Coverage Report

Created: 2024-09-06 07:53

/src/fdk-aac/libAACenc/src/psy_configuration.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** AAC encoder library ******************************
96
97
   Author(s):   M.Werner
98
99
   Description: Psychoaccoustic configuration
100
101
*******************************************************************************/
102
103
#include "psy_configuration.h"
104
#include "adj_thr.h"
105
#include "aacEnc_rom.h"
106
107
#include "genericStds.h"
108
109
#include "FDK_trigFcts.h"
110
111
typedef struct {
112
  LONG sampleRate;
113
  const SFB_PARAM_LONG *paramLong;
114
  const SFB_PARAM_SHORT *paramShort;
115
} SFB_INFO_TAB;
116
117
static const SFB_INFO_TAB sfbInfoTab[] = {
118
    {8000, &p_FDKaacEnc_8000_long_1024, &p_FDKaacEnc_8000_short_128},
119
    {11025, &p_FDKaacEnc_11025_long_1024, &p_FDKaacEnc_11025_short_128},
120
    {12000, &p_FDKaacEnc_12000_long_1024, &p_FDKaacEnc_12000_short_128},
121
    {16000, &p_FDKaacEnc_16000_long_1024, &p_FDKaacEnc_16000_short_128},
122
    {22050, &p_FDKaacEnc_22050_long_1024, &p_FDKaacEnc_22050_short_128},
123
    {24000, &p_FDKaacEnc_24000_long_1024, &p_FDKaacEnc_24000_short_128},
124
    {32000, &p_FDKaacEnc_32000_long_1024, &p_FDKaacEnc_32000_short_128},
125
    {44100, &p_FDKaacEnc_44100_long_1024, &p_FDKaacEnc_44100_short_128},
126
    {48000, &p_FDKaacEnc_48000_long_1024, &p_FDKaacEnc_48000_short_128},
127
    {64000, &p_FDKaacEnc_64000_long_1024, &p_FDKaacEnc_64000_short_128},
128
    {88200, &p_FDKaacEnc_88200_long_1024, &p_FDKaacEnc_88200_short_128},
129
    {96000, &p_FDKaacEnc_96000_long_1024, &p_FDKaacEnc_96000_short_128}
130
131
};
132
133
/* 22050 and 24000 Hz */
134
static const SFB_PARAM_LONG p_22050_long_512 = {
135
    31, {4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  8,  8,  8,  12, 12,
136
         12, 16, 20, 24, 28, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32}};
137
138
/* 32000 Hz */
139
static const SFB_PARAM_LONG p_32000_long_512 = {
140
    37,
141
    {4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  8,  8,  8,  8, 8,
142
     12, 12, 12, 12, 16, 16, 16, 20, 24, 24, 28, 32, 32, 32, 32, 32, 32, 32}};
143
144
/* 44100 Hz */
145
static const SFB_PARAM_LONG p_44100_long_512 = {
146
    36, {4, 4, 4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  8,  8,  8,
147
         8, 8, 12, 12, 12, 12, 16, 20, 24, 28, 32, 32, 32, 32, 32, 32, 32, 52}};
148
149
static const SFB_INFO_TAB sfbInfoTabLD512[] = {
150
    {8000, &p_22050_long_512, NULL},   {11025, &p_22050_long_512, NULL},
151
    {12000, &p_22050_long_512, NULL},  {16000, &p_22050_long_512, NULL},
152
    {22050, &p_22050_long_512, NULL},  {24000, &p_22050_long_512, NULL},
153
    {32000, &p_32000_long_512, NULL},  {44100, &p_44100_long_512, NULL},
154
    {48000, &p_44100_long_512, NULL},  {64000, &p_44100_long_512, NULL},
155
    {88200, &p_44100_long_512, NULL},  {96000, &p_44100_long_512, NULL},
156
    {128000, &p_44100_long_512, NULL}, {176400, &p_44100_long_512, NULL},
157
    {192000, &p_44100_long_512, NULL}, {256000, &p_44100_long_512, NULL},
158
    {352800, &p_44100_long_512, NULL}, {384000, &p_44100_long_512, NULL},
159
};
160
161
/* 22050 and 24000 Hz */
162
static const SFB_PARAM_LONG p_22050_long_480 = {
163
    30, {4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  8,  8,  8,  12,
164
         12, 12, 16, 20, 24, 28, 32, 32, 32, 32, 32, 32, 32, 32, 32}};
165
166
/* 32000 Hz */
167
static const SFB_PARAM_LONG p_32000_long_480 = {
168
    37, {4, 4, 4, 4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  8,  8, 8,
169
         8, 8, 8, 12, 12, 12, 16, 16, 20, 24, 32, 32, 32, 32, 32, 32, 32, 32}};
170
171
/* 44100 Hz */
172
static const SFB_PARAM_LONG p_44100_long_480 = {
173
    35, {4, 4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  8,  8,  8, 8,
174
         8, 12, 12, 12, 12, 12, 16, 16, 24, 28, 32, 32, 32, 32, 32, 32, 48}};
175
176
static const SFB_INFO_TAB sfbInfoTabLD480[] = {
177
    {8000, &p_22050_long_480, NULL},   {11025, &p_22050_long_480, NULL},
178
    {12000, &p_22050_long_480, NULL},  {16000, &p_22050_long_480, NULL},
179
    {22050, &p_22050_long_480, NULL},  {24000, &p_22050_long_480, NULL},
180
    {32000, &p_32000_long_480, NULL},  {44100, &p_44100_long_480, NULL},
181
    {48000, &p_44100_long_480, NULL},  {64000, &p_44100_long_480, NULL},
182
    {88200, &p_44100_long_480, NULL},  {96000, &p_44100_long_480, NULL},
183
    {128000, &p_44100_long_480, NULL}, {176400, &p_44100_long_480, NULL},
184
    {192000, &p_44100_long_480, NULL}, {256000, &p_44100_long_480, NULL},
185
    {352800, &p_44100_long_480, NULL}, {384000, &p_44100_long_480, NULL},
186
};
187
188
/* Fixed point precision definitions */
189
#define Q_BARCVAL (25)
190
191
AAC_ENCODER_ERROR FDKaacEnc_initSfbTable(const LONG sampleRate,
192
                                         const INT blockType,
193
                                         const INT granuleLength,
194
                                         INT *const sfbOffset,
195
0
                                         INT *const sfbCnt) {
196
0
  INT i, specStartOffset = 0;
197
0
  INT granuleLengthWindow = granuleLength;
198
0
  const UCHAR *sfbWidth = NULL;
199
0
  const SFB_INFO_TAB *sfbInfo = NULL;
200
0
  int size;
201
202
  /*
203
    select table
204
  */
205
0
  switch (granuleLength) {
206
0
    case 1024:
207
0
    case 960:
208
0
      sfbInfo = sfbInfoTab;
209
0
      size = (INT)(sizeof(sfbInfoTab) / sizeof(SFB_INFO_TAB));
210
0
      break;
211
0
    case 512:
212
0
      sfbInfo = sfbInfoTabLD512;
213
0
      size = sizeof(sfbInfoTabLD512);
214
0
      break;
215
0
    case 480:
216
0
      sfbInfo = sfbInfoTabLD480;
217
0
      size = sizeof(sfbInfoTabLD480);
218
0
      break;
219
0
    default:
220
0
      return AAC_ENC_INVALID_FRAME_LENGTH;
221
0
  }
222
223
0
  for (i = 0; i < size; i++) {
224
0
    if (sfbInfo[i].sampleRate == sampleRate) {
225
0
      switch (blockType) {
226
0
        case LONG_WINDOW:
227
0
        case START_WINDOW:
228
0
        case STOP_WINDOW:
229
0
          sfbWidth = sfbInfo[i].paramLong->sfbWidth;
230
0
          *sfbCnt = sfbInfo[i].paramLong->sfbCnt;
231
0
          break;
232
0
        case SHORT_WINDOW:
233
0
          sfbWidth = sfbInfo[i].paramShort->sfbWidth;
234
0
          *sfbCnt = sfbInfo[i].paramShort->sfbCnt;
235
0
          granuleLengthWindow /= TRANS_FAC;
236
0
          break;
237
0
      }
238
0
      break;
239
0
    }
240
0
  }
241
0
  if (i == size) {
242
0
    return AAC_ENC_UNSUPPORTED_SAMPLINGRATE;
243
0
  }
244
245
  /*
246
    calc sfb offsets
247
  */
248
0
  for (i = 0; i < *sfbCnt; i++) {
249
0
    sfbOffset[i] = specStartOffset;
250
0
    specStartOffset += sfbWidth[i];
251
0
    if (specStartOffset >= granuleLengthWindow) {
252
0
      i++;
253
0
      break;
254
0
    }
255
0
  }
256
0
  *sfbCnt = fixMin(i, *sfbCnt);
257
0
  sfbOffset[*sfbCnt] = fixMin(specStartOffset, granuleLengthWindow);
258
0
  return AAC_ENC_OK;
259
0
}
260
261
/*****************************************************************************
262
263
    functionname: FDKaacEnc_BarcLineValue
264
    description:  Calculates barc value for one frequency line
265
    returns:      barc value of line
266
    input:        number of lines in transform, index of line to check, Fs
267
    output:
268
269
*****************************************************************************/
270
static FIXP_DBL FDKaacEnc_BarcLineValue(INT noOfLines, INT fftLine,
271
0
                                        LONG samplingFreq) {
272
0
  FIXP_DBL FOURBY3EM4 = (FIXP_DBL)0x45e7b273; /* 4.0/3 * 0.0001 in q43 */
273
0
  FIXP_DBL PZZZ76 = (FIXP_DBL)0x639d5e4a;     /* 0.00076 in q41 */
274
0
  FIXP_DBL ONE3P3 = (FIXP_DBL)0x35333333;     /* 13.3 in q26 */
275
0
  FIXP_DBL THREEP5 = (FIXP_DBL)0x1c000000;    /* 3.5 in q27 */
276
0
  FIXP_DBL INV480 = (FIXP_DBL)0x44444444;     // 1/480 in q39
277
278
0
  FIXP_DBL center_freq, x1, x2;
279
0
  FIXP_DBL bvalFFTLine, atan1, atan2;
280
281
  /* Theoritical maximum of center_freq (samp_freq*0.5) is 96khz * 0.5 = 48000
282
   */
283
  /* Theoritical maximum of x1 is 1.3333333e-4f * center_freq = 6.4, can keep in
284
   * q28  */
285
  /* Theoritical maximum of x2 is 0.00076f * center_freq = 36.48, can keep in
286
   * q25     */
287
288
0
  center_freq = fftLine * samplingFreq; /* q11 or q8 */
289
290
0
  switch (noOfLines) {
291
0
    case 1024:
292
0
      center_freq = center_freq << 2; /* q13 */
293
0
      break;
294
0
    case 128:
295
0
      center_freq = center_freq << 5; /* q13 */
296
0
      break;
297
0
    case 512:
298
0
      center_freq = (fftLine * samplingFreq) << 3;  // q13
299
0
      break;
300
0
    case 480:
301
0
      center_freq = fMult(center_freq, INV480) << 4;  // q13
302
0
      break;
303
0
    default:
304
0
      center_freq = (FIXP_DBL)0;
305
0
  }
306
307
0
  x1 = fMult(center_freq, FOURBY3EM4); /* q13 * q43 - (DFRACT_BITS-1) = q25 */
308
0
  x2 = fMult(center_freq, PZZZ76)
309
0
       << 2; /* q13 * q41 - (DFRACT_BITS-1) + 2 = q25 */
310
311
0
  atan1 = fixp_atan(x1);
312
0
  atan2 = fixp_atan(x2);
313
314
  /* q25 (q26 * q30 - (DFRACT_BITS-1)) + q25 (q27 * q30 * q30) */
315
0
  bvalFFTLine = fMult(ONE3P3, atan2) + fMult(THREEP5, fMult(atan1, atan1));
316
0
  return (bvalFFTLine);
317
0
}
318
319
/*
320
   do not consider energies below a certain input signal level,
321
   i.e. of -96dB or 1 bit at 16 bit PCM resolution,
322
   might need to be configurable to e.g. 24 bit PCM Input or a lower
323
   resolution for low bit rates
324
*/
325
static void FDKaacEnc_InitMinPCMResolution(int numPb, int *pbOffset,
326
0
                                           FIXP_DBL *sfbPCMquantThreshold) {
327
/* PCM_QUANT_NOISE = FDKpow(10.0f, - 20.f / 10.0f) * ABS_LOW * NORM_PCM_ENERGY *
328
 * FDKpow(2,PCM_QUANT_THR_SCALE) */
329
0
#define PCM_QUANT_NOISE ((FIXP_DBL)0x00547062)
330
331
0
  for (int i = 0; i < numPb; i++) {
332
0
    sfbPCMquantThreshold[i] = (pbOffset[i + 1] - pbOffset[i]) * PCM_QUANT_NOISE;
333
0
  }
334
0
}
335
336
static FIXP_DBL getMaskFactor(const FIXP_DBL dbVal_fix, const INT dbVal_e,
337
0
                              const FIXP_DBL ten_fix, const INT ten_e) {
338
0
  INT q_msk;
339
0
  FIXP_DBL mask_factor;
340
341
0
  mask_factor = fPow(ten_fix, DFRACT_BITS - 1 - ten_e, -dbVal_fix,
342
0
                     DFRACT_BITS - 1 - dbVal_e, &q_msk);
343
0
  q_msk = fixMin(DFRACT_BITS - 1, fixMax(-(DFRACT_BITS - 1), q_msk));
344
345
0
  if ((q_msk > 0) && (mask_factor > (FIXP_DBL)MAXVAL_DBL >> q_msk)) {
346
0
    mask_factor = (FIXP_DBL)MAXVAL_DBL;
347
0
  } else {
348
0
    mask_factor = scaleValue(mask_factor, q_msk);
349
0
  }
350
351
0
  return (mask_factor);
352
0
}
353
354
static void FDKaacEnc_initSpreading(INT numPb, FIXP_DBL *pbBarcValue,
355
                                    FIXP_DBL *pbMaskLoFactor,
356
                                    FIXP_DBL *pbMaskHiFactor,
357
                                    FIXP_DBL *pbMaskLoFactorSprEn,
358
                                    FIXP_DBL *pbMaskHiFactorSprEn,
359
                                    const LONG bitrate, const INT blockType)
360
361
0
{
362
0
  INT i;
363
0
  FIXP_DBL MASKLOWSPREN, MASKHIGHSPREN;
364
365
0
  FIXP_DBL MASKHIGH = (FIXP_DBL)0x30000000;               /* 1.5 in q29 */
366
0
  FIXP_DBL MASKLOW = (FIXP_DBL)0x60000000;                /* 3.0 in q29 */
367
0
  FIXP_DBL MASKLOWSPRENLONG = (FIXP_DBL)0x60000000;       /* 3.0 in q29 */
368
0
  FIXP_DBL MASKHIGHSPRENLONG = (FIXP_DBL)0x40000000;      /* 2.0 in q29 */
369
0
  FIXP_DBL MASKHIGHSPRENLONGLOWBR = (FIXP_DBL)0x30000000; /* 1.5 in q29 */
370
0
  FIXP_DBL MASKLOWSPRENSHORT = (FIXP_DBL)0x40000000;      /* 2.0 in q29 */
371
0
  FIXP_DBL MASKHIGHSPRENSHORT = (FIXP_DBL)0x30000000;     /* 1.5 in q29 */
372
0
  FIXP_DBL TEN = (FIXP_DBL)0x50000000;                    /* 10.0 in q27 */
373
374
0
  if (blockType != SHORT_WINDOW) {
375
0
    MASKLOWSPREN = MASKLOWSPRENLONG;
376
0
    MASKHIGHSPREN =
377
0
        (bitrate > 20000) ? MASKHIGHSPRENLONG : MASKHIGHSPRENLONGLOWBR;
378
0
  } else {
379
0
    MASKLOWSPREN = MASKLOWSPRENSHORT;
380
0
    MASKHIGHSPREN = MASKHIGHSPRENSHORT;
381
0
  }
382
383
0
  for (i = 0; i < numPb; i++) {
384
0
    if (i > 0) {
385
0
      pbMaskHiFactor[i] = getMaskFactor(
386
0
          fMult(MASKHIGH, (pbBarcValue[i] - pbBarcValue[i - 1])), 23, TEN, 27);
387
388
0
      pbMaskLoFactor[i - 1] = getMaskFactor(
389
0
          fMult(MASKLOW, (pbBarcValue[i] - pbBarcValue[i - 1])), 23, TEN, 27);
390
391
0
      pbMaskHiFactorSprEn[i] = getMaskFactor(
392
0
          fMult(MASKHIGHSPREN, (pbBarcValue[i] - pbBarcValue[i - 1])), 23, TEN,
393
0
          27);
394
395
0
      pbMaskLoFactorSprEn[i - 1] = getMaskFactor(
396
0
          fMult(MASKLOWSPREN, (pbBarcValue[i] - pbBarcValue[i - 1])), 23, TEN,
397
0
          27);
398
0
    } else {
399
0
      pbMaskHiFactor[i] = (FIXP_DBL)0;
400
0
      pbMaskLoFactor[numPb - 1] = (FIXP_DBL)0;
401
0
      pbMaskHiFactorSprEn[i] = (FIXP_DBL)0;
402
0
      pbMaskLoFactorSprEn[numPb - 1] = (FIXP_DBL)0;
403
0
    }
404
0
  }
405
0
}
406
407
static void FDKaacEnc_initBarcValues(INT numPb, INT *pbOffset, INT numLines,
408
0
                                     INT samplingFrequency, FIXP_DBL *pbBval) {
409
0
  INT i;
410
0
  FIXP_DBL MAX_BARC = (FIXP_DBL)0x30000000; /* 24.0 in q25 */
411
412
0
  for (i = 0; i < numPb; i++) {
413
0
    FIXP_DBL v1, v2, cur_bark;
414
0
    v1 = FDKaacEnc_BarcLineValue(numLines, pbOffset[i], samplingFrequency);
415
0
    v2 = FDKaacEnc_BarcLineValue(numLines, pbOffset[i + 1], samplingFrequency);
416
0
    cur_bark = (v1 >> 1) + (v2 >> 1);
417
0
    pbBval[i] = fixMin(cur_bark, MAX_BARC);
418
0
  }
419
0
}
420
421
static void FDKaacEnc_initMinSnr(const LONG bitrate, const LONG samplerate,
422
                                 const INT numLines, const INT *sfbOffset,
423
                                 const INT sfbActive, const INT blockType,
424
0
                                 FIXP_DBL *sfbMinSnrLdData) {
425
0
  INT sfb;
426
427
  /* Fix conversion variables */
428
0
  INT qbfac, qperwin, qdiv, qpeprt_const, qpeprt;
429
0
  INT qtmp, qsnr, sfbWidth;
430
431
0
  FIXP_DBL MAX_BARC = (FIXP_DBL)0x30000000;   /* 24.0 in q25 */
432
0
  FIXP_DBL MAX_BARCP1 = (FIXP_DBL)0x32000000; /* 25.0 in q25 */
433
0
  FIXP_DBL BITS2PEFAC = (FIXP_DBL)0x4b851eb8; /* 1.18 in q30 */
434
0
  FIXP_DBL PERS2P4 = (FIXP_DBL)0x624dd2f2;    /* 0.024 in q36 */
435
0
  FIXP_DBL ONEP5 = (FIXP_DBL)0x60000000;      /* 1.5 in q30 */
436
0
  FIXP_DBL MAX_SNR = (FIXP_DBL)0x33333333;    /* 0.8 in q30 */
437
0
  FIXP_DBL MIN_SNR = (FIXP_DBL)0x003126e9;    /* 0.003 in q30 */
438
439
0
  FIXP_DBL barcFactor, pePerWindow, pePart, barcWidth;
440
0
  FIXP_DBL pePart_const, tmp, snr, one_qsnr, one_point5;
441
442
  /* relative number of active barks */
443
0
  barcFactor = fDivNorm(fixMin(FDKaacEnc_BarcLineValue(
444
0
                                   numLines, sfbOffset[sfbActive], samplerate),
445
0
                               MAX_BARC),
446
0
                        MAX_BARCP1, &qbfac);
447
448
0
  qbfac = DFRACT_BITS - 1 - qbfac;
449
450
0
  pePerWindow = fDivNorm(bitrate, samplerate, &qperwin);
451
0
  qperwin = DFRACT_BITS - 1 - qperwin;
452
0
  pePerWindow = fMult(pePerWindow, BITS2PEFAC);
453
0
  qperwin = qperwin + 30 - (DFRACT_BITS - 1);
454
0
  pePerWindow = fMult(pePerWindow, PERS2P4);
455
0
  qperwin = qperwin + 36 - (DFRACT_BITS - 1);
456
457
0
  switch (numLines) {
458
0
    case 1024:
459
0
      qperwin = qperwin - 10;
460
0
      break;
461
0
    case 128:
462
0
      qperwin = qperwin - 7;
463
0
      break;
464
0
    case 512:
465
0
      qperwin = qperwin - 9;
466
0
      break;
467
0
    case 480:
468
0
      qperwin = qperwin - 9;
469
0
      pePerWindow = fMult(pePerWindow, FL2FXCONST_DBL(480.f / 512.f));
470
0
      break;
471
0
  }
472
473
  /* for short blocks it is assumed that more bits are available */
474
0
  if (blockType == SHORT_WINDOW) {
475
0
    pePerWindow = fMult(pePerWindow, ONEP5);
476
0
    qperwin = qperwin + 30 - (DFRACT_BITS - 1);
477
0
  }
478
0
  pePart_const = fDivNorm(pePerWindow, barcFactor, &qdiv);
479
0
  qpeprt_const = qperwin - qbfac + DFRACT_BITS - 1 - qdiv;
480
481
0
  for (sfb = 0; sfb < sfbActive; sfb++) {
482
0
    barcWidth =
483
0
        FDKaacEnc_BarcLineValue(numLines, sfbOffset[sfb + 1], samplerate) -
484
0
        FDKaacEnc_BarcLineValue(numLines, sfbOffset[sfb], samplerate);
485
486
    /* adapt to sfb bands */
487
0
    pePart = fMult(pePart_const, barcWidth);
488
0
    qpeprt = qpeprt_const + 25 - (DFRACT_BITS - 1);
489
490
    /* pe -> snr calculation */
491
0
    sfbWidth = (sfbOffset[sfb + 1] - sfbOffset[sfb]);
492
0
    pePart = fDivNorm(pePart, sfbWidth, &qdiv);
493
0
    qpeprt += DFRACT_BITS - 1 - qdiv;
494
495
0
    tmp = f2Pow(pePart, DFRACT_BITS - 1 - qpeprt, &qtmp);
496
0
    qtmp = DFRACT_BITS - 1 - qtmp;
497
498
    /* Subtract 1.5 */
499
0
    qsnr = fixMin(qtmp, 30);
500
0
    tmp = tmp >> (qtmp - qsnr);
501
502
0
    if ((30 + 1 - qsnr) > (DFRACT_BITS - 1))
503
0
      one_point5 = (FIXP_DBL)0;
504
0
    else
505
0
      one_point5 = (FIXP_DBL)(ONEP5 >> (30 + 1 - qsnr));
506
507
0
    snr = (tmp >> 1) - (one_point5);
508
0
    qsnr -= 1;
509
510
    /* max(snr, 1.0) */
511
0
    if (qsnr > 0)
512
0
      one_qsnr = (FIXP_DBL)(1 << qsnr);
513
0
    else
514
0
      one_qsnr = (FIXP_DBL)0;
515
516
0
    snr = fixMax(one_qsnr, snr);
517
518
    /* 1/snr */
519
0
    snr = fDivNorm(one_qsnr, snr, &qsnr);
520
0
    qsnr = DFRACT_BITS - 1 - qsnr;
521
0
    snr = (qsnr > 30) ? (snr >> (qsnr - 30)) : snr;
522
523
    /* upper limit is -1 dB */
524
0
    snr = (snr > MAX_SNR) ? MAX_SNR : snr;
525
526
    /* lower limit is -25 dB */
527
0
    snr = (snr < MIN_SNR) ? MIN_SNR : snr;
528
0
    snr = snr << 1;
529
530
0
    sfbMinSnrLdData[sfb] = CalcLdData(snr);
531
0
  }
532
0
}
533
534
AAC_ENCODER_ERROR FDKaacEnc_InitPsyConfiguration(INT bitrate, INT samplerate,
535
                                                 INT bandwidth, INT blocktype,
536
                                                 INT granuleLength, INT useIS,
537
                                                 INT useMS,
538
                                                 PSY_CONFIGURATION *psyConf,
539
0
                                                 FB_TYPE filterbank) {
540
0
  AAC_ENCODER_ERROR ErrorStatus;
541
0
  INT sfb;
542
0
  FIXP_DBL sfbBarcVal[MAX_SFB];
543
0
  const INT frameLengthLong = granuleLength;
544
0
  const INT frameLengthShort = granuleLength / TRANS_FAC;
545
0
  INT downscaleFactor = 1;
546
547
0
  switch (granuleLength) {
548
0
    case 256:
549
0
    case 240:
550
0
      downscaleFactor = 2;
551
0
      break;
552
0
    case 128:
553
0
    case 120:
554
0
      downscaleFactor = 4;
555
0
      break;
556
0
    default:
557
0
      downscaleFactor = 1;
558
0
      break;
559
0
  }
560
561
0
  FDKmemclear(psyConf, sizeof(PSY_CONFIGURATION));
562
0
  psyConf->granuleLength = granuleLength;
563
0
  psyConf->filterbank = filterbank;
564
565
0
  psyConf->allowIS = (useIS) && ((bitrate / bandwidth) < 5);
566
0
  psyConf->allowMS = useMS;
567
568
  /* init sfb table */
569
0
  ErrorStatus = FDKaacEnc_initSfbTable(samplerate * downscaleFactor, blocktype,
570
0
                                       granuleLength * downscaleFactor,
571
0
                                       psyConf->sfbOffset, &psyConf->sfbCnt);
572
573
0
  if (ErrorStatus != AAC_ENC_OK) return ErrorStatus;
574
575
  /* calculate barc values for each pb */
576
0
  FDKaacEnc_initBarcValues(psyConf->sfbCnt, psyConf->sfbOffset,
577
0
                           psyConf->sfbOffset[psyConf->sfbCnt], samplerate,
578
0
                           sfbBarcVal);
579
580
0
  FDKaacEnc_InitMinPCMResolution(psyConf->sfbCnt, psyConf->sfbOffset,
581
0
                                 psyConf->sfbPcmQuantThreshold);
582
583
  /* calculate spreading function */
584
0
  FDKaacEnc_initSpreading(psyConf->sfbCnt, sfbBarcVal,
585
0
                          psyConf->sfbMaskLowFactor, psyConf->sfbMaskHighFactor,
586
0
                          psyConf->sfbMaskLowFactorSprEn,
587
0
                          psyConf->sfbMaskHighFactorSprEn, bitrate, blocktype);
588
589
  /* init ratio */
590
591
0
  psyConf->maxAllowedIncreaseFactor = 2; /* integer */
592
0
  psyConf->minRemainingThresholdFactor = (FIXP_SGL)0x0148;
593
  /* FL2FXCONST_SGL(0.01f); */ /* fract   */
594
595
0
  psyConf->clipEnergy =
596
0
      (FIXP_DBL)0x773593ff; /* FL2FXCONST_DBL(1.0e9*NORM_PCM_ENERGY); */
597
598
0
  if (blocktype != SHORT_WINDOW) {
599
0
    psyConf->lowpassLine =
600
0
        (INT)((2 * bandwidth * frameLengthLong) / samplerate);
601
0
    psyConf->lowpassLineLFE = LFE_LOWPASS_LINE;
602
0
  } else {
603
0
    psyConf->lowpassLine =
604
0
        (INT)((2 * bandwidth * frameLengthShort) / samplerate);
605
0
    psyConf->lowpassLineLFE = 0; /* LFE only in lonf blocks */
606
    /* psyConf->clipEnergy /= (TRANS_FAC * TRANS_FAC); */
607
0
    psyConf->clipEnergy >>= 6;
608
0
  }
609
610
0
  for (sfb = 0; sfb < psyConf->sfbCnt; sfb++) {
611
0
    if (psyConf->sfbOffset[sfb] >= psyConf->lowpassLine) break;
612
0
  }
613
0
  psyConf->sfbActive = fMax(sfb, 1);
614
615
0
  for (sfb = 0; sfb < psyConf->sfbCnt; sfb++) {
616
0
    if (psyConf->sfbOffset[sfb] >= psyConf->lowpassLineLFE) break;
617
0
  }
618
0
  psyConf->sfbActiveLFE = sfb;
619
0
  psyConf->sfbActive = fMax(psyConf->sfbActive, psyConf->sfbActiveLFE);
620
621
  /* calculate minSnr */
622
0
  FDKaacEnc_initMinSnr(bitrate, samplerate * downscaleFactor,
623
0
                       psyConf->sfbOffset[psyConf->sfbCnt], psyConf->sfbOffset,
624
0
                       psyConf->sfbActive, blocktype, psyConf->sfbMinSnrLdData);
625
626
0
  return AAC_ENC_OK;
627
0
}