Coverage Report

Created: 2026-01-09 06:48

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/proc/self/cwd/libfaad/ps_dec.c
Line
Count
Source
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: ps_dec.c,v 1.16 2009/01/26 22:32:31 menno Exp $
29
**/
30
31
#include "common.h"
32
33
#ifdef PS_DEC
34
35
#include <stdlib.h>
36
#include <stdio.h>
37
#include "ps_dec.h"
38
#include "ps_tables.h"
39
40
/* constants */
41
53.6M
#define NEGATE_IPD_MASK            (0x1000)
42
405k
#define DECAY_SLOPE                FRAC_CONST(0.05)
43
#define COEF_SQRT2                 COEF_CONST(1.4142135623731)
44
45
/* tables */
46
/* filters are mirrored in coef 6, second half left out */
47
static const real_t p8_13_20[7] =
48
{
49
    FRAC_CONST(0.00746082949812),
50
    FRAC_CONST(0.02270420949825),
51
    FRAC_CONST(0.04546865930473),
52
    FRAC_CONST(0.07266113929591),
53
    FRAC_CONST(0.09885108575264),
54
    FRAC_CONST(0.11793710567217),
55
    FRAC_CONST(0.125)
56
};
57
58
static const real_t p2_13_20[7] =
59
{
60
    FRAC_CONST(0.0),
61
    FRAC_CONST(0.01899487526049),
62
    FRAC_CONST(0.0),
63
    FRAC_CONST(-0.07293139167538),
64
    FRAC_CONST(0.0),
65
    FRAC_CONST(0.30596630545168),
66
    FRAC_CONST(0.5)
67
};
68
69
static const real_t p12_13_34[7] =
70
{
71
    FRAC_CONST(0.04081179924692),
72
    FRAC_CONST(0.03812810994926),
73
    FRAC_CONST(0.05144908135699),
74
    FRAC_CONST(0.06399831151592),
75
    FRAC_CONST(0.07428313801106),
76
    FRAC_CONST(0.08100347892914),
77
    FRAC_CONST(0.08333333333333)
78
};
79
80
static const real_t p8_13_34[7] =
81
{
82
    FRAC_CONST(0.01565675600122),
83
    FRAC_CONST(0.03752716391991),
84
    FRAC_CONST(0.05417891378782),
85
    FRAC_CONST(0.08417044116767),
86
    FRAC_CONST(0.10307344158036),
87
    FRAC_CONST(0.12222452249753),
88
    FRAC_CONST(0.125)
89
};
90
91
static const real_t p4_13_34[7] =
92
{
93
    FRAC_CONST(-0.05908211155639),
94
    FRAC_CONST(-0.04871498374946),
95
    FRAC_CONST(0.0),
96
    FRAC_CONST(0.07778723915851),
97
    FRAC_CONST(0.16486303567403),
98
    FRAC_CONST(0.23279856662996),
99
    FRAC_CONST(0.25)
100
};
101
102
#ifdef PARAM_32KHZ
103
static const uint8_t delay_length_d[2][NO_ALLPASS_LINKS] = {
104
    { 1, 2, 3 } /* d_24kHz */,
105
    { 3, 4, 5 } /* d_48kHz */
106
};
107
#else
108
static const uint8_t delay_length_d[NO_ALLPASS_LINKS] = {
109
    3, 4, 5 /* d_48kHz */
110
};
111
#endif
112
static const real_t filter_a[NO_ALLPASS_LINKS] = { /* a(m) = exp(-d_48kHz(m)/7) */
113
    FRAC_CONST(0.65143905753106),
114
    FRAC_CONST(0.56471812200776),
115
    FRAC_CONST(0.48954165955695)
116
};
117
118
static const uint8_t group_border20[10+12 + 1] =
119
{
120
    6, 7, 0, 1, 2, 3, /* 6 subqmf subbands */
121
    9, 8,             /* 2 subqmf subbands */
122
    10, 11,           /* 2 subqmf subbands */
123
    3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 35, 64
124
};
125
126
static const uint8_t group_border34[32+18 + 1] =
127
{
128
     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, /* 12 subqmf subbands */
129
     12, 13, 14, 15, 16, 17, 18, 19,                 /*  8 subqmf subbands */
130
     20, 21, 22, 23,                                 /*  4 subqmf subbands */
131
     24, 25, 26, 27,                                 /*  4 subqmf subbands */
132
     28, 29, 30, 31,                                 /*  4 subqmf subbands */
133
     32-27, 33-27, 34-27, 35-27, 36-27, 37-27, 38-27, 40-27, 42-27, 44-27, 46-27, 48-27, 51-27, 54-27, 57-27, 60-27, 64-27, 68-27, 91-27
134
};
135
136
static const uint16_t map_group2bk20[10+12] =
137
{
138
    (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
139
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
140
};
141
142
static const uint16_t map_group2bk34[32+18] =
143
{
144
    0,  1,  2,  3,  4,  5,  6,  6,  7, (NEGATE_IPD_MASK | 2), (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
145
    10, 10, 4,  5,  6,  7,  8,  9,
146
    10, 11, 12, 9,
147
    14, 11, 12, 13,
148
    14, 15, 16, 13,
149
    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
150
};
151
152
/* type definitions */
153
typedef struct
154
{
155
    uint8_t frame_len;
156
    uint8_t resolution20[3];
157
    uint8_t resolution34[5];
158
159
    qmf_t *work;
160
    qmf_t **buffer;
161
    qmf_t **temp;
162
} hyb_info;
163
164
/* static function declarations */
165
static void ps_data_decode(ps_info *ps);
166
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate);
167
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
168
                            qmf_t *buffer, qmf_t **X_hybrid);
169
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x);
170
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
171
                            qmf_t *buffer, qmf_t **X_hybrid);
172
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
173
                            uint8_t use34, uint8_t numTimeSlotsRate);
174
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
175
                             uint8_t use34, uint8_t numTimeSlotsRate);
176
static int8_t delta_clip(int8_t i, int8_t min, int8_t max);
177
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
178
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
179
                         int8_t min_index, int8_t max_index);
180
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
181
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
182
                                int8_t and_modulo);
183
static void map20indexto34(int8_t *index, uint8_t bins);
184
#ifdef PS_LOW_POWER
185
static void map34indexto20(int8_t *index, uint8_t bins);
186
#endif
187
static void ps_data_decode(ps_info *ps);
188
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
189
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
190
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
191
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
192
193
/*  */
194
195
196
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate)
197
32.4k
{
198
32.4k
    uint8_t i;
199
200
32.4k
    hyb_info *hyb = (hyb_info*)faad_malloc(sizeof(hyb_info));
201
202
32.4k
    hyb->resolution34[0] = 12;
203
32.4k
    hyb->resolution34[1] = 8;
204
32.4k
    hyb->resolution34[2] = 4;
205
32.4k
    hyb->resolution34[3] = 4;
206
32.4k
    hyb->resolution34[4] = 4;
207
208
32.4k
    hyb->resolution20[0] = 8;
209
32.4k
    hyb->resolution20[1] = 2;
210
32.4k
    hyb->resolution20[2] = 2;
211
212
32.4k
    hyb->frame_len = numTimeSlotsRate;
213
214
32.4k
    hyb->work = (qmf_t*)faad_malloc((hyb->frame_len+12) * sizeof(qmf_t));
215
32.4k
    memset(hyb->work, 0, (hyb->frame_len+12) * sizeof(qmf_t));
216
217
32.4k
    hyb->buffer = (qmf_t**)faad_malloc(5 * sizeof(qmf_t*));
218
194k
    for (i = 0; i < 5; i++)
219
162k
    {
220
162k
        hyb->buffer[i] = (qmf_t*)faad_malloc(hyb->frame_len * sizeof(qmf_t));
221
162k
        memset(hyb->buffer[i], 0, hyb->frame_len * sizeof(qmf_t));
222
162k
    }
223
224
32.4k
    hyb->temp = (qmf_t**)faad_malloc(hyb->frame_len * sizeof(qmf_t*));
225
1.06M
    for (i = 0; i < hyb->frame_len; i++)
226
1.02M
    {
227
1.02M
        hyb->temp[i] = (qmf_t*)faad_malloc(12 /*max*/ * sizeof(qmf_t));
228
1.02M
    }
229
230
32.4k
    return hyb;
231
32.4k
}
232
233
static void hybrid_free(hyb_info *hyb)
234
32.4k
{
235
32.4k
    uint8_t i;
236
237
32.4k
  if (!hyb) return;
238
239
32.4k
    if (hyb->work)
240
32.4k
        faad_free(hyb->work);
241
242
194k
    for (i = 0; i < 5; i++)
243
162k
    {
244
162k
        if (hyb->buffer[i])
245
162k
            faad_free(hyb->buffer[i]);
246
162k
    }
247
32.4k
    if (hyb->buffer)
248
32.4k
        faad_free(hyb->buffer);
249
250
1.06M
    for (i = 0; i < hyb->frame_len; i++)
251
1.02M
    {
252
1.02M
        if (hyb->temp[i])
253
1.02M
            faad_free(hyb->temp[i]);
254
1.02M
    }
255
32.4k
    if (hyb->temp)
256
32.4k
        faad_free(hyb->temp);
257
258
32.4k
    faad_free(hyb);
259
32.4k
}
260
261
/* real filter, size 2 */
262
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
263
                            qmf_t *buffer, qmf_t **X_hybrid)
264
55.1k
{
265
55.1k
    uint8_t i;
266
55.1k
    (void)hyb;  /* TODO: remove parameter? */
267
268
1.78M
    for (i = 0; i < frame_len; i++)
269
1.73M
    {
270
1.73M
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
1.73M
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
1.73M
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
1.73M
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
1.73M
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
1.73M
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
1.73M
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
1.73M
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
1.73M
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
1.73M
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
1.73M
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
1.73M
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
1.73M
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
1.73M
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
1.73M
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
1.73M
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
1.73M
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
1.73M
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
1.73M
    }
293
55.1k
}
ps_dec.c:channel_filter2
Line
Count
Source
264
27.5k
{
265
27.5k
    uint8_t i;
266
27.5k
    (void)hyb;  /* TODO: remove parameter? */
267
268
892k
    for (i = 0; i < frame_len; i++)
269
865k
    {
270
865k
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
865k
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
865k
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
865k
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
865k
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
865k
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
865k
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
865k
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
865k
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
865k
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
865k
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
865k
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
865k
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
865k
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
865k
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
865k
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
865k
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
865k
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
865k
    }
293
27.5k
}
ps_dec.c:channel_filter2
Line
Count
Source
264
27.5k
{
265
27.5k
    uint8_t i;
266
27.5k
    (void)hyb;  /* TODO: remove parameter? */
267
268
892k
    for (i = 0; i < frame_len; i++)
269
865k
    {
270
865k
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
865k
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
865k
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
865k
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
865k
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
865k
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
865k
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
865k
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
865k
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
865k
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
865k
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
865k
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
865k
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
865k
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
865k
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
865k
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
865k
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
865k
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
865k
    }
293
27.5k
}
294
295
/* complex filter, size 4 */
296
static void channel_filter4(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
297
                            qmf_t *buffer, qmf_t **X_hybrid)
298
22.6k
{
299
22.6k
    uint8_t i;
300
22.6k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
22.6k
    (void)hyb;  /* TODO: remove parameter? */
302
303
722k
    for (i = 0; i < frame_len; i++)
304
700k
    {
305
700k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
700k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
700k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
700k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
700k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
700k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
700k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
700k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
700k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
700k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
700k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
700k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
700k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
700k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
700k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
700k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
700k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
700k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
700k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
700k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
700k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
700k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
700k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
700k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
700k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
700k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
700k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
700k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
700k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
700k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
700k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
700k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
700k
    }
349
22.6k
}
ps_dec.c:channel_filter4
Line
Count
Source
298
10.4k
{
299
10.4k
    uint8_t i;
300
10.4k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
10.4k
    (void)hyb;  /* TODO: remove parameter? */
302
303
333k
    for (i = 0; i < frame_len; i++)
304
323k
    {
305
323k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
323k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
323k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
323k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
323k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
323k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
323k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
323k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
323k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
323k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
323k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
323k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
323k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
323k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
323k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
323k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
323k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
323k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
323k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
323k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
323k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
323k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
323k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
323k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
323k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
323k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
323k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
323k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
323k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
323k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
323k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
323k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
323k
    }
349
10.4k
}
ps_dec.c:channel_filter4
Line
Count
Source
298
12.2k
{
299
12.2k
    uint8_t i;
300
12.2k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
12.2k
    (void)hyb;  /* TODO: remove parameter? */
302
303
389k
    for (i = 0; i < frame_len; i++)
304
377k
    {
305
377k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
377k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
377k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
377k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
377k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
377k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
377k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
377k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
377k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
377k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
377k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
377k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
377k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
377k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
377k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
377k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
377k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
377k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
377k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
377k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
377k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
377k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
377k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
377k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
377k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
377k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
377k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
377k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
377k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
377k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
377k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
377k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
377k
    }
349
12.2k
}
350
351
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x)
352
2.66M
{
353
2.66M
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
2.66M
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
2.66M
    f1 = x[0] - f0;
357
2.66M
    f2 = x[0] + f0;
358
2.66M
    f3 = x[1] + x[3];
359
2.66M
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
2.66M
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
2.66M
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
2.66M
    f7 = f4 + f5;
363
2.66M
    f8 = f6 - f5;
364
2.66M
    y[3] = f2 - f8;
365
2.66M
    y[0] = f2 + f8;
366
2.66M
    y[2] = f1 - f7;
367
2.66M
    y[1] = f1 + f7;
368
2.66M
}
ps_dec.c:DCT3_4_unscaled
Line
Count
Source
352
1.27M
{
353
1.27M
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
1.27M
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
1.27M
    f1 = x[0] - f0;
357
1.27M
    f2 = x[0] + f0;
358
1.27M
    f3 = x[1] + x[3];
359
1.27M
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
1.27M
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
1.27M
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
1.27M
    f7 = f4 + f5;
363
1.27M
    f8 = f6 - f5;
364
1.27M
    y[3] = f2 - f8;
365
1.27M
    y[0] = f2 + f8;
366
1.27M
    y[2] = f1 - f7;
367
1.27M
    y[1] = f1 + f7;
368
1.27M
}
ps_dec.c:DCT3_4_unscaled
Line
Count
Source
352
1.38M
{
353
1.38M
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
1.38M
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
1.38M
    f1 = x[0] - f0;
357
1.38M
    f2 = x[0] + f0;
358
1.38M
    f3 = x[1] + x[3];
359
1.38M
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
1.38M
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
1.38M
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
1.38M
    f7 = f4 + f5;
363
1.38M
    f8 = f6 - f5;
364
1.38M
    y[3] = f2 - f8;
365
1.38M
    y[0] = f2 + f8;
366
1.38M
    y[2] = f1 - f7;
367
1.38M
    y[1] = f1 + f7;
368
1.38M
}
369
370
/* complex filter, size 8 */
371
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
372
                            qmf_t *buffer, qmf_t **X_hybrid)
373
42.6k
{
374
42.6k
    uint8_t i, n;
375
42.6k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
42.6k
    real_t x[4];
377
42.6k
    (void)hyb;  /* TODO: remove parameter? */
378
379
1.37M
    for (i = 0; i < frame_len; i++)
380
1.33M
    {
381
1.33M
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
1.33M
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
1.33M
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
1.33M
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
1.33M
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
1.33M
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
1.33M
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
1.33M
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
6.66M
        for (n = 0; n < 4; n++)
392
5.32M
        {
393
5.32M
            x[n] = input_re1[n] - input_im1[3-n];
394
5.32M
        }
395
1.33M
        DCT3_4_unscaled(x, x);
396
1.33M
        QMF_RE(X_hybrid[i][7]) = x[0];
397
1.33M
        QMF_RE(X_hybrid[i][5]) = x[2];
398
1.33M
        QMF_RE(X_hybrid[i][3]) = x[3];
399
1.33M
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
6.66M
        for (n = 0; n < 4; n++)
402
5.32M
        {
403
5.32M
            x[n] = input_re1[n] + input_im1[3-n];
404
5.32M
        }
405
1.33M
        DCT3_4_unscaled(x, x);
406
1.33M
        QMF_RE(X_hybrid[i][6]) = x[1];
407
1.33M
        QMF_RE(X_hybrid[i][4]) = x[3];
408
1.33M
        QMF_RE(X_hybrid[i][2]) = x[2];
409
1.33M
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
1.33M
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
1.33M
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
1.33M
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
1.33M
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
1.33M
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
1.33M
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
1.33M
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
1.33M
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
6.66M
        for (n = 0; n < 4; n++)
422
5.32M
        {
423
5.32M
            x[n] = input_im2[n] + input_re2[3-n];
424
5.32M
        }
425
1.33M
        DCT3_4_unscaled(x, x);
426
1.33M
        QMF_IM(X_hybrid[i][7]) = x[0];
427
1.33M
        QMF_IM(X_hybrid[i][5]) = x[2];
428
1.33M
        QMF_IM(X_hybrid[i][3]) = x[3];
429
1.33M
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
6.66M
        for (n = 0; n < 4; n++)
432
5.32M
        {
433
5.32M
            x[n] = input_im2[n] - input_re2[3-n];
434
5.32M
        }
435
1.33M
        DCT3_4_unscaled(x, x);
436
1.33M
        QMF_IM(X_hybrid[i][6]) = x[1];
437
1.33M
        QMF_IM(X_hybrid[i][4]) = x[3];
438
1.33M
        QMF_IM(X_hybrid[i][2]) = x[2];
439
1.33M
        QMF_IM(X_hybrid[i][0]) = x[0];
440
1.33M
    }
441
42.6k
}
ps_dec.c:channel_filter8
Line
Count
Source
373
21.3k
{
374
21.3k
    uint8_t i, n;
375
21.3k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
21.3k
    real_t x[4];
377
21.3k
    (void)hyb;  /* TODO: remove parameter? */
378
379
687k
    for (i = 0; i < frame_len; i++)
380
666k
    {
381
666k
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
666k
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
666k
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
666k
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
666k
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
666k
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
666k
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
666k
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
3.33M
        for (n = 0; n < 4; n++)
392
2.66M
        {
393
2.66M
            x[n] = input_re1[n] - input_im1[3-n];
394
2.66M
        }
395
666k
        DCT3_4_unscaled(x, x);
396
666k
        QMF_RE(X_hybrid[i][7]) = x[0];
397
666k
        QMF_RE(X_hybrid[i][5]) = x[2];
398
666k
        QMF_RE(X_hybrid[i][3]) = x[3];
399
666k
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
3.33M
        for (n = 0; n < 4; n++)
402
2.66M
        {
403
2.66M
            x[n] = input_re1[n] + input_im1[3-n];
404
2.66M
        }
405
666k
        DCT3_4_unscaled(x, x);
406
666k
        QMF_RE(X_hybrid[i][6]) = x[1];
407
666k
        QMF_RE(X_hybrid[i][4]) = x[3];
408
666k
        QMF_RE(X_hybrid[i][2]) = x[2];
409
666k
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
666k
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
666k
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
666k
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
666k
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
666k
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
666k
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
666k
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
666k
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
3.33M
        for (n = 0; n < 4; n++)
422
2.66M
        {
423
2.66M
            x[n] = input_im2[n] + input_re2[3-n];
424
2.66M
        }
425
666k
        DCT3_4_unscaled(x, x);
426
666k
        QMF_IM(X_hybrid[i][7]) = x[0];
427
666k
        QMF_IM(X_hybrid[i][5]) = x[2];
428
666k
        QMF_IM(X_hybrid[i][3]) = x[3];
429
666k
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
3.33M
        for (n = 0; n < 4; n++)
432
2.66M
        {
433
2.66M
            x[n] = input_im2[n] - input_re2[3-n];
434
2.66M
        }
435
666k
        DCT3_4_unscaled(x, x);
436
666k
        QMF_IM(X_hybrid[i][6]) = x[1];
437
666k
        QMF_IM(X_hybrid[i][4]) = x[3];
438
666k
        QMF_IM(X_hybrid[i][2]) = x[2];
439
666k
        QMF_IM(X_hybrid[i][0]) = x[0];
440
666k
    }
441
21.3k
}
ps_dec.c:channel_filter8
Line
Count
Source
373
21.3k
{
374
21.3k
    uint8_t i, n;
375
21.3k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
21.3k
    real_t x[4];
377
21.3k
    (void)hyb;  /* TODO: remove parameter? */
378
379
687k
    for (i = 0; i < frame_len; i++)
380
666k
    {
381
666k
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
666k
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
666k
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
666k
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
666k
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
666k
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
666k
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
666k
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
3.33M
        for (n = 0; n < 4; n++)
392
2.66M
        {
393
2.66M
            x[n] = input_re1[n] - input_im1[3-n];
394
2.66M
        }
395
666k
        DCT3_4_unscaled(x, x);
396
666k
        QMF_RE(X_hybrid[i][7]) = x[0];
397
666k
        QMF_RE(X_hybrid[i][5]) = x[2];
398
666k
        QMF_RE(X_hybrid[i][3]) = x[3];
399
666k
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
3.33M
        for (n = 0; n < 4; n++)
402
2.66M
        {
403
2.66M
            x[n] = input_re1[n] + input_im1[3-n];
404
2.66M
        }
405
666k
        DCT3_4_unscaled(x, x);
406
666k
        QMF_RE(X_hybrid[i][6]) = x[1];
407
666k
        QMF_RE(X_hybrid[i][4]) = x[3];
408
666k
        QMF_RE(X_hybrid[i][2]) = x[2];
409
666k
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
666k
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
666k
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
666k
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
666k
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
666k
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
666k
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
666k
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
666k
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
3.33M
        for (n = 0; n < 4; n++)
422
2.66M
        {
423
2.66M
            x[n] = input_im2[n] + input_re2[3-n];
424
2.66M
        }
425
666k
        DCT3_4_unscaled(x, x);
426
666k
        QMF_IM(X_hybrid[i][7]) = x[0];
427
666k
        QMF_IM(X_hybrid[i][5]) = x[2];
428
666k
        QMF_IM(X_hybrid[i][3]) = x[3];
429
666k
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
3.33M
        for (n = 0; n < 4; n++)
432
2.66M
        {
433
2.66M
            x[n] = input_im2[n] - input_re2[3-n];
434
2.66M
        }
435
666k
        DCT3_4_unscaled(x, x);
436
666k
        QMF_IM(X_hybrid[i][6]) = x[1];
437
666k
        QMF_IM(X_hybrid[i][4]) = x[3];
438
666k
        QMF_IM(X_hybrid[i][2]) = x[2];
439
666k
        QMF_IM(X_hybrid[i][0]) = x[0];
440
666k
    }
441
21.3k
}
442
443
static void INLINE DCT3_6_unscaled(real_t *y, real_t *x)
444
933k
{
445
933k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
933k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
933k
    f1 = x[0] + f0;
449
933k
    f2 = x[0] - f0;
450
933k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
933k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
933k
    f5 = f4 - x[4];
453
933k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
933k
    f7 = f6 - f3;
455
933k
    y[0] = f1 + f6 + f4;
456
933k
    y[1] = f2 + f3 - x[4];
457
933k
    y[2] = f7 + f2 - f5;
458
933k
    y[3] = f1 - f7 - f5;
459
933k
    y[4] = f1 - f3 - x[4];
460
933k
    y[5] = f2 - f6 + f4;
461
933k
}
ps_dec.c:DCT3_6_unscaled
Line
Count
Source
444
430k
{
445
430k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
430k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
430k
    f1 = x[0] + f0;
449
430k
    f2 = x[0] - f0;
450
430k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
430k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
430k
    f5 = f4 - x[4];
453
430k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
430k
    f7 = f6 - f3;
455
430k
    y[0] = f1 + f6 + f4;
456
430k
    y[1] = f2 + f3 - x[4];
457
430k
    y[2] = f7 + f2 - f5;
458
430k
    y[3] = f1 - f7 - f5;
459
430k
    y[4] = f1 - f3 - x[4];
460
430k
    y[5] = f2 - f6 + f4;
461
430k
}
ps_dec.c:DCT3_6_unscaled
Line
Count
Source
444
502k
{
445
502k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
502k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
502k
    f1 = x[0] + f0;
449
502k
    f2 = x[0] - f0;
450
502k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
502k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
502k
    f5 = f4 - x[4];
453
502k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
502k
    f7 = f6 - f3;
455
502k
    y[0] = f1 + f6 + f4;
456
502k
    y[1] = f2 + f3 - x[4];
457
502k
    y[2] = f7 + f2 - f5;
458
502k
    y[3] = f1 - f7 - f5;
459
502k
    y[4] = f1 - f3 - x[4];
460
502k
    y[5] = f2 - f6 + f4;
461
502k
}
462
463
/* complex filter, size 12 */
464
static void channel_filter12(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
465
                             qmf_t *buffer, qmf_t **X_hybrid)
466
15.1k
{
467
15.1k
    uint8_t i, n;
468
15.1k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
15.1k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
15.1k
    (void)hyb;  /* TODO: remove parameter? */
471
472
481k
    for (i = 0; i < frame_len; i++)
473
466k
    {
474
3.26M
        for (n = 0; n < 6; n++)
475
2.80M
        {
476
2.80M
            if (n == 0)
477
466k
            {
478
466k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
466k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
2.33M
            } else {
481
2.33M
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
2.33M
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
2.33M
            }
484
2.80M
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
2.80M
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
2.80M
        }
487
488
466k
        DCT3_6_unscaled(out_re1, input_re1);
489
466k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
466k
        DCT3_6_unscaled(out_im1, input_im1);
492
466k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
1.86M
        for (n = 0; n < 6; n += 2)
495
1.40M
        {
496
1.40M
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
1.40M
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
1.40M
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
1.40M
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
1.40M
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
1.40M
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
1.40M
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
1.40M
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
1.40M
        }
506
466k
    }
507
15.1k
}
ps_dec.c:channel_filter12
Line
Count
Source
466
7.56k
{
467
7.56k
    uint8_t i, n;
468
7.56k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
7.56k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
7.56k
    (void)hyb;  /* TODO: remove parameter? */
471
472
240k
    for (i = 0; i < frame_len; i++)
473
233k
    {
474
1.63M
        for (n = 0; n < 6; n++)
475
1.40M
        {
476
1.40M
            if (n == 0)
477
233k
            {
478
233k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
233k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
1.16M
            } else {
481
1.16M
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
1.16M
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
1.16M
            }
484
1.40M
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
1.40M
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
1.40M
        }
487
488
233k
        DCT3_6_unscaled(out_re1, input_re1);
489
233k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
233k
        DCT3_6_unscaled(out_im1, input_im1);
492
233k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
933k
        for (n = 0; n < 6; n += 2)
495
700k
        {
496
700k
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
700k
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
700k
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
700k
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
700k
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
700k
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
700k
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
700k
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
700k
        }
506
233k
    }
507
7.56k
}
ps_dec.c:channel_filter12
Line
Count
Source
466
7.56k
{
467
7.56k
    uint8_t i, n;
468
7.56k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
7.56k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
7.56k
    (void)hyb;  /* TODO: remove parameter? */
471
472
240k
    for (i = 0; i < frame_len; i++)
473
233k
    {
474
1.63M
        for (n = 0; n < 6; n++)
475
1.40M
        {
476
1.40M
            if (n == 0)
477
233k
            {
478
233k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
233k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
1.16M
            } else {
481
1.16M
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
1.16M
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
1.16M
            }
484
1.40M
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
1.40M
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
1.40M
        }
487
488
233k
        DCT3_6_unscaled(out_re1, input_re1);
489
233k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
233k
        DCT3_6_unscaled(out_im1, input_im1);
492
233k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
933k
        for (n = 0; n < 6; n += 2)
495
700k
        {
496
700k
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
700k
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
700k
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
700k
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
700k
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
700k
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
700k
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
700k
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
700k
        }
506
233k
    }
507
7.56k
}
508
509
/* Hybrid analysis: further split up QMF subbands
510
 * to improve frequency resolution
511
 */
512
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
513
                            uint8_t use34, uint8_t numTimeSlotsRate)
514
21.3k
{
515
21.3k
    uint8_t k, n, band;
516
21.3k
    uint8_t offset = 0;
517
21.3k
    uint8_t qmf_bands = (use34) ? 5 : 3;
518
21.3k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
519
520
100k
    for (band = 0; band < qmf_bands; band++)
521
79.1k
    {
522
        /* build working buffer */
523
79.1k
        memcpy(hyb->work, hyb->buffer[band], 12 * sizeof(qmf_t));
524
525
        /* add new samples */
526
2.54M
        for (n = 0; n < hyb->frame_len; n++)
527
2.46M
        {
528
2.46M
            QMF_RE(hyb->work[12 + n]) = QMF_RE(X[n + 6 /*delay*/][band]);
529
2.46M
            QMF_IM(hyb->work[12 + n]) = QMF_IM(X[n + 6 /*delay*/][band]);
530
2.46M
        }
531
532
        /* store samples */
533
79.1k
        memcpy(hyb->buffer[band], hyb->work + hyb->frame_len, 12 * sizeof(qmf_t));
534
535
536
79.1k
        switch(resolution[band])
537
79.1k
        {
538
27.5k
        case 2:
539
            /* Type B real filter, Q[p] = 2 */
540
27.5k
            channel_filter2(hyb, hyb->frame_len, p2_13_20, hyb->work, hyb->temp);
541
27.5k
            break;
542
22.6k
        case 4:
543
            /* Type A complex filter, Q[p] = 4 */
544
22.6k
            channel_filter4(hyb, hyb->frame_len, p4_13_34, hyb->work, hyb->temp);
545
22.6k
            break;
546
21.3k
        case 8:
547
            /* Type A complex filter, Q[p] = 8 */
548
21.3k
            channel_filter8(hyb, hyb->frame_len, (use34) ? p8_13_34 : p8_13_20,
549
21.3k
                hyb->work, hyb->temp);
550
21.3k
            break;
551
7.56k
        case 12:
552
            /* Type A complex filter, Q[p] = 12 */
553
7.56k
            channel_filter12(hyb, hyb->frame_len, p12_13_34, hyb->work, hyb->temp);
554
7.56k
            break;
555
79.1k
        }
556
557
2.54M
        for (n = 0; n < hyb->frame_len; n++)
558
2.46M
        {
559
15.1M
            for (k = 0; k < resolution[band]; k++)
560
12.6M
            {
561
12.6M
                QMF_RE(X_hybrid[n][offset + k]) = QMF_RE(hyb->temp[n][k]);
562
12.6M
                QMF_IM(X_hybrid[n][offset + k]) = QMF_IM(hyb->temp[n][k]);
563
12.6M
            }
564
2.46M
        }
565
79.1k
        offset += resolution[band];
566
79.1k
    }
567
568
    /* group hybrid channels */
569
21.3k
    if (!use34)
570
13.7k
    {
571
446k
        for (n = 0; n < numTimeSlotsRate; n++)
572
432k
        {
573
432k
            QMF_RE(X_hybrid[n][3]) += QMF_RE(X_hybrid[n][4]);
574
432k
            QMF_IM(X_hybrid[n][3]) += QMF_IM(X_hybrid[n][4]);
575
432k
            QMF_RE(X_hybrid[n][4]) = 0;
576
432k
            QMF_IM(X_hybrid[n][4]) = 0;
577
578
432k
            QMF_RE(X_hybrid[n][2]) += QMF_RE(X_hybrid[n][5]);
579
432k
            QMF_IM(X_hybrid[n][2]) += QMF_IM(X_hybrid[n][5]);
580
432k
            QMF_RE(X_hybrid[n][5]) = 0;
581
432k
            QMF_IM(X_hybrid[n][5]) = 0;
582
432k
        }
583
13.7k
    }
584
21.3k
}
585
586
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
587
                             uint8_t use34, uint8_t numTimeSlotsRate)
588
42.6k
{
589
42.6k
    uint8_t k, n, band;
590
42.6k
    uint8_t offset = 0;
591
42.6k
    uint8_t qmf_bands = (use34) ? 5 : 3;
592
42.6k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
593
42.6k
    (void)numTimeSlotsRate;  /* TODO: remove parameter? */
594
595
201k
    for(band = 0; band < qmf_bands; band++)
596
158k
    {
597
5.08M
        for (n = 0; n < hyb->frame_len; n++)
598
4.93M
        {
599
4.93M
            QMF_RE(X[n][band]) = 0;
600
4.93M
            QMF_IM(X[n][band]) = 0;
601
602
30.2M
            for (k = 0; k < resolution[band]; k++)
603
25.3M
            {
604
25.3M
                QMF_RE(X[n][band]) += QMF_RE(X_hybrid[n][offset + k]);
605
25.3M
                QMF_IM(X[n][band]) += QMF_IM(X_hybrid[n][offset + k]);
606
25.3M
            }
607
4.93M
        }
608
158k
        offset += resolution[band];
609
158k
    }
610
42.6k
}
611
612
/* limits the value i to the range [min,max] */
613
static int8_t delta_clip(int8_t i, int8_t min, int8_t max)
614
458k
{
615
458k
    if (i < min)
616
58.9k
        return min;
617
399k
    else if (i > max)
618
5.68k
        return max;
619
394k
    else
620
394k
        return i;
621
458k
}
622
623
//int iid = 0;
624
625
/* delta decode array */
626
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
627
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
628
                         int8_t min_index, int8_t max_index)
629
73.9k
{
630
73.9k
    int8_t i;
631
632
73.9k
    if (enable == 1)
633
36.6k
    {
634
36.6k
        if (dt_flag == 0)
635
22.1k
        {
636
            /* delta coded in frequency direction */
637
22.1k
            index[0] = 0 + index[0];
638
22.1k
            index[0] = delta_clip(index[0], min_index, max_index);
639
640
301k
            for (i = 1; i < nr_par; i++)
641
279k
            {
642
279k
                index[i] = index[i-1] + index[i];
643
279k
                index[i] = delta_clip(index[i], min_index, max_index);
644
279k
            }
645
22.1k
        } else {
646
            /* delta coded in time direction */
647
171k
            for (i = 0; i < nr_par; i++)
648
156k
            {
649
                //int8_t tmp2;
650
                //int8_t tmp = index[i];
651
652
                //printf("%d %d\n", index_prev[i*stride], index[i]);
653
                //printf("%d\n", index[i]);
654
655
156k
                index[i] = index_prev[i*stride] + index[i];
656
                //tmp2 = index[i];
657
156k
                index[i] = delta_clip(index[i], min_index, max_index);
658
659
                //if (iid)
660
                //{
661
                //    if (index[i] == 7)
662
                //    {
663
                //        printf("%d %d %d\n", index_prev[i*stride], tmp, tmp2);
664
                //    }
665
                //}
666
156k
            }
667
14.5k
        }
668
37.3k
    } else {
669
        /* set indices to zero */
670
67.9k
        for (i = 0; i < nr_par; i++)
671
30.6k
        {
672
30.6k
            index[i] = 0;
673
30.6k
        }
674
37.3k
    }
675
676
    /* coarse */
677
73.9k
    if (stride == 2)
678
50.1k
    {
679
324k
        for (i = (nr_par<<1)-1; i > 0; i--)
680
273k
        {
681
273k
            index[i] = index[i>>1];
682
273k
        }
683
50.1k
    }
684
73.9k
}
685
686
/* delta modulo decode array */
687
/* in: log2 value of the modulo value to allow using AND instead of MOD */
688
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
689
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
690
                                int8_t and_modulo)
691
73.9k
{
692
73.9k
    int8_t i;
693
694
73.9k
    if (enable == 1)
695
24.2k
    {
696
24.2k
        if (dt_flag == 0)
697
15.0k
        {
698
            /* delta coded in frequency direction */
699
15.0k
            index[0] = 0 + index[0];
700
15.0k
            index[0] &= and_modulo;
701
702
59.3k
            for (i = 1; i < nr_par; i++)
703
44.3k
            {
704
44.3k
                index[i] = index[i-1] + index[i];
705
44.3k
                index[i] &= and_modulo;
706
44.3k
            }
707
15.0k
        } else {
708
            /* delta coded in time direction */
709
29.2k
            for (i = 0; i < nr_par; i++)
710
19.9k
            {
711
19.9k
                index[i] = index_prev[i*stride] + index[i];
712
19.9k
                index[i] &= and_modulo;
713
19.9k
            }
714
9.26k
        }
715
49.7k
    } else {
716
        /* set indices to zero */
717
182k
        for (i = 0; i < nr_par; i++)
718
132k
        {
719
132k
            index[i] = 0;
720
132k
        }
721
49.7k
    }
722
723
    /* coarse */
724
73.9k
    if (stride == 2)
725
0
    {
726
0
        index[0] = 0;
727
0
        for (i = (nr_par<<1)-1; i > 0; i--)
728
0
        {
729
0
            index[i] = index[i>>1];
730
0
        }
731
0
    }
732
73.9k
}
733
734
#ifdef PS_LOW_POWER
735
static void map34indexto20(int8_t *index, uint8_t bins)
736
{
737
    index[0] = (2*index[0]+index[1])/3;
738
    index[1] = (index[1]+2*index[2])/3;
739
    index[2] = (2*index[3]+index[4])/3;
740
    index[3] = (index[4]+2*index[5])/3;
741
    index[4] = (index[6]+index[7])/2;
742
    index[5] = (index[8]+index[9])/2;
743
    index[6] = index[10];
744
    index[7] = index[11];
745
    index[8] = (index[12]+index[13])/2;
746
    index[9] = (index[14]+index[15])/2;
747
    index[10] = index[16];
748
749
    if (bins == 34)
750
    {
751
        index[11] = index[17];
752
        index[12] = index[18];
753
        index[13] = index[19];
754
        index[14] = (index[20]+index[21])/2;
755
        index[15] = (index[22]+index[23])/2;
756
        index[16] = (index[24]+index[25])/2;
757
        index[17] = (index[26]+index[27])/2;
758
        index[18] = (index[28]+index[29]+index[30]+index[31])/4;
759
        index[19] = (index[32]+index[33])/2;
760
    }
761
}
762
#endif
763
764
static void map20indexto34(int8_t *index, uint8_t bins)
765
25.8k
{
766
25.8k
    index[0] = index[0];
767
25.8k
    index[1] = (index[0] + index[1])/2;
768
25.8k
    index[2] = index[1];
769
25.8k
    index[3] = index[2];
770
25.8k
    index[4] = (index[2] + index[3])/2;
771
25.8k
    index[5] = index[3];
772
25.8k
    index[6] = index[4];
773
25.8k
    index[7] = index[4];
774
25.8k
    index[8] = index[5];
775
25.8k
    index[9] = index[5];
776
25.8k
    index[10] = index[6];
777
25.8k
    index[11] = index[7];
778
25.8k
    index[12] = index[8];
779
25.8k
    index[13] = index[8];
780
25.8k
    index[14] = index[9];
781
25.8k
    index[15] = index[9];
782
25.8k
    index[16] = index[10];
783
784
25.8k
    if (bins == 34)
785
12.2k
    {
786
12.2k
        index[17] = index[11];
787
12.2k
        index[18] = index[12];
788
12.2k
        index[19] = index[13];
789
12.2k
        index[20] = index[14];
790
12.2k
        index[21] = index[14];
791
12.2k
        index[22] = index[15];
792
12.2k
        index[23] = index[15];
793
12.2k
        index[24] = index[16];
794
12.2k
        index[25] = index[16];
795
12.2k
        index[26] = index[17];
796
12.2k
        index[27] = index[17];
797
12.2k
        index[28] = index[18];
798
12.2k
        index[29] = index[18];
799
12.2k
        index[30] = index[18];
800
12.2k
        index[31] = index[18];
801
12.2k
        index[32] = index[19];
802
12.2k
        index[33] = index[19];
803
12.2k
    }
804
25.8k
}
805
806
/* parse the bitstream data decoded in ps_data() */
807
static void ps_data_decode(ps_info *ps)
808
21.3k
{
809
21.3k
    uint8_t env, bin;
810
811
    /* ps data not available, use data from previous frame */
812
21.3k
    if (ps->ps_data_available == 0)
813
5.48k
    {
814
5.48k
        ps->num_env = 0;
815
5.48k
    }
816
817
58.3k
    for (env = 0; env < ps->num_env; env++)
818
36.9k
    {
819
36.9k
        int8_t *iid_index_prev;
820
36.9k
        int8_t *icc_index_prev;
821
36.9k
        int8_t *ipd_index_prev;
822
36.9k
        int8_t *opd_index_prev;
823
824
36.9k
        int8_t num_iid_steps = (ps->iid_mode < 3) ? 7 : 15 /*fine quant*/;
825
826
36.9k
        if (env == 0)
827
11.1k
        {
828
            /* take last envelope from previous frame */
829
11.1k
            iid_index_prev = ps->iid_index_prev;
830
11.1k
            icc_index_prev = ps->icc_index_prev;
831
11.1k
            ipd_index_prev = ps->ipd_index_prev;
832
11.1k
            opd_index_prev = ps->opd_index_prev;
833
25.7k
        } else {
834
            /* take index values from previous envelope */
835
25.7k
            iid_index_prev = ps->iid_index[env - 1];
836
25.7k
            icc_index_prev = ps->icc_index[env - 1];
837
25.7k
            ipd_index_prev = ps->ipd_index[env - 1];
838
25.7k
            opd_index_prev = ps->opd_index[env - 1];
839
25.7k
        }
840
841
//        iid = 1;
842
        /* delta decode iid parameters */
843
36.9k
        delta_decode(ps->enable_iid, ps->iid_index[env], iid_index_prev,
844
36.9k
            ps->iid_dt[env], ps->nr_iid_par,
845
36.9k
            (ps->iid_mode == 0 || ps->iid_mode == 3) ? 2 : 1,
846
36.9k
            -num_iid_steps, num_iid_steps);
847
//        iid = 0;
848
849
        /* delta decode icc parameters */
850
36.9k
        delta_decode(ps->enable_icc, ps->icc_index[env], icc_index_prev,
851
36.9k
            ps->icc_dt[env], ps->nr_icc_par,
852
36.9k
            (ps->icc_mode == 0 || ps->icc_mode == 3) ? 2 : 1,
853
36.9k
            0, 7);
854
855
        /* delta modulo decode ipd parameters */
856
36.9k
        delta_modulo_decode(ps->enable_ipdopd, ps->ipd_index[env], ipd_index_prev,
857
36.9k
            ps->ipd_dt[env], ps->nr_ipdopd_par, 1, 7);
858
859
        /* delta modulo decode opd parameters */
860
36.9k
        delta_modulo_decode(ps->enable_ipdopd, ps->opd_index[env], opd_index_prev,
861
36.9k
            ps->opd_dt[env], ps->nr_ipdopd_par, 1, 7);
862
36.9k
    }
863
864
    /* handle error case */
865
21.3k
    if (ps->num_env == 0)
866
10.1k
    {
867
        /* force to 1 */
868
10.1k
        ps->num_env = 1;
869
870
10.1k
        if (ps->enable_iid)
871
6.95k
        {
872
243k
            for (bin = 0; bin < 34; bin++)
873
236k
                ps->iid_index[0][bin] = ps->iid_index_prev[bin];
874
6.95k
        } else {
875
111k
            for (bin = 0; bin < 34; bin++)
876
108k
                ps->iid_index[0][bin] = 0;
877
3.19k
        }
878
879
10.1k
        if (ps->enable_icc)
880
4.78k
        {
881
167k
            for (bin = 0; bin < 34; bin++)
882
162k
                ps->icc_index[0][bin] = ps->icc_index_prev[bin];
883
5.36k
        } else {
884
187k
            for (bin = 0; bin < 34; bin++)
885
182k
                ps->icc_index[0][bin] = 0;
886
5.36k
        }
887
888
10.1k
        if (ps->enable_ipdopd)
889
1.32k
        {
890
23.8k
            for (bin = 0; bin < 17; bin++)
891
22.5k
            {
892
22.5k
                ps->ipd_index[0][bin] = ps->ipd_index_prev[bin];
893
22.5k
                ps->opd_index[0][bin] = ps->opd_index_prev[bin];
894
22.5k
            }
895
8.82k
        } else {
896
158k
            for (bin = 0; bin < 17; bin++)
897
150k
            {
898
150k
                ps->ipd_index[0][bin] = 0;
899
150k
                ps->opd_index[0][bin] = 0;
900
150k
            }
901
8.82k
        }
902
10.1k
    }
903
904
    /* update previous indices */
905
747k
    for (bin = 0; bin < 34; bin++)
906
725k
        ps->iid_index_prev[bin] = ps->iid_index[ps->num_env-1][bin];
907
747k
    for (bin = 0; bin < 34; bin++)
908
725k
        ps->icc_index_prev[bin] = ps->icc_index[ps->num_env-1][bin];
909
384k
    for (bin = 0; bin < 17; bin++)
910
362k
    {
911
362k
        ps->ipd_index_prev[bin] = ps->ipd_index[ps->num_env-1][bin];
912
362k
        ps->opd_index_prev[bin] = ps->opd_index[ps->num_env-1][bin];
913
362k
    }
914
915
21.3k
    ps->ps_data_available = 0;
916
917
21.3k
    if (ps->frame_class == 0)
918
12.8k
    {
919
12.8k
        ps->border_position[0] = 0;
920
23.3k
        for (env = 1; env < ps->num_env; env++)
921
10.4k
        {
922
10.4k
            ps->border_position[env] = (env * ps->numTimeSlotsRate) / ps->num_env;
923
10.4k
        }
924
12.8k
        ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
925
12.8k
    } else {
926
8.45k
        ps->border_position[0] = 0;
927
928
8.45k
        if (ps->border_position[ps->num_env] < ps->numTimeSlotsRate)
929
6.27k
        {
930
219k
            for (bin = 0; bin < 34; bin++)
931
213k
            {
932
213k
                ps->iid_index[ps->num_env][bin] = ps->iid_index[ps->num_env-1][bin];
933
213k
                ps->icc_index[ps->num_env][bin] = ps->icc_index[ps->num_env-1][bin];
934
213k
            }
935
112k
            for (bin = 0; bin < 17; bin++)
936
106k
            {
937
106k
                ps->ipd_index[ps->num_env][bin] = ps->ipd_index[ps->num_env-1][bin];
938
106k
                ps->opd_index[ps->num_env][bin] = ps->opd_index[ps->num_env-1][bin];
939
106k
            }
940
6.27k
            ps->num_env++;
941
6.27k
            ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
942
6.27k
        }
943
944
30.0k
        for (env = 1; env < ps->num_env; env++)
945
21.5k
        {
946
21.5k
            int8_t thr = ps->numTimeSlotsRate - (ps->num_env - env);
947
948
21.5k
            if (ps->border_position[env] > thr)
949
4.99k
            {
950
4.99k
                ps->border_position[env] = thr;
951
16.5k
            } else {
952
16.5k
                thr = ps->border_position[env-1]+1;
953
16.5k
                if (ps->border_position[env] < thr)
954
8.78k
                {
955
8.78k
                    ps->border_position[env] = thr;
956
8.78k
                }
957
16.5k
            }
958
21.5k
        }
959
8.45k
    }
960
961
    /* make sure that the indices of all parameters can be mapped
962
     * to the same hybrid synthesis filterbank
963
     */
964
#ifdef PS_LOW_POWER
965
    for (env = 0; env < ps->num_env; env++)
966
    {
967
        if (ps->iid_mode == 2 || ps->iid_mode == 5)
968
            map34indexto20(ps->iid_index[env], 34);
969
        if (ps->icc_mode == 2 || ps->icc_mode == 5)
970
            map34indexto20(ps->icc_index[env], 34);
971
972
        /* disable ipd/opd */
973
        for (bin = 0; bin < 17; bin++)
974
        {
975
            ps->aaIpdIndex[env][bin] = 0;
976
            ps->aaOpdIndex[env][bin] = 0;
977
        }
978
    }
979
#else
980
21.3k
    if (ps->use34hybrid_bands)
981
7.56k
    {
982
20.8k
        for (env = 0; env < ps->num_env; env++)
983
13.3k
        {
984
13.3k
            if (ps->iid_mode != 2 && ps->iid_mode != 5)
985
6.78k
                map20indexto34(ps->iid_index[env], 34);
986
13.3k
            if (ps->icc_mode != 2 && ps->icc_mode != 5)
987
5.49k
                map20indexto34(ps->icc_index[env], 34);
988
13.3k
            if (ps->ipd_mode != 2 && ps->ipd_mode != 5)
989
6.78k
            {
990
6.78k
                map20indexto34(ps->ipd_index[env], 17);
991
6.78k
                map20indexto34(ps->opd_index[env], 17);
992
6.78k
            }
993
13.3k
        }
994
7.56k
    }
995
21.3k
#endif
996
997
#if 0
998
    for (env = 0; env < ps->num_env; env++)
999
    {
1000
        printf("iid[env:%d]:", env);
1001
        for (bin = 0; bin < 34; bin++)
1002
        {
1003
            printf(" %d", ps->iid_index[env][bin]);
1004
        }
1005
        printf("\n");
1006
    }
1007
    for (env = 0; env < ps->num_env; env++)
1008
    {
1009
        printf("icc[env:%d]:", env);
1010
        for (bin = 0; bin < 34; bin++)
1011
        {
1012
            printf(" %d", ps->icc_index[env][bin]);
1013
        }
1014
        printf("\n");
1015
    }
1016
    for (env = 0; env < ps->num_env; env++)
1017
    {
1018
        printf("ipd[env:%d]:", env);
1019
        for (bin = 0; bin < 17; bin++)
1020
        {
1021
            printf(" %d", ps->ipd_index[env][bin]);
1022
        }
1023
        printf("\n");
1024
    }
1025
    for (env = 0; env < ps->num_env; env++)
1026
    {
1027
        printf("opd[env:%d]:", env);
1028
        for (bin = 0; bin < 17; bin++)
1029
        {
1030
            printf(" %d", ps->opd_index[env][bin]);
1031
        }
1032
        printf("\n");
1033
    }
1034
    printf("\n");
1035
#endif
1036
21.3k
}
1037
1038
/* decorrelate the mono signal using an allpass filter */
1039
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1040
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1041
21.3k
{
1042
21.3k
    uint8_t gr, n, bk;
1043
21.3k
    uint8_t temp_delay = 0;
1044
21.3k
    uint8_t sb, maxsb;
1045
21.3k
    const complex_t *Phi_Fract_SubQmf;
1046
21.3k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
21.3k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
21.3k
    real_t P[32][34];
1049
21.3k
    real_t G_TransientRatio[32][34] = {{0}};
1050
21.3k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
21.3k
    if (ps->use34hybrid_bands)
1055
7.56k
    {
1056
7.56k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
13.7k
    } else{
1058
13.7k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
13.7k
    }
1060
1061
    /* clear the energy values */
1062
704k
    for (n = 0; n < 32; n++)
1063
683k
    {
1064
23.9M
        for (bk = 0; bk < 34; bk++)
1065
23.2M
        {
1066
23.2M
            P[n][bk] = 0;
1067
23.2M
        }
1068
683k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
702k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
681k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
681k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
681k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
2.34M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
1.66M
        {
1081
53.7M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
52.1M
            {
1083
#ifdef FIXED_POINT
1084
                uint32_t in_re, in_im;
1085
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
52.1M
                if (gr < ps->num_hybrid_groups)
1089
11.8M
                {
1090
11.8M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
11.8M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
40.2M
                } else {
1093
40.2M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
40.2M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
40.2M
                }
1096
1097
                /* accumulate energy */
1098
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
24.8M
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
24.8M
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
27.2M
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
#endif
1108
52.1M
            }
1109
1.66M
        }
1110
681k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
554k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
532k
    {
1129
17.1M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
16.6M
        {
1131
16.6M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
16.6M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
16.6M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
143k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
16.6M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
16.6M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
16.6M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
16.6M
            nrg = ps->P_prev[bk];
1144
16.6M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
16.6M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
16.6M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
16.5M
            {
1150
16.5M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
16.5M
            } else {
1152
126k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
126k
            }
1154
16.6M
        }
1155
532k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
702k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
681k
    {
1174
681k
        if (gr < ps->num_hybrid_groups)
1175
379k
            maxsb = ps->group_border[gr] + 1;
1176
301k
        else
1177
301k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
2.34M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
1.66M
        {
1182
1.66M
            real_t g_DecaySlope;
1183
1.66M
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
1.66M
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
401k
            {
1188
401k
                g_DecaySlope = FRAC_CONST(1.0);
1189
1.26M
            } else {
1190
1.26M
                int8_t decay = ps->decay_cutoff - sb;
1191
1.26M
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
860k
                {
1193
860k
                    g_DecaySlope = 0;
1194
860k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
405k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
405k
                }
1198
1.26M
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
6.66M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
5.00M
            {
1203
5.00M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
5.00M
            }
1205
1206
1207
            /* set delay indices */
1208
1.66M
            temp_delay = ps->saved_delay;
1209
6.66M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
5.00M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
53.7M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
52.1M
            {
1214
52.1M
                complex_t tmp, tmp0, R0;
1215
52.1M
                uint8_t m;
1216
1217
52.1M
                if (gr < ps->num_hybrid_groups)
1218
11.8M
                {
1219
                    /* hybrid filterbank input */
1220
11.8M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
11.8M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
40.2M
                } else {
1223
                    /* QMF filterbank input */
1224
40.2M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
40.2M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
40.2M
                }
1227
1228
52.1M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
27.4M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
27.4M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
27.4M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
27.4M
                    RE(R0) = RE(tmp);
1236
27.4M
                    IM(R0) = IM(tmp);
1237
27.4M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
27.4M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
27.4M
                } else {
1240
                    /* allpass filter */
1241
24.7M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
24.7M
                    if (gr < ps->num_hybrid_groups)
1245
11.8M
                    {
1246
                        /* select data from the hybrid subbands */
1247
11.8M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
11.8M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
11.8M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
11.8M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
11.8M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
11.8M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
12.8M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
12.8M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
12.8M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
12.8M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
12.8M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
12.8M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
12.8M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
12.8M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
24.7M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
24.7M
                    RE(R0) = RE(tmp);
1271
24.7M
                    IM(R0) = IM(tmp);
1272
98.8M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
74.1M
                    {
1274
74.1M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
74.1M
                        if (gr < ps->num_hybrid_groups)
1278
35.4M
                        {
1279
                            /* select data from the hybrid subbands */
1280
35.4M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
35.4M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
35.4M
                            if (ps->use34hybrid_bands)
1284
22.4M
                            {
1285
22.4M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
22.4M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
22.4M
                            } else {
1288
13.0M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
13.0M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
13.0M
                            }
1291
38.6M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
38.6M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
38.6M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
38.6M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
38.6M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
38.6M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
74.1M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
74.1M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
74.1M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
74.1M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
74.1M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
74.1M
                        if (gr < ps->num_hybrid_groups)
1314
35.4M
                        {
1315
35.4M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
35.4M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
38.6M
                        } else {
1318
38.6M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
38.6M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
38.6M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
74.1M
                        RE(R0) = RE(tmp);
1324
74.1M
                        IM(R0) = IM(tmp);
1325
74.1M
                    }
1326
24.7M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
52.1M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
52.1M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
52.1M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
52.1M
                if (gr < ps->num_hybrid_groups)
1336
11.8M
                {
1337
                    /* hybrid */
1338
11.8M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
11.8M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
40.2M
                } else {
1341
                    /* QMF */
1342
40.2M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
40.2M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
40.2M
                }
1345
1346
                /* Update delay buffer index */
1347
52.1M
                if (++temp_delay >= 2)
1348
26.0M
                {
1349
26.0M
                    temp_delay = 0;
1350
26.0M
                }
1351
1352
                /* update delay indices */
1353
52.1M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
27.4M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
27.4M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
19.8M
                    {
1358
19.8M
                        ps->delay_buf_index_delay[sb] = 0;
1359
19.8M
                    }
1360
27.4M
                }
1361
1362
208M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
156M
                {
1364
156M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
39.9M
                    {
1366
39.9M
                        temp_delay_ser[m] = 0;
1367
39.9M
                    }
1368
156M
                }
1369
52.1M
            }
1370
1.66M
        }
1371
681k
    }
1372
1373
    /* update delay indices */
1374
21.3k
    ps->saved_delay = temp_delay;
1375
85.3k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
64.0k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
21.3k
}
ps_dec.c:ps_decorrelate
Line
Count
Source
1041
10.2k
{
1042
10.2k
    uint8_t gr, n, bk;
1043
10.2k
    uint8_t temp_delay = 0;
1044
10.2k
    uint8_t sb, maxsb;
1045
10.2k
    const complex_t *Phi_Fract_SubQmf;
1046
10.2k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
10.2k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
10.2k
    real_t P[32][34];
1049
10.2k
    real_t G_TransientRatio[32][34] = {{0}};
1050
10.2k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
10.2k
    if (ps->use34hybrid_bands)
1055
3.49k
    {
1056
3.49k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
6.74k
    } else{
1058
6.74k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
6.74k
    }
1060
1061
    /* clear the energy values */
1062
337k
    for (n = 0; n < 32; n++)
1063
327k
    {
1064
11.4M
        for (bk = 0; bk < 34; bk++)
1065
11.1M
        {
1066
11.1M
            P[n][bk] = 0;
1067
11.1M
        }
1068
327k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
333k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
322k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
322k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
322k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
1.11M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
796k
        {
1081
25.6M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
24.8M
            {
1083
24.8M
#ifdef FIXED_POINT
1084
24.8M
                uint32_t in_re, in_im;
1085
24.8M
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
24.8M
                if (gr < ps->num_hybrid_groups)
1089
5.57M
                {
1090
5.57M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
5.57M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
19.3M
                } else {
1093
19.3M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
19.3M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
19.3M
                }
1096
1097
                /* accumulate energy */
1098
24.8M
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
24.8M
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
24.8M
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
24.8M
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
#endif
1108
24.8M
            }
1109
796k
        }
1110
322k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
263k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
253k
    {
1129
8.16M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
7.90M
        {
1131
7.90M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
7.90M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
7.90M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
21.5k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
7.90M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
7.90M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
7.90M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
7.90M
            nrg = ps->P_prev[bk];
1144
7.90M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
7.90M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
7.90M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
7.89M
            {
1150
7.89M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
7.89M
            } else {
1152
10.6k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
10.6k
            }
1154
7.90M
        }
1155
253k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
333k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
322k
    {
1174
322k
        if (gr < ps->num_hybrid_groups)
1175
179k
            maxsb = ps->group_border[gr] + 1;
1176
143k
        else
1177
143k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
1.11M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
796k
        {
1182
796k
            real_t g_DecaySlope;
1183
796k
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
796k
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
189k
            {
1188
189k
                g_DecaySlope = FRAC_CONST(1.0);
1189
607k
            } else {
1190
607k
                int8_t decay = ps->decay_cutoff - sb;
1191
607k
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
412k
                {
1193
412k
                    g_DecaySlope = 0;
1194
412k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
194k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
194k
                }
1198
607k
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
3.18M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
2.38M
            {
1203
2.38M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
2.38M
            }
1205
1206
1207
            /* set delay indices */
1208
796k
            temp_delay = ps->saved_delay;
1209
3.18M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
2.38M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
25.6M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
24.8M
            {
1214
24.8M
                complex_t tmp, tmp0, R0;
1215
24.8M
                uint8_t m;
1216
1217
24.8M
                if (gr < ps->num_hybrid_groups)
1218
5.57M
                {
1219
                    /* hybrid filterbank input */
1220
5.57M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
5.57M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
19.3M
                } else {
1223
                    /* QMF filterbank input */
1224
19.3M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
19.3M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
19.3M
                }
1227
1228
24.8M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
13.1M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
13.1M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
13.1M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
13.1M
                    RE(R0) = RE(tmp);
1236
13.1M
                    IM(R0) = IM(tmp);
1237
13.1M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
13.1M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
13.1M
                } else {
1240
                    /* allpass filter */
1241
11.7M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
11.7M
                    if (gr < ps->num_hybrid_groups)
1245
5.57M
                    {
1246
                        /* select data from the hybrid subbands */
1247
5.57M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
5.57M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
5.57M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
5.57M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
5.57M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
5.57M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
6.18M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
6.18M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
6.18M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
6.18M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
6.18M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
6.18M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
6.18M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
6.18M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
11.7M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
11.7M
                    RE(R0) = RE(tmp);
1271
11.7M
                    IM(R0) = IM(tmp);
1272
47.0M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
35.2M
                    {
1274
35.2M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
35.2M
                        if (gr < ps->num_hybrid_groups)
1278
16.7M
                        {
1279
                            /* select data from the hybrid subbands */
1280
16.7M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
16.7M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
16.7M
                            if (ps->use34hybrid_bands)
1284
10.3M
                            {
1285
10.3M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
10.3M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
10.3M
                            } else {
1288
6.36M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
6.36M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
6.36M
                            }
1291
18.5M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
18.5M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
18.5M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
18.5M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
18.5M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
18.5M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
35.2M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
35.2M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
35.2M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
35.2M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
35.2M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
35.2M
                        if (gr < ps->num_hybrid_groups)
1314
16.7M
                        {
1315
16.7M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
16.7M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
18.5M
                        } else {
1318
18.5M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
18.5M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
18.5M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
35.2M
                        RE(R0) = RE(tmp);
1324
35.2M
                        IM(R0) = IM(tmp);
1325
35.2M
                    }
1326
11.7M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
24.8M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
24.8M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
24.8M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
24.8M
                if (gr < ps->num_hybrid_groups)
1336
5.57M
                {
1337
                    /* hybrid */
1338
5.57M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
5.57M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
19.3M
                } else {
1341
                    /* QMF */
1342
19.3M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
19.3M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
19.3M
                }
1345
1346
                /* Update delay buffer index */
1347
24.8M
                if (++temp_delay >= 2)
1348
12.4M
                {
1349
12.4M
                    temp_delay = 0;
1350
12.4M
                }
1351
1352
                /* update delay indices */
1353
24.8M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
13.1M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
13.1M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
9.52M
                    {
1358
9.52M
                        ps->delay_buf_index_delay[sb] = 0;
1359
9.52M
                    }
1360
13.1M
                }
1361
1362
99.5M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
74.6M
                {
1364
74.6M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
19.0M
                    {
1366
19.0M
                        temp_delay_ser[m] = 0;
1367
19.0M
                    }
1368
74.6M
                }
1369
24.8M
            }
1370
796k
        }
1371
322k
    }
1372
1373
    /* update delay indices */
1374
10.2k
    ps->saved_delay = temp_delay;
1375
40.9k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
30.7k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
10.2k
}
ps_dec.c:ps_decorrelate
Line
Count
Source
1041
11.1k
{
1042
11.1k
    uint8_t gr, n, bk;
1043
11.1k
    uint8_t temp_delay = 0;
1044
11.1k
    uint8_t sb, maxsb;
1045
11.1k
    const complex_t *Phi_Fract_SubQmf;
1046
11.1k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
11.1k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
11.1k
    real_t P[32][34];
1049
11.1k
    real_t G_TransientRatio[32][34] = {{0}};
1050
11.1k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
11.1k
    if (ps->use34hybrid_bands)
1055
4.07k
    {
1056
4.07k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
7.03k
    } else{
1058
7.03k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
7.03k
    }
1060
1061
    /* clear the energy values */
1062
366k
    for (n = 0; n < 32; n++)
1063
355k
    {
1064
12.4M
        for (bk = 0; bk < 34; bk++)
1065
12.0M
        {
1066
12.0M
            P[n][bk] = 0;
1067
12.0M
        }
1068
355k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
369k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
358k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
358k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
358k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
1.22M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
870k
        {
1081
28.1M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
27.2M
            {
1083
#ifdef FIXED_POINT
1084
                uint32_t in_re, in_im;
1085
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
27.2M
                if (gr < ps->num_hybrid_groups)
1089
6.25M
                {
1090
6.25M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
6.25M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
20.9M
                } else {
1093
20.9M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
20.9M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
20.9M
                }
1096
1097
                /* accumulate energy */
1098
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
27.2M
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
27.2M
#endif
1108
27.2M
            }
1109
870k
        }
1110
358k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
290k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
279k
    {
1129
9.00M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
8.72M
        {
1131
8.72M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
8.72M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
8.72M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
122k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
8.72M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
8.72M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
8.72M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
8.72M
            nrg = ps->P_prev[bk];
1144
8.72M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
8.72M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
8.72M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
8.61M
            {
1150
8.61M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
8.61M
            } else {
1152
116k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
116k
            }
1154
8.72M
        }
1155
279k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
369k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
358k
    {
1174
358k
        if (gr < ps->num_hybrid_groups)
1175
200k
            maxsb = ps->group_border[gr] + 1;
1176
157k
        else
1177
157k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
1.22M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
870k
        {
1182
870k
            real_t g_DecaySlope;
1183
870k
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
870k
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
211k
            {
1188
211k
                g_DecaySlope = FRAC_CONST(1.0);
1189
658k
            } else {
1190
658k
                int8_t decay = ps->decay_cutoff - sb;
1191
658k
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
447k
                {
1193
447k
                    g_DecaySlope = 0;
1194
447k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
211k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
211k
                }
1198
658k
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
3.48M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
2.61M
            {
1203
2.61M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
2.61M
            }
1205
1206
1207
            /* set delay indices */
1208
870k
            temp_delay = ps->saved_delay;
1209
3.48M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
2.61M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
28.1M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
27.2M
            {
1214
27.2M
                complex_t tmp, tmp0, R0;
1215
27.2M
                uint8_t m;
1216
1217
27.2M
                if (gr < ps->num_hybrid_groups)
1218
6.25M
                {
1219
                    /* hybrid filterbank input */
1220
6.25M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
6.25M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
20.9M
                } else {
1223
                    /* QMF filterbank input */
1224
20.9M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
20.9M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
20.9M
                }
1227
1228
27.2M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
14.2M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
14.2M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
14.2M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
14.2M
                    RE(R0) = RE(tmp);
1236
14.2M
                    IM(R0) = IM(tmp);
1237
14.2M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
14.2M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
14.2M
                } else {
1240
                    /* allpass filter */
1241
12.9M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
12.9M
                    if (gr < ps->num_hybrid_groups)
1245
6.25M
                    {
1246
                        /* select data from the hybrid subbands */
1247
6.25M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
6.25M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
6.25M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
6.25M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
6.25M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
6.25M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
6.71M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
6.71M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
6.71M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
6.71M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
6.71M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
6.71M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
6.71M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
6.71M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
12.9M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
12.9M
                    RE(R0) = RE(tmp);
1271
12.9M
                    IM(R0) = IM(tmp);
1272
51.8M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
38.8M
                    {
1274
38.8M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
38.8M
                        if (gr < ps->num_hybrid_groups)
1278
18.7M
                        {
1279
                            /* select data from the hybrid subbands */
1280
18.7M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
18.7M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
18.7M
                            if (ps->use34hybrid_bands)
1284
12.0M
                            {
1285
12.0M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
12.0M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
12.0M
                            } else {
1288
6.67M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
6.67M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
6.67M
                            }
1291
20.1M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
20.1M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
20.1M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
20.1M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
20.1M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
20.1M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
38.8M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
38.8M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
38.8M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
38.8M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
38.8M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
38.8M
                        if (gr < ps->num_hybrid_groups)
1314
18.7M
                        {
1315
18.7M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
18.7M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
20.1M
                        } else {
1318
20.1M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
20.1M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
20.1M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
38.8M
                        RE(R0) = RE(tmp);
1324
38.8M
                        IM(R0) = IM(tmp);
1325
38.8M
                    }
1326
12.9M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
27.2M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
27.2M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
27.2M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
27.2M
                if (gr < ps->num_hybrid_groups)
1336
6.25M
                {
1337
                    /* hybrid */
1338
6.25M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
6.25M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
20.9M
                } else {
1341
                    /* QMF */
1342
20.9M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
20.9M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
20.9M
                }
1345
1346
                /* Update delay buffer index */
1347
27.2M
                if (++temp_delay >= 2)
1348
13.6M
                {
1349
13.6M
                    temp_delay = 0;
1350
13.6M
                }
1351
1352
                /* update delay indices */
1353
27.2M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
14.2M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
14.2M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
10.3M
                    {
1358
10.3M
                        ps->delay_buf_index_delay[sb] = 0;
1359
10.3M
                    }
1360
14.2M
                }
1361
1362
108M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
81.7M
                {
1364
81.7M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
20.9M
                    {
1366
20.9M
                        temp_delay_ser[m] = 0;
1367
20.9M
                    }
1368
81.7M
                }
1369
27.2M
            }
1370
870k
        }
1371
358k
    }
1372
1373
    /* update delay indices */
1374
11.1k
    ps->saved_delay = temp_delay;
1375
44.4k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
33.3k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
11.1k
}
1378
1379
#if 0
1380
#ifdef FIXED_POINT
1381
#define step(shift) \
1382
    if ((0x40000000l >> shift) + root <= value)       \
1383
    {                                                 \
1384
        value -= (0x40000000l >> shift) + root;       \
1385
        root = (root >> 1) | (0x40000000l >> shift);  \
1386
    } else {                                          \
1387
        root = root >> 1;                             \
1388
    }
1389
1390
/* fixed point square root approximation */
1391
static real_t ps_sqrt(real_t value)
1392
{
1393
    real_t root = 0;
1394
1395
    step( 0); step( 2); step( 4); step( 6);
1396
    step( 8); step(10); step(12); step(14);
1397
    step(16); step(18); step(20); step(22);
1398
    step(24); step(26); step(28); step(30);
1399
1400
    if (root < value)
1401
        ++root;
1402
1403
    root <<= (REAL_BITS/2);
1404
1405
    return root;
1406
}
1407
#else
1408
#define ps_sqrt(A) sqrt(A)
1409
#endif
1410
#endif
1411
1412
static const real_t ipdopd_cos_tab[] = {
1413
    FRAC_CONST(1.000000000000000),
1414
    FRAC_CONST(0.707106781186548),
1415
    FRAC_CONST(0.000000000000000),
1416
    FRAC_CONST(-0.707106781186547),
1417
    FRAC_CONST(-1.000000000000000),
1418
    FRAC_CONST(-0.707106781186548),
1419
    FRAC_CONST(-0.000000000000000),
1420
    FRAC_CONST(0.707106781186547),
1421
    FRAC_CONST(1.000000000000000)
1422
};
1423
1424
static const real_t ipdopd_sin_tab[] = {
1425
    FRAC_CONST(0.000000000000000),
1426
    FRAC_CONST(0.707106781186547),
1427
    FRAC_CONST(1.000000000000000),
1428
    FRAC_CONST(0.707106781186548),
1429
    FRAC_CONST(0.000000000000000),
1430
    FRAC_CONST(-0.707106781186547),
1431
    FRAC_CONST(-1.000000000000000),
1432
    FRAC_CONST(-0.707106781186548),
1433
    FRAC_CONST(-0.000000000000000)
1434
};
1435
1436
static real_t magnitude_c(complex_t c)
1437
415k
{
1438
#ifdef FIXED_POINT
1439
448k
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
#define ALPHA FRAC_CONST(0.948059448969)
1441
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
224k
    real_t abs_inphase = ps_abs(RE(c));
1444
224k
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
224k
    if (abs_inphase > abs_quadrature) {
1447
188k
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
188k
    } else {
1449
35.7k
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
35.7k
    }
1451
#else
1452
191k
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
#endif
1454
415k
}
ps_dec.c:magnitude_c
Line
Count
Source
1437
224k
{
1438
224k
#ifdef FIXED_POINT
1439
224k
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
224k
#define ALPHA FRAC_CONST(0.948059448969)
1441
224k
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
224k
    real_t abs_inphase = ps_abs(RE(c));
1444
224k
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
224k
    if (abs_inphase > abs_quadrature) {
1447
188k
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
188k
    } else {
1449
35.7k
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
35.7k
    }
1451
#else
1452
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
#endif
1454
224k
}
ps_dec.c:magnitude_c
Line
Count
Source
1437
191k
{
1438
#ifdef FIXED_POINT
1439
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
#define ALPHA FRAC_CONST(0.948059448969)
1441
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
    real_t abs_inphase = ps_abs(RE(c));
1444
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
    if (abs_inphase > abs_quadrature) {
1447
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
    } else {
1449
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
    }
1451
#else
1452
191k
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
191k
#endif
1454
191k
}
1455
1456
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1457
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1458
21.3k
{
1459
21.3k
    uint8_t n;
1460
21.3k
    uint8_t gr;
1461
21.3k
    uint8_t bk = 0;
1462
21.3k
    uint8_t sb, maxsb;
1463
21.3k
    uint8_t env;
1464
21.3k
    uint8_t nr_ipdopd_par;
1465
21.3k
    complex_t h11, h12, h21, h22;  // COEF
1466
21.3k
    complex_t H11, H12, H21, H22;  // COEF
1467
21.3k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
21.3k
    complex_t tempLeft, tempRight; // FRAC
1469
21.3k
    complex_t phaseLeft, phaseRight; // FRAC
1470
21.3k
    real_t L;
1471
21.3k
    const real_t *sf_iid;
1472
21.3k
    uint8_t no_iid_steps;
1473
1474
21.3k
    if (ps->iid_mode >= 3)
1475
8.13k
    {
1476
8.13k
        no_iid_steps = 15;
1477
8.13k
        sf_iid = sf_iid_fine;
1478
13.2k
    } else {
1479
13.2k
        no_iid_steps = 7;
1480
13.2k
        sf_iid = sf_iid_normal;
1481
13.2k
    }
1482
1483
21.3k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
12.8k
    {
1485
12.8k
        nr_ipdopd_par = 11; /* resolution */
1486
12.8k
    } else {
1487
8.54k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
8.54k
    }
1489
1490
702k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
681k
    {
1492
681k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
681k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
2.22M
        for (env = 0; env < ps->num_env; env++)
1498
1.54M
        {
1499
1.54M
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
1.54M
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
397
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
397
                    -no_iid_steps);
1507
397
                ps->iid_index[env][bk] = -no_iid_steps;
1508
397
                abs_iid = no_iid_steps;
1509
1.54M
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
255
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
255
                    no_iid_steps);
1512
255
                ps->iid_index[env][bk] = no_iid_steps;
1513
255
                abs_iid = no_iid_steps;
1514
255
            }
1515
1.54M
            if (ps->icc_index[env][bk] < 0) {
1516
645
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
645
                ps->icc_index[env][bk] = 0;
1518
1.54M
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
1.54M
            if (ps->icc_mode < 3)
1524
903k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
903k
                real_t c_1, c_2;  // COEF
1527
903k
                real_t cosa, sina;  // COEF
1528
903k
                real_t cosb, sinb;  // COEF
1529
903k
                real_t ab1, ab2;  // COEF
1530
903k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
903k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
903k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
903k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
903k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
903k
                if (ps->iid_mode >= 3)
1550
256k
                {
1551
256k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
256k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
647k
                } else {
1554
647k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
647k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
647k
                }
1557
1558
903k
                ab1 = MUL_C(cosb, cosa);
1559
903k
                ab2 = MUL_C(sinb, sina);
1560
903k
                ab3 = MUL_C(sinb, cosa);
1561
903k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
903k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
903k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
903k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
903k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
903k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
643k
                real_t sina, cosa;  // COEF
1571
643k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
643k
                if (ps->iid_mode >= 3)
1607
406k
                {
1608
406k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
406k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
406k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
406k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
406k
                } else {
1613
237k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
237k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
237k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
237k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
237k
                }
1618
1619
643k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
643k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
643k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
643k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
643k
            }
1624
1.54M
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
1.54M
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
207k
            {
1632
207k
                int8_t i;
1633
207k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
207k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
112k
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
112k
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
112k
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
112k
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
95.7k
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
95.7k
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
95.7k
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
95.7k
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
#endif
1652
1653
                /* save current value */
1654
207k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
207k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
207k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
207k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
112k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
112k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
112k
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
112k
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
95.7k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
95.7k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
95.7k
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
95.7k
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
#endif
1672
1673
                /* ringbuffer index */
1674
207k
                if (i == 0)
1675
105k
                {
1676
105k
                    i = 2;
1677
105k
                }
1678
207k
                i--;
1679
1680
                /* get value before previous */
1681
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
112k
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
112k
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
112k
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
112k
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
95.7k
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
95.7k
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
95.7k
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
95.7k
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
207k
                xy = magnitude_c(tempRight);
1716
207k
                pq = magnitude_c(tempLeft);
1717
1718
207k
                if (xy != 0)
1719
207k
                {
1720
207k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
207k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
207k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
207k
                xypq = MUL_F(xy, pq);
1728
1729
207k
                if (xypq != 0)
1730
207k
                {
1731
207k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
207k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
207k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
207k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
207k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
207k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
207k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
207k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
207k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
207k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
207k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
207k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
207k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
207k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
207k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
1.54M
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
1.54M
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
1.54M
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
1.54M
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
1.54M
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
1.54M
            RE(H11) = RE(ps->h11_prev[gr]);
1766
1.54M
            RE(H12) = RE(ps->h12_prev[gr]);
1767
1.54M
            RE(H21) = RE(ps->h21_prev[gr]);
1768
1.54M
            RE(H22) = RE(ps->h22_prev[gr]);
1769
1.54M
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
1.54M
            RE(ps->h11_prev[gr]) = RE(h11);
1772
1.54M
            RE(ps->h12_prev[gr]) = RE(h12);
1773
1.54M
            RE(ps->h21_prev[gr]) = RE(h21);
1774
1.54M
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
1.54M
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
207k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
207k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
207k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
207k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
207k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
207k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
207k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
207k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
207k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
207k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
29.8k
                {
1792
29.8k
                    IM(deltaH11) = -IM(deltaH11);
1793
29.8k
                    IM(deltaH12) = -IM(deltaH12);
1794
29.8k
                    IM(deltaH21) = -IM(deltaH21);
1795
29.8k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
29.8k
                    IM(H11) = -IM(H11);
1798
29.8k
                    IM(H12) = -IM(H12);
1799
29.8k
                    IM(H21) = -IM(H21);
1800
29.8k
                    IM(H22) = -IM(H22);
1801
29.8k
                }
1802
1803
207k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
207k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
207k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
207k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
207k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
22.7M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
21.2M
            {
1812
                /* addition finalises the interpolation over every n */
1813
21.2M
                RE(H11) += RE(deltaH11);
1814
21.2M
                RE(H12) += RE(deltaH12);
1815
21.2M
                RE(H21) += RE(deltaH21);
1816
21.2M
                RE(H22) += RE(deltaH22);
1817
21.2M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
2.18M
                {
1819
2.18M
                    IM(H11) += IM(deltaH11);
1820
2.18M
                    IM(H12) += IM(deltaH12);
1821
2.18M
                    IM(H21) += IM(deltaH21);
1822
2.18M
                    IM(H22) += IM(deltaH22);
1823
2.18M
                }
1824
1825
                /* channel is an alias to the subband */
1826
73.3M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
52.1M
                {
1828
52.1M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
52.1M
                    if (gr < ps->num_hybrid_groups)
1832
11.8M
                    {
1833
11.8M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
11.8M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
11.8M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
11.8M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
40.2M
                    } else {
1838
40.2M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
40.2M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
40.2M
                        RE(inRight) = RE(X_right[n][sb]);
1841
40.2M
                        IM(inRight) = IM(X_right[n][sb]);
1842
40.2M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
52.1M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
52.1M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
52.1M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
52.1M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
52.1M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
2.18M
                    {
1855
                        /* apply rotation */
1856
2.18M
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
2.18M
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
2.18M
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
2.18M
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
2.18M
                    }
1861
1862
                    /* store final samples */
1863
52.1M
                    if (gr < ps->num_hybrid_groups)
1864
11.8M
                    {
1865
11.8M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
11.8M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
11.8M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
11.8M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
40.2M
                    } else {
1870
40.2M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
40.2M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
40.2M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
40.2M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
40.2M
                    }
1875
52.1M
                }
1876
21.2M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
1.54M
            ps->phase_hist++;
1880
1.54M
            if (ps->phase_hist == 2)
1881
773k
            {
1882
773k
                ps->phase_hist = 0;
1883
773k
            }
1884
1.54M
        }
1885
681k
    }
1886
21.3k
}
ps_dec.c:ps_mix_phase
Line
Count
Source
1458
10.2k
{
1459
10.2k
    uint8_t n;
1460
10.2k
    uint8_t gr;
1461
10.2k
    uint8_t bk = 0;
1462
10.2k
    uint8_t sb, maxsb;
1463
10.2k
    uint8_t env;
1464
10.2k
    uint8_t nr_ipdopd_par;
1465
10.2k
    complex_t h11, h12, h21, h22;  // COEF
1466
10.2k
    complex_t H11, H12, H21, H22;  // COEF
1467
10.2k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
10.2k
    complex_t tempLeft, tempRight; // FRAC
1469
10.2k
    complex_t phaseLeft, phaseRight; // FRAC
1470
10.2k
    real_t L;
1471
10.2k
    const real_t *sf_iid;
1472
10.2k
    uint8_t no_iid_steps;
1473
1474
10.2k
    if (ps->iid_mode >= 3)
1475
3.67k
    {
1476
3.67k
        no_iid_steps = 15;
1477
3.67k
        sf_iid = sf_iid_fine;
1478
6.55k
    } else {
1479
6.55k
        no_iid_steps = 7;
1480
6.55k
        sf_iid = sf_iid_normal;
1481
6.55k
    }
1482
1483
10.2k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
6.21k
    {
1485
6.21k
        nr_ipdopd_par = 11; /* resolution */
1486
6.21k
    } else {
1487
4.02k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
4.02k
    }
1489
1490
333k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
322k
    {
1492
322k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
322k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
1.08M
        for (env = 0; env < ps->num_env; env++)
1498
765k
        {
1499
765k
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
765k
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
108
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
108
                    -no_iid_steps);
1507
108
                ps->iid_index[env][bk] = -no_iid_steps;
1508
108
                abs_iid = no_iid_steps;
1509
765k
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
98
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
98
                    no_iid_steps);
1512
98
                ps->iid_index[env][bk] = no_iid_steps;
1513
98
                abs_iid = no_iid_steps;
1514
98
            }
1515
765k
            if (ps->icc_index[env][bk] < 0) {
1516
93
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
93
                ps->icc_index[env][bk] = 0;
1518
765k
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
765k
            if (ps->icc_mode < 3)
1524
404k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
404k
                real_t c_1, c_2;  // COEF
1527
404k
                real_t cosa, sina;  // COEF
1528
404k
                real_t cosb, sinb;  // COEF
1529
404k
                real_t ab1, ab2;  // COEF
1530
404k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
404k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
404k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
404k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
404k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
404k
                if (ps->iid_mode >= 3)
1550
67.6k
                {
1551
67.6k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
67.6k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
336k
                } else {
1554
336k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
336k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
336k
                }
1557
1558
404k
                ab1 = MUL_C(cosb, cosa);
1559
404k
                ab2 = MUL_C(sinb, sina);
1560
404k
                ab3 = MUL_C(sinb, cosa);
1561
404k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
404k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
404k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
404k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
404k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
404k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
361k
                real_t sina, cosa;  // COEF
1571
361k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
361k
                if (ps->iid_mode >= 3)
1607
237k
                {
1608
237k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
237k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
237k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
237k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
237k
                } else {
1613
124k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
124k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
124k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
124k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
124k
                }
1618
1619
361k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
361k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
361k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
361k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
361k
            }
1624
765k
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
765k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
112k
            {
1632
112k
                int8_t i;
1633
112k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
112k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
112k
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
112k
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
112k
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
112k
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
112k
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
#endif
1652
1653
                /* save current value */
1654
112k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
112k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
112k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
112k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
112k
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
112k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
112k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
112k
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
112k
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
#endif
1672
1673
                /* ringbuffer index */
1674
112k
                if (i == 0)
1675
56.6k
                {
1676
56.6k
                    i = 2;
1677
56.6k
                }
1678
112k
                i--;
1679
1680
                /* get value before previous */
1681
112k
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
112k
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
112k
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
112k
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
112k
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
112k
                xy = magnitude_c(tempRight);
1716
112k
                pq = magnitude_c(tempLeft);
1717
1718
112k
                if (xy != 0)
1719
112k
                {
1720
112k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
112k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
112k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
112k
                xypq = MUL_F(xy, pq);
1728
1729
112k
                if (xypq != 0)
1730
112k
                {
1731
112k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
112k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
112k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
112k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
112k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
112k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
112k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
112k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
112k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
112k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
112k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
112k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
112k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
112k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
112k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
765k
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
765k
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
765k
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
765k
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
765k
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
765k
            RE(H11) = RE(ps->h11_prev[gr]);
1766
765k
            RE(H12) = RE(ps->h12_prev[gr]);
1767
765k
            RE(H21) = RE(ps->h21_prev[gr]);
1768
765k
            RE(H22) = RE(ps->h22_prev[gr]);
1769
765k
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
765k
            RE(ps->h11_prev[gr]) = RE(h11);
1772
765k
            RE(ps->h12_prev[gr]) = RE(h12);
1773
765k
            RE(ps->h21_prev[gr]) = RE(h21);
1774
765k
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
765k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
112k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
112k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
112k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
112k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
112k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
112k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
112k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
112k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
112k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
112k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
16.2k
                {
1792
16.2k
                    IM(deltaH11) = -IM(deltaH11);
1793
16.2k
                    IM(deltaH12) = -IM(deltaH12);
1794
16.2k
                    IM(deltaH21) = -IM(deltaH21);
1795
16.2k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
16.2k
                    IM(H11) = -IM(H11);
1798
16.2k
                    IM(H12) = -IM(H12);
1799
16.2k
                    IM(H21) = -IM(H21);
1800
16.2k
                    IM(H22) = -IM(H22);
1801
16.2k
                }
1802
1803
112k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
112k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
112k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
112k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
112k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
10.8M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
10.0M
            {
1812
                /* addition finalises the interpolation over every n */
1813
10.0M
                RE(H11) += RE(deltaH11);
1814
10.0M
                RE(H12) += RE(deltaH12);
1815
10.0M
                RE(H21) += RE(deltaH21);
1816
10.0M
                RE(H22) += RE(deltaH22);
1817
10.0M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
1.19M
                {
1819
1.19M
                    IM(H11) += IM(deltaH11);
1820
1.19M
                    IM(H12) += IM(deltaH12);
1821
1.19M
                    IM(H21) += IM(deltaH21);
1822
1.19M
                    IM(H22) += IM(deltaH22);
1823
1.19M
                }
1824
1825
                /* channel is an alias to the subband */
1826
34.9M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
24.8M
                {
1828
24.8M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
24.8M
                    if (gr < ps->num_hybrid_groups)
1832
5.57M
                    {
1833
5.57M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
5.57M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
5.57M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
5.57M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
19.3M
                    } else {
1838
19.3M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
19.3M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
19.3M
                        RE(inRight) = RE(X_right[n][sb]);
1841
19.3M
                        IM(inRight) = IM(X_right[n][sb]);
1842
19.3M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
24.8M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
24.8M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
24.8M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
24.8M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
24.8M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
1.19M
                    {
1855
                        /* apply rotation */
1856
1.19M
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
1.19M
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
1.19M
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
1.19M
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
1.19M
                    }
1861
1862
                    /* store final samples */
1863
24.8M
                    if (gr < ps->num_hybrid_groups)
1864
5.57M
                    {
1865
5.57M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
5.57M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
5.57M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
5.57M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
19.3M
                    } else {
1870
19.3M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
19.3M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
19.3M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
19.3M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
19.3M
                    }
1875
24.8M
                }
1876
10.0M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
765k
            ps->phase_hist++;
1880
765k
            if (ps->phase_hist == 2)
1881
382k
            {
1882
382k
                ps->phase_hist = 0;
1883
382k
            }
1884
765k
        }
1885
322k
    }
1886
10.2k
}
ps_dec.c:ps_mix_phase
Line
Count
Source
1458
11.1k
{
1459
11.1k
    uint8_t n;
1460
11.1k
    uint8_t gr;
1461
11.1k
    uint8_t bk = 0;
1462
11.1k
    uint8_t sb, maxsb;
1463
11.1k
    uint8_t env;
1464
11.1k
    uint8_t nr_ipdopd_par;
1465
11.1k
    complex_t h11, h12, h21, h22;  // COEF
1466
11.1k
    complex_t H11, H12, H21, H22;  // COEF
1467
11.1k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
11.1k
    complex_t tempLeft, tempRight; // FRAC
1469
11.1k
    complex_t phaseLeft, phaseRight; // FRAC
1470
11.1k
    real_t L;
1471
11.1k
    const real_t *sf_iid;
1472
11.1k
    uint8_t no_iid_steps;
1473
1474
11.1k
    if (ps->iid_mode >= 3)
1475
4.45k
    {
1476
4.45k
        no_iid_steps = 15;
1477
4.45k
        sf_iid = sf_iid_fine;
1478
6.65k
    } else {
1479
6.65k
        no_iid_steps = 7;
1480
6.65k
        sf_iid = sf_iid_normal;
1481
6.65k
    }
1482
1483
11.1k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
6.59k
    {
1485
6.59k
        nr_ipdopd_par = 11; /* resolution */
1486
6.59k
    } else {
1487
4.51k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
4.51k
    }
1489
1490
369k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
358k
    {
1492
358k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
358k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
1.14M
        for (env = 0; env < ps->num_env; env++)
1498
781k
        {
1499
781k
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
781k
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
289
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
289
                    -no_iid_steps);
1507
289
                ps->iid_index[env][bk] = -no_iid_steps;
1508
289
                abs_iid = no_iid_steps;
1509
781k
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
157
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
157
                    no_iid_steps);
1512
157
                ps->iid_index[env][bk] = no_iid_steps;
1513
157
                abs_iid = no_iid_steps;
1514
157
            }
1515
781k
            if (ps->icc_index[env][bk] < 0) {
1516
552
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
552
                ps->icc_index[env][bk] = 0;
1518
781k
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
781k
            if (ps->icc_mode < 3)
1524
499k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
499k
                real_t c_1, c_2;  // COEF
1527
499k
                real_t cosa, sina;  // COEF
1528
499k
                real_t cosb, sinb;  // COEF
1529
499k
                real_t ab1, ab2;  // COEF
1530
499k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
499k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
499k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
499k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
499k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
499k
                if (ps->iid_mode >= 3)
1550
188k
                {
1551
188k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
188k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
310k
                } else {
1554
310k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
310k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
310k
                }
1557
1558
499k
                ab1 = MUL_C(cosb, cosa);
1559
499k
                ab2 = MUL_C(sinb, sina);
1560
499k
                ab3 = MUL_C(sinb, cosa);
1561
499k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
499k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
499k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
499k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
499k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
499k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
282k
                real_t sina, cosa;  // COEF
1571
282k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
282k
                if (ps->iid_mode >= 3)
1607
168k
                {
1608
168k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
168k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
168k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
168k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
168k
                } else {
1613
113k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
113k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
113k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
113k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
113k
                }
1618
1619
282k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
282k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
282k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
282k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
282k
            }
1624
781k
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
781k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
95.7k
            {
1632
95.7k
                int8_t i;
1633
95.7k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
95.7k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
95.7k
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
95.7k
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
95.7k
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
95.7k
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
95.7k
#endif
1652
1653
                /* save current value */
1654
95.7k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
95.7k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
95.7k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
95.7k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
95.7k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
95.7k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
95.7k
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
95.7k
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
95.7k
#endif
1672
1673
                /* ringbuffer index */
1674
95.7k
                if (i == 0)
1675
48.4k
                {
1676
48.4k
                    i = 2;
1677
48.4k
                }
1678
95.7k
                i--;
1679
1680
                /* get value before previous */
1681
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
95.7k
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
95.7k
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
95.7k
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
95.7k
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
95.7k
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
95.7k
                xy = magnitude_c(tempRight);
1716
95.7k
                pq = magnitude_c(tempLeft);
1717
1718
95.7k
                if (xy != 0)
1719
95.7k
                {
1720
95.7k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
95.7k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
95.7k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
95.7k
                xypq = MUL_F(xy, pq);
1728
1729
95.7k
                if (xypq != 0)
1730
95.7k
                {
1731
95.7k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
95.7k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
95.7k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
95.7k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
95.7k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
95.7k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
95.7k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
95.7k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
95.7k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
95.7k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
95.7k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
95.7k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
95.7k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
95.7k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
95.7k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
781k
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
781k
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
781k
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
781k
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
781k
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
781k
            RE(H11) = RE(ps->h11_prev[gr]);
1766
781k
            RE(H12) = RE(ps->h12_prev[gr]);
1767
781k
            RE(H21) = RE(ps->h21_prev[gr]);
1768
781k
            RE(H22) = RE(ps->h22_prev[gr]);
1769
781k
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
781k
            RE(ps->h11_prev[gr]) = RE(h11);
1772
781k
            RE(ps->h12_prev[gr]) = RE(h12);
1773
781k
            RE(ps->h21_prev[gr]) = RE(h21);
1774
781k
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
781k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
95.7k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
95.7k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
95.7k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
95.7k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
95.7k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
95.7k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
95.7k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
95.7k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
95.7k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
95.7k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
13.6k
                {
1792
13.6k
                    IM(deltaH11) = -IM(deltaH11);
1793
13.6k
                    IM(deltaH12) = -IM(deltaH12);
1794
13.6k
                    IM(deltaH21) = -IM(deltaH21);
1795
13.6k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
13.6k
                    IM(H11) = -IM(H11);
1798
13.6k
                    IM(H12) = -IM(H12);
1799
13.6k
                    IM(H21) = -IM(H21);
1800
13.6k
                    IM(H22) = -IM(H22);
1801
13.6k
                }
1802
1803
95.7k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
95.7k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
95.7k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
95.7k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
95.7k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
11.9M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
11.1M
            {
1812
                /* addition finalises the interpolation over every n */
1813
11.1M
                RE(H11) += RE(deltaH11);
1814
11.1M
                RE(H12) += RE(deltaH12);
1815
11.1M
                RE(H21) += RE(deltaH21);
1816
11.1M
                RE(H22) += RE(deltaH22);
1817
11.1M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
989k
                {
1819
989k
                    IM(H11) += IM(deltaH11);
1820
989k
                    IM(H12) += IM(deltaH12);
1821
989k
                    IM(H21) += IM(deltaH21);
1822
989k
                    IM(H22) += IM(deltaH22);
1823
989k
                }
1824
1825
                /* channel is an alias to the subband */
1826
38.4M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
27.2M
                {
1828
27.2M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
27.2M
                    if (gr < ps->num_hybrid_groups)
1832
6.25M
                    {
1833
6.25M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
6.25M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
6.25M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
6.25M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
20.9M
                    } else {
1838
20.9M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
20.9M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
20.9M
                        RE(inRight) = RE(X_right[n][sb]);
1841
20.9M
                        IM(inRight) = IM(X_right[n][sb]);
1842
20.9M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
27.2M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
27.2M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
27.2M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
27.2M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
27.2M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
993k
                    {
1855
                        /* apply rotation */
1856
993k
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
993k
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
993k
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
993k
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
993k
                    }
1861
1862
                    /* store final samples */
1863
27.2M
                    if (gr < ps->num_hybrid_groups)
1864
6.25M
                    {
1865
6.25M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
6.25M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
6.25M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
6.25M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
20.9M
                    } else {
1870
20.9M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
20.9M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
20.9M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
20.9M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
20.9M
                    }
1875
27.2M
                }
1876
11.1M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
781k
            ps->phase_hist++;
1880
781k
            if (ps->phase_hist == 2)
1881
390k
            {
1882
390k
                ps->phase_hist = 0;
1883
390k
            }
1884
781k
        }
1885
358k
    }
1886
11.1k
}
1887
1888
void ps_free(ps_info *ps)
1889
32.4k
{
1890
    /* free hybrid filterbank structures */
1891
32.4k
    hybrid_free(ps->hyb);
1892
1893
32.4k
    faad_free(ps);
1894
32.4k
}
1895
1896
ps_info *ps_init(uint8_t sr_index, uint8_t numTimeSlotsRate)
1897
32.4k
{
1898
32.4k
    uint8_t i;
1899
32.4k
    uint8_t short_delay_band;
1900
1901
32.4k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
32.4k
    memset(ps, 0, sizeof(ps_info));
1903
1904
32.4k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
32.4k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
32.4k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
32.4k
    ps->saved_delay = 0;
1911
1912
2.11M
    for (i = 0; i < 64; i++)
1913
2.07M
    {
1914
2.07M
        ps->delay_buf_index_delay[i] = 0;
1915
2.07M
    }
1916
1917
129k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
97.4k
    {
1919
97.4k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
97.4k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
97.4k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
97.4k
#endif
1932
97.4k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
32.4k
    short_delay_band = 35;
1950
32.4k
    ps->nr_allpass_bands = 22;
1951
32.4k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
32.4k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
32.4k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
1.16M
    for (i = 0; i < short_delay_band; i++)
1957
1.13M
    {
1958
1.13M
        ps->delay_D[i] = 14;
1959
1.13M
    }
1960
974k
    for (i = short_delay_band; i < 64; i++)
1961
942k
    {
1962
942k
        ps->delay_D[i] = 1;
1963
942k
    }
1964
1965
    /* mixing and phase */
1966
1.65M
    for (i = 0; i < 50; i++)
1967
1.62M
    {
1968
1.62M
        RE(ps->h11_prev[i]) = 1;
1969
1.62M
        IM(ps->h11_prev[i]) = 1;
1970
1.62M
        RE(ps->h12_prev[i]) = 1;
1971
1.62M
        IM(ps->h12_prev[i]) = 1;
1972
1.62M
    }
1973
1974
32.4k
    ps->phase_hist = 0;
1975
1976
682k
    for (i = 0; i < 20; i++)
1977
649k
    {
1978
649k
        RE(ps->ipd_prev[i][0]) = 0;
1979
649k
        IM(ps->ipd_prev[i][0]) = 0;
1980
649k
        RE(ps->ipd_prev[i][1]) = 0;
1981
649k
        IM(ps->ipd_prev[i][1]) = 0;
1982
649k
        RE(ps->opd_prev[i][0]) = 0;
1983
649k
        IM(ps->opd_prev[i][0]) = 0;
1984
649k
        RE(ps->opd_prev[i][1]) = 0;
1985
649k
        IM(ps->opd_prev[i][1]) = 0;
1986
649k
    }
1987
1988
32.4k
    return ps;
1989
32.4k
}
ps_init
Line
Count
Source
1897
15.1k
{
1898
15.1k
    uint8_t i;
1899
15.1k
    uint8_t short_delay_band;
1900
1901
15.1k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
15.1k
    memset(ps, 0, sizeof(ps_info));
1903
1904
15.1k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
15.1k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
15.1k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
15.1k
    ps->saved_delay = 0;
1911
1912
984k
    for (i = 0; i < 64; i++)
1913
968k
    {
1914
968k
        ps->delay_buf_index_delay[i] = 0;
1915
968k
    }
1916
1917
60.5k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
45.4k
    {
1919
45.4k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
45.4k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
45.4k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
45.4k
#endif
1932
45.4k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
15.1k
    short_delay_band = 35;
1950
15.1k
    ps->nr_allpass_bands = 22;
1951
15.1k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
15.1k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
15.1k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
545k
    for (i = 0; i < short_delay_band; i++)
1957
529k
    {
1958
529k
        ps->delay_D[i] = 14;
1959
529k
    }
1960
454k
    for (i = short_delay_band; i < 64; i++)
1961
439k
    {
1962
439k
        ps->delay_D[i] = 1;
1963
439k
    }
1964
1965
    /* mixing and phase */
1966
772k
    for (i = 0; i < 50; i++)
1967
756k
    {
1968
756k
        RE(ps->h11_prev[i]) = 1;
1969
756k
        IM(ps->h11_prev[i]) = 1;
1970
756k
        RE(ps->h12_prev[i]) = 1;
1971
756k
        IM(ps->h12_prev[i]) = 1;
1972
756k
    }
1973
1974
15.1k
    ps->phase_hist = 0;
1975
1976
317k
    for (i = 0; i < 20; i++)
1977
302k
    {
1978
302k
        RE(ps->ipd_prev[i][0]) = 0;
1979
302k
        IM(ps->ipd_prev[i][0]) = 0;
1980
302k
        RE(ps->ipd_prev[i][1]) = 0;
1981
302k
        IM(ps->ipd_prev[i][1]) = 0;
1982
302k
        RE(ps->opd_prev[i][0]) = 0;
1983
302k
        IM(ps->opd_prev[i][0]) = 0;
1984
302k
        RE(ps->opd_prev[i][1]) = 0;
1985
302k
        IM(ps->opd_prev[i][1]) = 0;
1986
302k
    }
1987
1988
15.1k
    return ps;
1989
15.1k
}
ps_init
Line
Count
Source
1897
17.3k
{
1898
17.3k
    uint8_t i;
1899
17.3k
    uint8_t short_delay_band;
1900
1901
17.3k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
17.3k
    memset(ps, 0, sizeof(ps_info));
1903
1904
17.3k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
17.3k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
17.3k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
17.3k
    ps->saved_delay = 0;
1911
1912
1.12M
    for (i = 0; i < 64; i++)
1913
1.11M
    {
1914
1.11M
        ps->delay_buf_index_delay[i] = 0;
1915
1.11M
    }
1916
1917
69.4k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
52.0k
    {
1919
52.0k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
52.0k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
52.0k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
52.0k
#endif
1932
52.0k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
17.3k
    short_delay_band = 35;
1950
17.3k
    ps->nr_allpass_bands = 22;
1951
17.3k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
17.3k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
17.3k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
624k
    for (i = 0; i < short_delay_band; i++)
1957
607k
    {
1958
607k
        ps->delay_D[i] = 14;
1959
607k
    }
1960
520k
    for (i = short_delay_band; i < 64; i++)
1961
503k
    {
1962
503k
        ps->delay_D[i] = 1;
1963
503k
    }
1964
1965
    /* mixing and phase */
1966
885k
    for (i = 0; i < 50; i++)
1967
867k
    {
1968
867k
        RE(ps->h11_prev[i]) = 1;
1969
867k
        IM(ps->h11_prev[i]) = 1;
1970
867k
        RE(ps->h12_prev[i]) = 1;
1971
867k
        IM(ps->h12_prev[i]) = 1;
1972
867k
    }
1973
1974
17.3k
    ps->phase_hist = 0;
1975
1976
364k
    for (i = 0; i < 20; i++)
1977
347k
    {
1978
347k
        RE(ps->ipd_prev[i][0]) = 0;
1979
347k
        IM(ps->ipd_prev[i][0]) = 0;
1980
347k
        RE(ps->ipd_prev[i][1]) = 0;
1981
347k
        IM(ps->ipd_prev[i][1]) = 0;
1982
347k
        RE(ps->opd_prev[i][0]) = 0;
1983
347k
        IM(ps->opd_prev[i][0]) = 0;
1984
347k
        RE(ps->opd_prev[i][1]) = 0;
1985
347k
        IM(ps->opd_prev[i][1]) = 0;
1986
347k
    }
1987
1988
17.3k
    return ps;
1989
17.3k
}
1990
1991
/* main Parametric Stereo decoding function */
1992
uint8_t ps_decode(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64])
1993
21.3k
{
1994
21.3k
    qmf_t X_hybrid_left[32][32] = {{{0}}};
1995
21.3k
    qmf_t X_hybrid_right[32][32] = {{{0}}};
1996
1997
    /* delta decoding of the bitstream data */
1998
21.3k
    ps_data_decode(ps);
1999
2000
    /* set up some parameters depending on filterbank type */
2001
21.3k
    if (ps->use34hybrid_bands)
2002
7.56k
    {
2003
7.56k
        ps->group_border = (uint8_t*)group_border34;
2004
7.56k
        ps->map_group2bk = (uint16_t*)map_group2bk34;
2005
7.56k
        ps->num_groups = 32+18;
2006
7.56k
        ps->num_hybrid_groups = 32;
2007
7.56k
        ps->nr_par_bands = 34;
2008
7.56k
        ps->decay_cutoff = 5;
2009
13.7k
    } else {
2010
13.7k
        ps->group_border = (uint8_t*)group_border20;
2011
13.7k
        ps->map_group2bk = (uint16_t*)map_group2bk20;
2012
13.7k
        ps->num_groups = 10+12;
2013
13.7k
        ps->num_hybrid_groups = 10;
2014
13.7k
        ps->nr_par_bands = 20;
2015
13.7k
        ps->decay_cutoff = 3;
2016
13.7k
    }
2017
2018
    /* Perform further analysis on the lowest subbands to get a higher
2019
     * frequency resolution
2020
     */
2021
21.3k
    hybrid_analysis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2022
21.3k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2023
2024
    /* decorrelate mono signal */
2025
21.3k
    ps_decorrelate(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2026
2027
    /* apply mixing and phase parameters */
2028
21.3k
    ps_mix_phase(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2029
2030
    /* hybrid synthesis, to rebuild the SBR QMF matrices */
2031
21.3k
    hybrid_synthesis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2032
21.3k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2033
2034
21.3k
    hybrid_synthesis((hyb_info*)ps->hyb, X_right, X_hybrid_right,
2035
21.3k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2036
2037
21.3k
    return 0;
2038
21.3k
}
2039
2040
#endif