) /* log2(1.584893192 ^ 2) */);
709
710
711
392k
            for (m = ml1; m < ml2; m++)
712
340k
            {
713
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
714
340k
#ifndef SBR_LOW_POWER
715
340k
                adj->G_lim_boost[l][m] = pow2_fix((G_lim[m] + G_boost) >> 1);
716
#else
717
                /* sqrt() will be done after the aliasing reduction to save a
718
                 * few multiplies
719
                 */
720
                adj->G_lim_boost[l][m] = pow2_fix(G_lim[m] + G_boost);
721
#endif
722
340k
                adj->Q_M_lim_boost[l][m] = pow2_fix((Q_M_lim[m] + G_boost) >> 1);
723
724
340k
                adj->S_M_boost[l][m] = pow2_fix((S_M[m] + G_boost) >> 1);
725
340k
            }
726
51.8k
        }
727
23.7k
    }
728
13.3k
}
729
730
#else
731
732
//#define LOG2_TEST
733
734
#ifdef LOG2_TEST
735
736
#define LOG2_MIN_INF -100000
737
738
__inline float pow2(float val)
739
{
740
    return pow(2.0, val);
741
}
742
__inline float log2(float val)
743
{
744
    return log(val)/log(2.0);
745
}
746
747
#define RB 14
748
749
float QUANTISE2REAL(float val)
750
{
751
    __int32 ival = (__int32)(val * (1<<RB));
752
    return (float)ival / (float)((1<<RB));
753
}
754
755
float QUANTISE2INT(float val)
756
{
757
    return floor(val);
758
}
759
760
/* log2 values of [0..63] */
761
static const real_t log2_int_tab[] = {
762
    LOG2_MIN_INF,      0.000000000000000, 1.000000000000000, 1.584962500721156,
763
    2.000000000000000, 2.321928094887362, 2.584962500721156, 2.807354922057604,
764
    3.000000000000000, 3.169925001442313, 3.321928094887363, 3.459431618637297,
765
    3.584962500721156, 3.700439718141092, 3.807354922057604, 3.906890595608519,
766
    4.000000000000000, 4.087462841250339, 4.169925001442312, 4.247927513443585,
767
    4.321928094887362, 4.392317422778761, 4.459431618637297, 4.523561956057013,
768
    4.584962500721156, 4.643856189774724, 4.700439718141093, 4.754887502163468,
769
    4.807354922057604, 4.857980995127572, 4.906890595608519, 4.954196310386875,
770
    5.000000000000000, 5.044394119358453, 5.087462841250340, 5.129283016944966,
771
    5.169925001442312, 5.209453365628949, 5.247927513443585, 5.285402218862248,
772
    5.321928094887363, 5.357552004618084, 5.392317422778761, 5.426264754702098,
773
    5.459431618637297, 5.491853096329675, 5.523561956057013, 5.554588851677637,
774
    5.584962500721156, 5.614709844115208, 5.643856189774724, 5.672425341971495,
775
    5.700439718141093, 5.727920454563200, 5.754887502163469, 5.781359713524660,
776
    5.807354922057605, 5.832890014164742, 5.857980995127572, 5.882643049361842,
777
    5.906890595608518, 5.930737337562887, 5.954196310386876, 5.977279923499916
778
};
779
780
static const real_t pan_log2_tab[] = {
781
    1.000000000000000, 0.584962500721156, 0.321928094887362, 0.169925001442312, 0.087462841250339,
782
    0.044394119358453, 0.022367813028455, 0.011227255423254, 0.005624549193878, 0.002815015607054,
783
    0.001408194392808, 0.000704269011247, 0.000352177480301, 0.000176099486443, 0.000088052430122,
784
    0.000044026886827, 0.000022013611360, 0.000011006847667
785
};
786
787
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
788
{
789
    /* check for coupled energy/noise data */
790
    if (sbr->bs_coupling == 1)
791
    {
792
        real_t amp0 = (sbr->amp_res[0]) ? 1.0 : 0.5;
793
        real_t amp1 = (sbr->amp_res[1]) ? 1.0 : 0.5;
794
        float tmp = QUANTISE2REAL(7.0 + (real_t)sbr->E[0][k][l] * amp0);
795
        float pan;
796
797
        int E = (int)(sbr->E[1][k][l] * amp1);
798
799
        if (ch == 0)
800
        {
801
            if (E > 12)
802
            {
803
                /* negative */
804
                pan = QUANTISE2REAL(pan_log2_tab[-12 + E]);
805
            } else {
806
                /* positive */
807
                pan = QUANTISE2REAL(pan_log2_tab[12 - E] + (12 - E));
808
            }
809
        } else {
810
            if (E < 12)
811
            {
812
                /* negative */
813
                pan = QUANTISE2REAL(pan_log2_tab[-E + 12]);
814
            } else {
815
                /* positive */
816
                pan = QUANTISE2REAL(pan_log2_tab[E - 12] + (E - 12));
817
            }
818
        }
819
820
        /* tmp / pan in log2 */
821
        return QUANTISE2REAL(tmp - pan);
822
    } else {
823
        real_t amp = (sbr->amp_res[ch]) ? 1.0 : 0.5;
824
825
        return QUANTISE2REAL(6.0 + (real_t)sbr->E[ch][k][l] * amp);
826
    }
827
}
828
829
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
830
{
831
    /* check for coupled energy/noise data */
832
    if (sbr->bs_coupling == 1)
833
    {
834
        float tmp = QUANTISE2REAL(7.0 - (real_t)sbr->Q[0][k][l]);
835
        float pan;
836
837
        int Q = (int)(sbr->Q[1][k][l]);
838
839
        if (ch == 0)
840
        {
841
            if (Q > 12)
842
            {
843
                /* negative */
844
                pan = QUANTISE2REAL(pan_log2_tab[-12 + Q]);
845
            } else {
846
                /* positive */
847
                pan = QUANTISE2REAL(pan_log2_tab[12 - Q] + (12 - Q));
848
            }
849
        } else {
850
            if (Q < 12)
851
            {
852
                /* negative */
853
                pan = QUANTISE2REAL(pan_log2_tab[-Q + 12]);
854
            } else {
855
                /* positive */
856
                pan = QUANTISE2REAL(pan_log2_tab[Q - 12] + (Q - 12));
857
            }
858
        }
859
860
        /* tmp / pan in log2 */
861
        return QUANTISE2REAL(tmp - pan);
862
    } else {
863
        return QUANTISE2REAL(6.0 - (real_t)sbr->Q[ch][k][l]);
864
    }
865
}
866
867
static const real_t log_Qplus1_pan[31][13] = {
868
    { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
869
    { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
870
    { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
871
    { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
872
    { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
873
    { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
874
    { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
875
    { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
876
    { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
877
    { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
878
    { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
879
    { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
880
    { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
881
    { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
882
    { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
883
    { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
884
    { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
885
    { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
886
    { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
887
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
888
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
889
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
890
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
891
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
892
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
893
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
894
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
895
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
896
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
897
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
898
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
899
};
900
901
static const real_t log_Qplus1[31] = {
902
    REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
903
    REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
904
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
905
    REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
906
    REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
907
    REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
908
    REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
909
    REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
910
    REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
911
    REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
912
    REAL_CONST(0.000000000000000)
913
};
914
915
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
916
{
917
    /* check for coupled energy/noise data */
918
    if (sbr->bs_coupling == 1)
919
    {
920
        if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
921
            (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
922
        {
923
            if (ch == 0)
924
            {
925
                return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1]);
926
            } else {
927
                return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)]);
928
            }
929
        } else {
930
            return 0;
931
        }
932
    } else {
933
        if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
934
        {
935
            return QUANTISE2REAL(log_Qplus1[sbr->Q[ch][k][l]]);
936
        } else {
937
            return 0;
938
        }
939
    }
940
}
941
942
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
943
{
944
    /* log2 values of limiter gains */
945
    static real_t limGain[] = { -1.0, 0.0, 1.0, 33.219 };
946
    uint8_t m, l, k;
947
948
    uint8_t current_t_noise_band = 0;
949
    uint8_t S_mapped;
950
951
    ALIGN real_t Q_M_lim[MAX_M];
952
    ALIGN real_t G_lim[MAX_M];
953
    ALIGN real_t G_boost;
954
    ALIGN real_t S_M[MAX_M];
955
956
957
    for (l = 0; l < sbr->L_E[ch]; l++)
958
    {
959
        uint8_t current_f_noise_band = 0;
960
        uint8_t current_res_band = 0;
961
        uint8_t current_res_band2 = 0;
962
        uint8_t current_hi_res_band = 0;
963
964
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
965
966
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
967
968
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
969
        {
970
            current_t_noise_band++;
971
        }
972
973
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
974
        {
975
            real_t Q_M = 0;
976
            real_t G_max;
977
            real_t den = 0;
978
            real_t acc1 = 0;
979
            real_t acc2 = 0;
980
            uint8_t current_res_band_size = 0;
981
            uint8_t Q_M_size = 0;
982
983
            uint8_t ml1, ml2;
984
985
            /* bounds of current limiter bands */
986
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
987
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
988
989
            if (ml1 > MAX_M)
990
                ml1 = MAX_M;
991
992
            if (ml2 > MAX_M)
993
                ml2 = MAX_M;
994
995
996
            /* calculate the accumulated E_orig and E_curr over the limiter band */
997
            for (m = ml1; m < ml2; m++)
998
            {
999
                if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1000
                {
1001
                    current_res_band_size++;
1002
                } else {
1003
                    acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
1004
1005
                    current_res_band++;
1006
                    current_res_band_size = 1;
1007
                }
1008
1009
                acc2 += QUANTISE2INT(sbr->E_curr[ch][m][l]/1024.0);
1010
            }
1011
            acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
1012
1013
            acc1 = QUANTISE2REAL( log2(EPS + acc1) );
1014
1015
1016
            /* calculate the maximum gain */
1017
            /* ratio of the energy of the original signal and the energy
1018
             * of the HF generated signal
1019
             */
1020
            G_max = acc1 - QUANTISE2REAL(log2(EPS + acc2)) + QUANTISE2REAL(limGain[sbr->bs_limiter_gains]);
1021
            G_max = min(G_max, QUANTISE2REAL(limGain[3]));
1022
1023
1024
            for (m = ml1; m < ml2; m++)
1025
            {
1026
                real_t G;
1027
                real_t E_curr, E_orig;
1028
                real_t Q_orig, Q_orig_plus1;
1029
                uint8_t S_index_mapped;
1030
1031
1032
                /* check if m is on a noise band border */
1033
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
1034
                {
1035
                    /* step to next noise band */
1036
                    current_f_noise_band++;
1037
                }
1038
1039
1040
                /* check if m is on a resolution band border */
1041
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
1042
                {
1043
                    /* accumulate a whole range of equal Q_Ms */
1044
                    if (Q_M_size > 0)
1045
                        den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
1046
                    Q_M_size = 0;
1047
1048
                    /* step to next resolution band */
1049
                    current_res_band2++;
1050
1051
                    /* if we move to a new resolution band, we should check if we are
1052
                     * going to add a sinusoid in this band
1053
                     */
1054
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1055
                }
1056
1057
1058
                /* check if m is on a HI_RES band border */
1059
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
1060
                {
1061
                    /* step to next HI_RES band */
1062
                    current_hi_res_band++;
1063
                }
1064
1065
1066
                /* find S_index_mapped
1067
                 * S_index_mapped can only be 1 for the m in the middle of the
1068
                 * current HI_RES band
1069
                 */
1070
                S_index_mapped = 0;
1071
                if ((l >= sbr->l_A[ch]) ||
1072
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
1073
                {
1074
                    /* find the middle subband of the HI_RES frequency band */
1075
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
1076
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
1077
                }
1078
1079
1080
                /* find bitstream parameters */
1081
                if (sbr->E_curr[ch][m][l] == 0)
1082
                    E_curr = LOG2_MIN_INF;
1083
                else
1084
                    E_curr = -10 + log2(sbr->E_curr[ch][m][l]);
1085
                E_orig = -10 + find_log2_E(sbr, current_res_band2, l, ch);
1086
1087
                Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
1088
                Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
1089
1090
1091
                /* Q_M only depends on E_orig and Q_div2:
1092
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
1093
                 * a change of current res band (HI or LO)
1094
                 */
1095
                Q_M = E_orig + Q_orig - Q_orig_plus1;
1096
1097
1098
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
1099
                 * S_index_mapped can only be non-zero once per HI_RES band
1100
                 */
1101
                if (S_index_mapped == 0)
1102
                {
1103
                    S_M[m] = LOG2_MIN_INF; /* -inf */
1104
                } else {
1105
                    S_M[m] = E_orig - Q_orig_plus1;
1106
1107
                    /* accumulate sinusoid part of the total energy */
1108
                    den += pow2(S_M[m]);
1109
                }
1110
1111
1112
                /* calculate gain */
1113
                /* ratio of the energy of the original signal and the energy
1114
                 * of the HF generated signal
1115
                 */
1116
                /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
1117
                /* scaled by -10 */
1118
                G = E_orig - max(-10, E_curr);
1119
                if ((S_mapped == 0) && (delta == 1))
1120
                {
1121
                    /* G = G * 1/(1+Q) */
1122
                    G -= Q_orig_plus1;
1123
                } else if (S_mapped == 1) {
1124
                    /* G = G * Q/(1+Q) */
1125
                    G += Q_orig - Q_orig_plus1;
1126
                }
1127
1128
1129
                /* limit the additional noise energy level */
1130
                /* and apply the limiter */
1131
                if (G_max > G)
1132
                {
1133
                    Q_M_lim[m] = QUANTISE2REAL(Q_M);
1134
                    G_lim[m] = QUANTISE2REAL(G);
1135
1136
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1137
                    {
1138
                        Q_M_size++;
1139
                    }
1140
                } else {
1141
                    /* G > G_max */
1142
                    Q_M_lim[m] = QUANTISE2REAL(Q_M) + G_max - QUANTISE2REAL(G);
1143
                    G_lim[m] = G_max;
1144
1145
                    /* accumulate limited Q_M */
1146
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1147
                    {
1148
                        den += QUANTISE2INT(pow2(Q_M_lim[m]));
1149
                    }
1150
                }
1151
1152
1153
                /* accumulate the total energy */
1154
                /* E_curr changes for every m so we do need to accumulate every m */
1155
                den += QUANTISE2INT(pow2(E_curr + G_lim[m]));
1156
            }
1157
1158
            /* accumulate last range of equal Q_Ms */
1159
            if (Q_M_size > 0)
1160
            {
1161
                den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
1162
            }
1163
1164
1165
            /* calculate the final gain */
1166
            /* G_boost: [0..2.51188643] */
1167
            G_boost = acc1 - QUANTISE2REAL(log2(den + EPS));
1168
            G_boost = min(G_boost, QUANTISE2REAL(1.328771237) /* log2(1.584893192 ^ 2) */);
1169
1170
1171
            for (m = ml1; m < ml2; m++)
1172
            {
1173
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
1174
#ifndef SBR_LOW_POWER
1175
                adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2((G_lim[m] + G_boost) / 2.0));
1176
#else
1177
                /* sqrt() will be done after the aliasing reduction to save a
1178
                 * few multiplies
1179
                 */
1180
                adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2(G_lim[m] + G_boost));
1181
#endif
1182
                adj->Q_M_lim_boost[l][m] = QUANTISE2REAL(pow2((Q_M_lim[m] + 10 + G_boost) / 2.0));
1183
1184
                if (S_M[m] != LOG2_MIN_INF)
1185
                {
1186
                    adj->S_M_boost[l][m] = QUANTISE2REAL(pow2((S_M[m] + 10 + G_boost) / 2.0));
1187
                } else {
1188
                    adj->S_M_boost[l][m] = 0;
1189
                }
1190
            }
1191
        }
1192
    }
1193
}
1194
1195
#else
1196
1197
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
1198
15.6k
{
1199
15.6k
    static real_t limGain[] = { 0.5, 1.0, 2.0, 1e10 };
1200
15.6k
    uint8_t m, l, k;
1201
1202
15.6k
    uint8_t current_t_noise_band = 0;
1203
15.6k
    uint8_t S_mapped;
1204
1205
15.6k
    ALIGN real_t Q_M_lim[MAX_M];
1206
15.6k
    ALIGN real_t G_lim[MAX_M];
1207
15.6k
    ALIGN real_t G_boost;
1208
15.6k
    ALIGN real_t S_M[MAX_M];
1209
1210
42.1k
    for (l = 0; l < sbr->L_E[ch]; l++)
1211
26.5k
    {
1212
26.5k
        uint8_t current_f_noise_band = 0;
1213
26.5k
        uint8_t current_res_band = 0;
1214
26.5k
        uint8_t current_res_band2 = 0;
1215
26.5k
        uint8_t current_hi_res_band = 0;
1216
1217
26.5k
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
1218
1219
26.5k
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1220
1221
26.5k
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
1222
5.01k
        {
1223
5.01k
            current_t_noise_band++;
1224
5.01k
        }
1225
1226
77.1k
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
1227
50.6k
        {
1228
50.6k
            real_t G_max;
1229
50.6k
            real_t den = 0;
1230
50.6k
            real_t acc1 = 0;
1231
50.6k
            real_t acc2 = 0;
1232
1233
50.6k
            uint8_t ml1, ml2;
1234
1235
50.6k
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
1236
50.6k
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
1237
1238
50.6k
            if (ml1 > MAX_M)
1239
0
                ml1 = MAX_M;
1240
1241
50.6k
            if (ml2 > MAX_M)
1242
0
                ml2 = MAX_M;
1243
1244
1245
            /* calculate the accumulated E_orig and E_curr over the limiter band */
1246
357k
            for (m = ml1; m < ml2; m++)
1247
306k
            {
1248
306k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1249
88.6k
                {
1250
88.6k
                    current_res_band++;
1251
88.6k
                }
1252
306k
                acc1 += sbr->E_orig[ch][current_res_band][l];
1253
306k
                acc2 += sbr->E_curr[ch][m][l];
1254
306k
            }
1255
1256
1257
            /* calculate the maximum gain */
1258
            /* ratio of the energy of the original signal and the energy
1259
             * of the HF generated signal
1260
             */
1261
50.6k
            G_max = ((EPS + acc1) / (EPS + acc2)) * limGain[sbr->bs_limiter_gains];
1262
50.6k
            G_max = min(G_max, 1e10);
1263
1264
1265
357k
            for (m = ml1; m < ml2; m++)
1266
306k
            {
1267
306k
                real_t Q_M, G;
1268
306k
                real_t Q_div, Q_div2;
1269
306k
                uint8_t S_index_mapped;
1270
1271
1272
                /* check if m is on a noise band border */
1273
306k
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
1274
18.9k
                {
1275
                    /* step to next noise band */
1276
18.9k
                    current_f_noise_band++;
1277
18.9k
                }
1278
1279
1280
                /* check if m is on a resolution band border */
1281
306k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
1282
88.6k
                {
1283
                    /* step to next resolution band */
1284
88.6k
                    current_res_band2++;
1285
1286
                    /* if we move to a new resolution band, we should check if we are
1287
                     * going to add a sinusoid in this band
1288
                     */
1289
88.6k
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1290
88.6k
                }
1291
1292
1293
                /* check if m is on a HI_RES band border */
1294
306k
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
1295
149k
                {
1296
                    /* step to next HI_RES band */
1297
149k
                    current_hi_res_band++;
1298
149k
                }
1299
1300
1301
                /* find S_index_mapped
1302
                 * S_index_mapped can only be 1 for the m in the middle of the
1303
                 * current HI_RES band
1304
                 */
1305
306k
                S_index_mapped = 0;
1306
306k
                if ((l >= sbr->l_A[ch]) ||
1307
87.9k
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
1308
223k
                {
1309
                    /* find the middle subband of the HI_RES frequency band */
1310
223k
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
1311
121k
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
1312
223k
                }
1313
1314
1315
                /* Q_div: [0..1] (1/(1+Q_mapped)) */
1316
306k
                Q_div = sbr->Q_div[ch][current_f_noise_band][current_t_noise_band];
1317
1318
1319
                /* Q_div2: [0..1] (Q_mapped/(1+Q_mapped)) */
1320
306k
                Q_div2 = sbr->Q_div2[ch][current_f_noise_band][current_t_noise_band];
1321
1322
1323
                /* Q_M only depends on E_orig and Q_div2:
1324
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
1325
                 * a change of current noise band
1326
                 */
1327
306k
                Q_M = sbr->E_orig[ch][current_res_band2][l] * Q_div2;
1328
1329
1330
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
1331
                 * S_index_mapped can only be non-zero once per HI_RES band
1332
                 */
1333
306k
                if (S_index_mapped == 0)
1334
292k
                {
1335
292k
                    S_M[m] = 0;
1336
292k
                } else {
1337
14.0k
                    S_M[m] = sbr->E_orig[ch][current_res_band2][l] * Q_div;
1338
1339
                    /* accumulate sinusoid part of the total energy */
1340
14.0k
                    den += S_M[m];
1341
14.0k
                }
1342
1343
1344
                /* calculate gain */
1345
                /* ratio of the energy of the original signal and the energy
1346
                 * of the HF generated signal
1347
                 */
1348
306k
                G = sbr->E_orig[ch][current_res_band2][l] / (1.0 + sbr->E_curr[ch][m][l]);
1349
306k
                if ((S_mapped == 0) && (delta == 1))
1350
251k
                    G *= Q_div;
1351
54.8k
                else if (S_mapped == 1)
1352
31.8k
                    G *= Q_div2;
1353
1354
1355
                /* limit the additional noise energy level */
1356
                /* and apply the limiter */
1357
306k
                if (G <= G_max)
1358
264k
                {
1359
264k
                    Q_M_lim[m] = Q_M;
1360
264k
                    G_lim[m] = G;
1361
264k
                } else {
1362
42.1k
                    Q_M_lim[m] = Q_M * G_max / G;
1363
42.1k
                    G_lim[m] = G_max;
1364
42.1k
                }
1365
1366
1367
                /* accumulate the total energy */
1368
306k
                den += sbr->E_curr[ch][m][l] * G_lim[m];
1369
306k
                if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1370
273k
                    den += Q_M_lim[m];
1371
306k
            }
1372
1373
            /* G_boost: [0..2.51188643] */
1374
50.6k
            G_boost = (acc1 + EPS) / (den + EPS);
1375
50.6k
            G_boost = min(G_boost, 2.51188643 /* 1.584893192 ^ 2 */);
1376
1377
357k
            for (m = ml1; m < ml2; m++)
1378
306k
            {
1379
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
1380
306k
#ifndef SBR_LOW_POWER
1381
306k
                adj->G_lim_boost[l][m] = sqrt(G_lim[m] * G_boost);
1382
#else
1383
                /* sqrt() will be done after the aliasing reduction to save a
1384
                 * few multiplies
1385
                 */
1386
                adj->G_lim_boost[l][m] = G_lim[m] * G_boost;
1387
#endif
1388
306k
                adj->Q_M_lim_boost[l][m] = sqrt(Q_M_lim[m] * G_boost);
1389
1390
306k
                if (S_M[m] != 0)
1391
10.0k
                {
1392
10.0k
                    adj->S_M_boost[l][m] = sqrt(S_M[m] * G_boost);
1393
296k
                } else {
1394
296k
                    adj->S_M_boost[l][m] = 0;
1395
296k
                }
1396
306k
            }
1397
50.6k
        }
1398
26.5k
    }
1399
15.6k
}
1400
#endif // log2_test
1401
1402
#endif
1403
1404
#ifdef SBR_LOW_POWER
1405
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
1406
{
1407
    uint8_t l, k, i;
1408
    uint8_t grouping;
1409
    uint8_t S_mapped;
1410
1411
    for (l = 0; l < sbr->L_E[ch]; l++)
1412
    {
1413
        uint8_t current_res_band = 0;
1414
        i = 0;
1415
        grouping = 0;
1416
1417
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band);
1418
1419
        for (k = sbr->kx; k < sbr->kx + sbr->M - 1; k++)
1420
        {
1421
            if (k == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1422
            {
1423
                /* step to next resolution band */
1424
                current_res_band++;
1425
1426
                S_mapped = get_S_mapped(sbr, ch, l, current_res_band);
1427
            }
1428
1429
            if (deg[k + 1] && S_mapped == 0)
1430
            {
1431
                if (grouping == 0)
1432
                {
1433
                    sbr->f_group[l][i] = k;
1434
                    grouping = 1;
1435
                    i++;
1436
                }
1437
            } else {
1438
                if (grouping)
1439
                {
1440
                    if (S_mapped)
1441
                    {
1442
                        sbr->f_group[l][i] = k;
1443
                    } else {
1444
                        sbr->f_group[l][i] = k + 1;
1445
                    }
1446
                    grouping = 0;
1447
                    i++;
1448
                }
1449
            }
1450
        }
1451
1452
        if (grouping)
1453
        {
1454
            sbr->f_group[l][i] = sbr->kx + sbr->M;
1455
            i++;
1456
        }
1457
1458
        sbr->N_G[l] = (uint8_t)(i >> 1);
1459
    }
1460
}
1461
1462
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
1463
{
1464
    uint8_t l, k, m;
1465
    real_t E_total, E_total_est, G_target, acc;
1466
1467
    for (l = 0; l < sbr->L_E[ch]; l++)
1468
    {
1469
        for (k = 0; k < sbr->N_G[l]; k++)
1470
        {
1471
            E_total_est = E_total = 0;
1472
1473
            for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1474
            {
1475
                /* E_curr: integer */
1476
                /* G_lim_boost: fixed point */
1477
                /* E_total_est: integer */
1478
                /* E_total: integer */
1479
                E_total_est += sbr->E_curr[ch][m-sbr->kx][l];
1480
#ifdef FIXED_POINT
1481
                E_total += MUL_Q2(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]);
1482
#else
1483
                E_total += sbr->E_curr[ch][m-sbr->kx][l] * adj->G_lim_boost[l][m-sbr->kx];
1484
#endif
1485
            }
1486
1487
            /* G_target: fixed point */
1488
            if ((E_total_est + EPS) == 0)
1489
            {
1490
                G_target = 0;
1491
            } else {
1492
#ifdef FIXED_POINT
1493
                G_target = (((int64_t)(E_total))<<Q2_BITS)/(E_total_est + EPS);
1494
#else
1495
                G_target = E_total / (E_total_est + EPS);
1496
#endif
1497
            }
1498
            acc = 0;
1499
1500
            for (m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1501
            {
1502
                real_t alpha;
1503
1504
                /* alpha: (COEF) fixed point */
1505
                if (m < sbr->kx + sbr->M - 1)
1506
                {
1507
                    alpha = max(deg[m], deg[m + 1]);
1508
                } else {
1509
                    alpha = deg[m];
1510
                }
1511
1512
                adj->G_lim_boost[l][m-sbr->kx] = MUL_C(alpha, G_target) +
1513
                    MUL_C((COEF_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]);
1514
1515
                /* acc: integer */
1516
#ifdef FIXED_POINT
1517
                acc += MUL_Q2(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]);
1518
#else
1519
                acc += adj->G_lim_boost[l][m-sbr->kx] * sbr->E_curr[ch][m-sbr->kx][l];
1520
#endif
1521
            }
1522
1523
            /* acc: fixed point */
1524
            if (acc + EPS == 0)
1525
            {
1526
                acc = 0;
1527
            } else {
1528
#ifdef FIXED_POINT
1529
                acc = (((int64_t)(E_total))<<Q2_BITS)/(acc + EPS);
1530
#else
1531
                acc = E_total / (acc + EPS);
1532
#endif
1533
            }
1534
            for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1535
            {
1536
#ifdef FIXED_POINT
1537
                adj->G_lim_boost[l][m-sbr->kx] = MUL_Q2(acc, adj->G_lim_boost[l][m-sbr->kx]);
1538
#else
1539
                adj->G_lim_boost[l][m-sbr->kx] = acc * adj->G_lim_boost[l][m-sbr->kx];
1540
#endif
1541
            }
1542
        }
1543
    }
1544
1545
    for (l = 0; l < sbr->L_E[ch]; l++)
1546
    {
1547
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
1548
        {
1549
            for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
1550
                 m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
1551
            {
1552
#ifdef FIXED_POINT
1553
                 adj->G_lim_boost[l][m] = SBR_SQRT_Q2(adj->G_lim_boost[l][m]);
1554
#else
1555
                 adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]);
1556
#endif
1557
            }
1558
        }
1559
    }
1560
}
1561
#endif
1562
1563
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
1564
                        qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
1565
28.9k
{
1566
28.9k
    static real_t h_smooth[] = {
1567
28.9k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
28.9k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
28.9k
        FRAC_CONST(0.33333333333333)
1570
28.9k
    };
1571
28.9k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
28.9k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
28.9k
    uint8_t m, l, i, n;
1575
28.9k
    uint16_t fIndexNoise = 0;
1576
28.9k
    uint8_t fIndexSine = 0;
1577
28.9k
    uint8_t assembly_reset = 0;
1578
1579
28.9k
    real_t G_filt, Q_filt;
1580
1581
28.9k
    uint8_t h_SL;
1582
1583
1584
28.9k
    if (sbr->Reset == 1)
1585
28.1k
    {
1586
28.1k
        assembly_reset = 1;
1587
28.1k
        fIndexNoise = 0;
1588
28.1k
    } else {
1589
804
        fIndexNoise = sbr->index_noise_prev[ch];
1590
804
    }
1591
28.9k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
79.3k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
50.3k
    {
1596
50.3k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
50.3k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
50.3k
        h_SL = (no_noise ? 0 : h_SL);
1603
50.3k
#endif
1604
1605
50.3k
        if (assembly_reset)
1606
28.0k
        {
1607
140k
            for (n = 0; n < 4; n++)
1608
112k
            {
1609
112k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
112k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
112k
            }
1612
            /* reset ringbuffer index */
1613
28.0k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
28.0k
            assembly_reset = 0;
1615
28.0k
        }
1616
1617
950k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
899k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
899k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
899k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
13.0M
            for (m = 0; m < sbr->M; m++)
1629
12.1M
            {
1630
12.1M
                qmf_t psi;
1631
1632
12.1M
                G_filt = 0;
1633
12.1M
                Q_filt = 0;
1634
1635
12.1M
#ifndef SBR_LOW_POWER
1636
12.1M
                if (h_SL != 0)
1637
4.69M
                {
1638
4.69M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
28.1M
                    for (n = 0; n <= 4; n++)
1640
23.4M
                    {
1641
23.4M
                        real_t curr_h_smooth = h_smooth[n];
1642
23.4M
                        ri++;
1643
23.4M
                        if (ri >= 5)
1644
4.69M
                            ri -= 5;
1645
23.4M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
23.4M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
23.4M
                    }
1648
7.46M
               } else {
1649
7.46M
#endif
1650
7.46M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
7.46M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
7.46M
#ifndef SBR_LOW_POWER
1653
7.46M
                }
1654
12.1M
#endif
1655
12.1M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
1.16M
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
12.1M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
12.1M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
12.1M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
12.1M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
8.61k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
12.1M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
12.1M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
12.1M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
12.1M
#endif
1675
1676
12.1M
                {
1677
12.1M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
12.1M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
12.1M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
12.1M
#ifndef SBR_LOW_POWER
1682
12.1M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
12.1M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
12.1M
                }
1727
12.1M
            }
1728
1729
899k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
899k
            sbr->GQ_ringbuf_index[ch]++;
1733
899k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
193k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
899k
        }
1736
50.3k
    }
1737
1738
28.9k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
28.9k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
28.9k
}
sbr_hfadj.c:hf_assembly
Line
Count
Source
1565
13.3k
{
1566
13.3k
    static real_t h_smooth[] = {
1567
13.3k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
13.3k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
13.3k
        FRAC_CONST(0.33333333333333)
1570
13.3k
    };
1571
13.3k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
13.3k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
13.3k
    uint8_t m, l, i, n;
1575
13.3k
    uint16_t fIndexNoise = 0;
1576
13.3k
    uint8_t fIndexSine = 0;
1577
13.3k
    uint8_t assembly_reset = 0;
1578
1579
13.3k
    real_t G_filt, Q_filt;
1580
1581
13.3k
    uint8_t h_SL;
1582
1583
1584
13.3k
    if (sbr->Reset == 1)
1585
13.0k
    {
1586
13.0k
        assembly_reset = 1;
1587
13.0k
        fIndexNoise = 0;
1588
13.0k
    } else {
1589
336
        fIndexNoise = sbr->index_noise_prev[ch];
1590
336
    }
1591
13.3k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
37.1k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
23.7k
    {
1596
23.7k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
23.7k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
23.7k
        h_SL = (no_noise ? 0 : h_SL);
1603
23.7k
#endif
1604
1605
23.7k
        if (assembly_reset)
1606
13.0k
        {
1607
65.0k
            for (n = 0; n < 4; n++)
1608
52.0k
            {
1609
52.0k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
52.0k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
52.0k
            }
1612
            /* reset ringbuffer index */
1613
13.0k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
13.0k
            assembly_reset = 0;
1615
13.0k
        }
1616
1617
445k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
421k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
421k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
421k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
6.51M
            for (m = 0; m < sbr->M; m++)
1629
6.09M
            {
1630
6.09M
                qmf_t psi;
1631
1632
6.09M
                G_filt = 0;
1633
6.09M
                Q_filt = 0;
1634
1635
6.09M
#ifndef SBR_LOW_POWER
1636
6.09M
                if (h_SL != 0)
1637
2.65M
                {
1638
2.65M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
15.9M
                    for (n = 0; n <= 4; n++)
1640
13.2M
                    {
1641
13.2M
                        real_t curr_h_smooth = h_smooth[n];
1642
13.2M
                        ri++;
1643
13.2M
                        if (ri >= 5)
1644
2.65M
                            ri -= 5;
1645
13.2M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
13.2M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
13.2M
                    }
1648
3.44M
               } else {
1649
3.44M
#endif
1650
3.44M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
3.44M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
3.44M
#ifndef SBR_LOW_POWER
1653
3.44M
                }
1654
6.09M
#endif
1655
6.09M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
652k
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
6.09M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
6.09M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
6.09M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
6.09M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
3.41k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
6.09M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
6.09M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
6.09M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
6.09M
#endif
1675
1676
6.09M
                {
1677
6.09M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
6.09M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
6.09M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
6.09M
#ifndef SBR_LOW_POWER
1682
6.09M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
6.09M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
6.09M
                }
1727
6.09M
            }
1728
1729
421k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
421k
            sbr->GQ_ringbuf_index[ch]++;
1733
421k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
90.9k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
421k
        }
1736
23.7k
    }
1737
1738
13.3k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
13.3k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
13.3k
}
sbr_hfadj.c:hf_assembly
Line
Count
Source
1565
15.6k
{
1566
15.6k
    static real_t h_smooth[] = {
1567
15.6k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
15.6k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
15.6k
        FRAC_CONST(0.33333333333333)
1570
15.6k
    };
1571
15.6k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
15.6k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
15.6k
    uint8_t m, l, i, n;
1575
15.6k
    uint16_t fIndexNoise = 0;
1576
15.6k
    uint8_t fIndexSine = 0;
1577
15.6k
    uint8_t assembly_reset = 0;
1578
1579
15.6k
    real_t G_filt, Q_filt;
1580
1581
15.6k
    uint8_t h_SL;
1582
1583
1584
15.6k
    if (sbr->Reset == 1)
1585
15.1k
    {
1586
15.1k
        assembly_reset = 1;
1587
15.1k
        fIndexNoise = 0;
1588
15.1k
    } else {
1589
468
        fIndexNoise = sbr->index_noise_prev[ch];
1590
468
    }
1591
15.6k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
42.1k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
26.5k
    {
1596
26.5k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
26.5k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
26.5k
        h_SL = (no_noise ? 0 : h_SL);
1603
26.5k
#endif
1604
1605
26.5k
        if (assembly_reset)
1606
15.0k
        {
1607
75.3k
            for (n = 0; n < 4; n++)
1608
60.3k
            {
1609
60.3k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
60.3k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
60.3k
            }
1612
            /* reset ringbuffer index */
1613
15.0k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
15.0k
            assembly_reset = 0;
1615
15.0k
        }
1616
1617
504k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
478k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
478k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
478k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
6.54M
            for (m = 0; m < sbr->M; m++)
1629
6.06M
            {
1630
6.06M
                qmf_t psi;
1631
1632
6.06M
                G_filt = 0;
1633
6.06M
                Q_filt = 0;
1634
1635
6.06M
#ifndef SBR_LOW_POWER
1636
6.06M
                if (h_SL != 0)
1637
2.04M
                {
1638
2.04M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
12.2M
                    for (n = 0; n <= 4; n++)
1640
10.2M
                    {
1641
10.2M
                        real_t curr_h_smooth = h_smooth[n];
1642
10.2M
                        ri++;
1643
10.2M
                        if (ri >= 5)
1644
2.04M
                            ri -= 5;
1645
10.2M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
10.2M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
10.2M
                    }
1648
4.01M
               } else {
1649
4.01M
#endif
1650
4.01M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
4.01M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
4.01M
#ifndef SBR_LOW_POWER
1653
4.01M
                }
1654
6.06M
#endif
1655
6.06M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
515k
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
6.06M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
6.06M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
6.06M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
6.06M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
5.19k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
6.06M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
6.06M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
6.06M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
6.06M
#endif
1675
1676
6.06M
                {
1677
6.06M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
6.06M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
6.06M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
6.06M
#ifndef SBR_LOW_POWER
1682
6.06M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
6.06M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
6.06M
                }
1727
6.06M
            }
1728
1729
478k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
478k
            sbr->GQ_ringbuf_index[ch]++;
1733
478k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
102k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
478k
        }
1736
26.5k
    }
1737
1738
15.6k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
15.6k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
15.6k
}
1741
1742
#endif