Coverage Report

Created: 2024-09-06 07:53

/src/fdk-aac/libSBRenc/src/nf_est.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** SBR encoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
#include "nf_est.h"
104
105
#include "sbr_misc.h"
106
107
#include "genericStds.h"
108
109
/* smoothFilter[4]  = {0.05857864376269f, 0.2f, 0.34142135623731f, 0.4f}; */
110
static const FIXP_DBL smoothFilter[4] = {0x077f813d, 0x19999995, 0x2bb3b1f5,
111
                                         0x33333335};
112
113
/* static const INT smoothFilterLength = 4; */
114
115
static const FIXP_DBL QuantOffset = (INT)0xfc000000; /* ld64(0.25) */
116
117
#ifndef min
118
0
#define min(a, b) (a < b ? a : b)
119
#endif
120
121
#ifndef max
122
#define max(a, b) (a > b ? a : b)
123
#endif
124
125
0
#define NOISE_FLOOR_OFFSET_SCALING (4)
126
127
/**************************************************************************/
128
/*!
129
  \brief     The function applies smoothing to the noise levels.
130
131
132
133
  \return    none
134
135
*/
136
/**************************************************************************/
137
static void smoothingOfNoiseLevels(
138
    FIXP_DBL *NoiseLevels, /*!< pointer to noise-floor levels.*/
139
    INT nEnvelopes,        /*!< Number of noise floor envelopes.*/
140
    INT noNoiseBands, /*!< Number of noise bands for every noise floor envelope.
141
                       */
142
    FIXP_DBL prevNoiseLevels[NF_SMOOTHING_LENGTH]
143
                            [MAX_NUM_NOISE_VALUES], /*!< Previous noise floor
144
                                                       envelopes. */
145
    const FIXP_DBL *
146
        pSmoothFilter, /*!< filter used for smoothing the noise floor levels. */
147
    INT transientFlag) /*!< flag indicating if a transient is present*/
148
149
0
{
150
0
  INT i, band, env;
151
0
  FIXP_DBL accu;
152
153
0
  for (env = 0; env < nEnvelopes; env++) {
154
0
    if (transientFlag) {
155
0
      for (i = 0; i < NF_SMOOTHING_LENGTH; i++) {
156
0
        FDKmemcpy(prevNoiseLevels[i], NoiseLevels + env * noNoiseBands,
157
0
                  noNoiseBands * sizeof(FIXP_DBL));
158
0
      }
159
0
    } else {
160
0
      for (i = 1; i < NF_SMOOTHING_LENGTH; i++) {
161
0
        FDKmemcpy(prevNoiseLevels[i - 1], prevNoiseLevels[i],
162
0
                  noNoiseBands * sizeof(FIXP_DBL));
163
0
      }
164
0
      FDKmemcpy(prevNoiseLevels[NF_SMOOTHING_LENGTH - 1],
165
0
                NoiseLevels + env * noNoiseBands,
166
0
                noNoiseBands * sizeof(FIXP_DBL));
167
0
    }
168
169
0
    for (band = 0; band < noNoiseBands; band++) {
170
0
      accu = FL2FXCONST_DBL(0.0f);
171
0
      for (i = 0; i < NF_SMOOTHING_LENGTH; i++) {
172
0
        accu += fMultDiv2(pSmoothFilter[i], prevNoiseLevels[i][band]);
173
0
      }
174
0
      FDK_ASSERT((band + env * noNoiseBands) < MAX_NUM_NOISE_VALUES);
175
0
      NoiseLevels[band + env * noNoiseBands] = accu << 1;
176
0
    }
177
0
  }
178
0
}
179
180
/**************************************************************************/
181
/*!
182
  \brief     Does the noise floor level estiamtion.
183
184
  The noiseLevel samples are scaled by the factor 0.25
185
186
  \return    none
187
188
*/
189
/**************************************************************************/
190
static void qmfBasedNoiseFloorDetection(
191
    FIXP_DBL *noiseLevel,            /*!< Pointer to vector to
192
                                        store the noise levels
193
                                        in.*/
194
    FIXP_DBL **quotaMatrixOrig,      /*!< Matrix holding the quota
195
                                        values of the original. */
196
    SCHAR *indexVector,              /*!< Index vector to obtain the
197
                                        patched data. */
198
    INT startIndex,                  /*!< Start index. */
199
    INT stopIndex,                   /*!< Stop index. */
200
    INT startChannel,                /*!< Start channel of the current
201
                                        noise floor band.*/
202
    INT stopChannel,                 /*!< Stop channel of the current
203
                                        noise floor band. */
204
    FIXP_DBL ana_max_level,          /*!< Maximum level of the
205
                                        adaptive noise.*/
206
    FIXP_DBL noiseFloorOffset,       /*!< Noise floor offset. */
207
    INT missingHarmonicFlag,         /*!< Flag indicating if a
208
                                        strong tonal component
209
                                        is missing.*/
210
    FIXP_DBL weightFac,              /*!< Weightening factor for the
211
                                        difference between orig and sbr.
212
                                      */
213
    INVF_MODE diffThres,             /*!< Threshold value to control the
214
                                        inverse filtering decision.*/
215
    INVF_MODE inverseFilteringLevel) /*!< Inverse filtering
216
                                        level of the current
217
                                        band.*/
218
0
{
219
0
  INT scale, l, k;
220
0
  FIXP_DBL meanOrig = FL2FXCONST_DBL(0.0f), meanSbr = FL2FXCONST_DBL(0.0f),
221
0
           diff;
222
0
  FIXP_DBL invIndex = GetInvInt(stopIndex - startIndex);
223
0
  FIXP_DBL invChannel = GetInvInt(stopChannel - startChannel);
224
0
  FIXP_DBL accu;
225
226
  /*
227
  Calculate the mean value, over the current time segment, for the original, the
228
  HFR and the difference, over all channels in the current frequency range.
229
  */
230
231
0
  if (missingHarmonicFlag == 1) {
232
0
    for (l = startChannel; l < stopChannel; l++) {
233
      /* tonalityOrig */
234
0
      accu = FL2FXCONST_DBL(0.0f);
235
0
      for (k = startIndex; k < stopIndex; k++) {
236
0
        accu += fMultDiv2(quotaMatrixOrig[k][l], invIndex);
237
0
      }
238
0
      meanOrig = fixMax(meanOrig, (accu << 1));
239
240
      /* tonalitySbr */
241
0
      accu = FL2FXCONST_DBL(0.0f);
242
0
      for (k = startIndex; k < stopIndex; k++) {
243
0
        accu += fMultDiv2(quotaMatrixOrig[k][indexVector[l]], invIndex);
244
0
      }
245
0
      meanSbr = fixMax(meanSbr, (accu << 1));
246
0
    }
247
0
  } else {
248
0
    for (l = startChannel; l < stopChannel; l++) {
249
      /* tonalityOrig */
250
0
      accu = FL2FXCONST_DBL(0.0f);
251
0
      for (k = startIndex; k < stopIndex; k++) {
252
0
        accu += fMultDiv2(quotaMatrixOrig[k][l], invIndex);
253
0
      }
254
0
      meanOrig += fMult((accu << 1), invChannel);
255
256
      /* tonalitySbr */
257
0
      accu = FL2FXCONST_DBL(0.0f);
258
0
      for (k = startIndex; k < stopIndex; k++) {
259
0
        accu += fMultDiv2(quotaMatrixOrig[k][indexVector[l]], invIndex);
260
0
      }
261
0
      meanSbr += fMult((accu << 1), invChannel);
262
0
    }
263
0
  }
264
265
  /* Small fix to avoid noise during silent passages.*/
266
0
  if (meanOrig <= FL2FXCONST_DBL(0.000976562f * RELAXATION_FLOAT) &&
267
0
      meanSbr <= FL2FXCONST_DBL(0.000976562f * RELAXATION_FLOAT)) {
268
0
    meanOrig = FL2FXCONST_DBL(101.5936673f * RELAXATION_FLOAT);
269
0
    meanSbr = FL2FXCONST_DBL(101.5936673f * RELAXATION_FLOAT);
270
0
  }
271
272
0
  meanOrig = fixMax(meanOrig, RELAXATION);
273
0
  meanSbr = fixMax(meanSbr, RELAXATION);
274
275
0
  if (missingHarmonicFlag == 1 || inverseFilteringLevel == INVF_MID_LEVEL ||
276
0
      inverseFilteringLevel == INVF_LOW_LEVEL ||
277
0
      inverseFilteringLevel == INVF_OFF || inverseFilteringLevel <= diffThres) {
278
0
    diff = RELAXATION;
279
0
  } else {
280
0
    accu = fDivNorm(meanSbr, meanOrig, &scale);
281
282
0
    diff = fixMax(RELAXATION, fMult(RELAXATION_FRACT, fMult(weightFac, accu)) >>
283
0
                                  (RELAXATION_SHIFT - scale));
284
0
  }
285
286
  /*
287
   * noise Level is now a positive value, i.e.
288
   * the more harmonic the signal is the higher noise level,
289
   * this makes no sense so we change the sign.
290
   *********************************************************/
291
0
  accu = fDivNorm(diff, meanOrig, &scale);
292
0
  scale -= 2;
293
294
0
  if ((scale > 0) && (accu > ((FIXP_DBL)MAXVAL_DBL) >> scale)) {
295
0
    *noiseLevel = (FIXP_DBL)MAXVAL_DBL;
296
0
  } else {
297
0
    *noiseLevel = scaleValue(accu, scale);
298
0
  }
299
300
  /*
301
   * Add a noise floor offset to compensate for bias in the detector
302
   *****************************************************************/
303
0
  if (!missingHarmonicFlag) {
304
0
    *noiseLevel = fixMin(fMult(*noiseLevel, noiseFloorOffset),
305
0
                         (FIXP_DBL)MAXVAL_DBL >> NOISE_FLOOR_OFFSET_SCALING)
306
0
                  << NOISE_FLOOR_OFFSET_SCALING;
307
0
  }
308
309
  /*
310
   * check to see that we don't exceed the maximum allowed level
311
   **************************************************************/
312
0
  *noiseLevel =
313
0
      fixMin(*noiseLevel,
314
0
             ana_max_level); /* ana_max_level is scaled with factor 0.25 */
315
0
}
316
317
/**************************************************************************/
318
/*!
319
  \brief     Does the noise floor level estiamtion.
320
  The function calls the Noisefloor estimation function
321
  for the time segments decided based upon the transient
322
  information. The block is always divided into one or two segments.
323
324
325
  \return    none
326
327
*/
328
/**************************************************************************/
329
void FDKsbrEnc_sbrNoiseFloorEstimateQmf(
330
    HANDLE_SBR_NOISE_FLOOR_ESTIMATE
331
        h_sbrNoiseFloorEstimate, /*!< Handle to SBR_NOISE_FLOOR_ESTIMATE struct
332
                                  */
333
    const SBR_FRAME_INFO
334
        *frame_info, /*!< Time frequency grid of the current frame. */
335
    FIXP_DBL
336
        *noiseLevels, /*!< Pointer to vector to store the noise levels in.*/
337
    FIXP_DBL **quotaMatrixOrig, /*!< Matrix holding the quota values of the
338
                                   original. */
339
    SCHAR *indexVector,         /*!< Index vector to obtain the patched data. */
340
    INT missingHarmonicsFlag,   /*!< Flag indicating if a strong tonal component
341
                                   will be missing. */
342
    INT startIndex,             /*!< Start index. */
343
    UINT numberOfEstimatesPerFrame, /*!< The number of tonality estimates per
344
                                       frame. */
345
    int transientFrame, /*!< A flag indicating if a transient is present. */
346
    INVF_MODE *pInvFiltLevels, /*!< Pointer to the vector holding the inverse
347
                                  filtering levels. */
348
    UINT sbrSyntaxFlags)
349
350
0
{
351
0
  INT nNoiseEnvelopes, startPos[2], stopPos[2], env, band;
352
353
0
  INT noNoiseBands = h_sbrNoiseFloorEstimate->noNoiseBands;
354
0
  INT *freqBandTable = h_sbrNoiseFloorEstimate->freqBandTableQmf;
355
356
0
  nNoiseEnvelopes = frame_info->nNoiseEnvelopes;
357
358
0
  startPos[0] = startIndex;
359
360
0
  if (nNoiseEnvelopes == 1) {
361
0
    stopPos[0] = startIndex + min(numberOfEstimatesPerFrame, 2);
362
0
  } else {
363
0
    stopPos[0] = startIndex + 1;
364
0
    startPos[1] = startIndex + 1;
365
0
    stopPos[1] = startIndex + min(numberOfEstimatesPerFrame, 2);
366
0
  }
367
368
  /*
369
   * Estimate the noise floor.
370
   **************************************/
371
0
  for (env = 0; env < nNoiseEnvelopes; env++) {
372
0
    for (band = 0; band < noNoiseBands; band++) {
373
0
      FDK_ASSERT((band + env * noNoiseBands) < MAX_NUM_NOISE_VALUES);
374
0
      qmfBasedNoiseFloorDetection(
375
0
          &noiseLevels[band + env * noNoiseBands], quotaMatrixOrig, indexVector,
376
0
          startPos[env], stopPos[env], freqBandTable[band],
377
0
          freqBandTable[band + 1], h_sbrNoiseFloorEstimate->ana_max_level,
378
0
          h_sbrNoiseFloorEstimate->noiseFloorOffset[band], missingHarmonicsFlag,
379
0
          h_sbrNoiseFloorEstimate->weightFac,
380
0
          h_sbrNoiseFloorEstimate->diffThres, pInvFiltLevels[band]);
381
0
    }
382
0
  }
383
384
  /*
385
   * Smoothing of the values.
386
   **************************/
387
0
  smoothingOfNoiseLevels(noiseLevels, nNoiseEnvelopes,
388
0
                         h_sbrNoiseFloorEstimate->noNoiseBands,
389
0
                         h_sbrNoiseFloorEstimate->prevNoiseLevels,
390
0
                         h_sbrNoiseFloorEstimate->smoothFilter, transientFrame);
391
392
  /* quantisation*/
393
0
  for (env = 0; env < nNoiseEnvelopes; env++) {
394
0
    for (band = 0; band < noNoiseBands; band++) {
395
0
      FDK_ASSERT((band + env * noNoiseBands) < MAX_NUM_NOISE_VALUES);
396
0
      noiseLevels[band + env * noNoiseBands] =
397
0
          (FIXP_DBL)NOISE_FLOOR_OFFSET_64 -
398
0
          (FIXP_DBL)CalcLdData(noiseLevels[band + env * noNoiseBands] +
399
0
                               (FIXP_DBL)1) +
400
0
          QuantOffset;
401
0
    }
402
0
  }
403
0
}
404
405
/**************************************************************************/
406
/*!
407
  \brief
408
409
410
  \return    errorCode, noError if successful
411
412
*/
413
/**************************************************************************/
414
static INT downSampleLoRes(INT *v_result,                 /*!<    */
415
                           INT num_result,                /*!<    */
416
                           const UCHAR *freqBandTableRef, /*!<    */
417
                           INT num_Ref)                   /*!<    */
418
0
{
419
0
  INT step;
420
0
  INT i, j;
421
0
  INT org_length, result_length;
422
0
  INT v_index[MAX_FREQ_COEFFS / 2];
423
424
  /* init */
425
0
  org_length = num_Ref;
426
0
  result_length = num_result;
427
428
0
  v_index[0] = 0; /* Always use left border */
429
0
  i = 0;
430
0
  while (org_length > 0) /* Create downsample vector */
431
0
  {
432
0
    i++;
433
0
    step = org_length / result_length; /* floor; */
434
0
    org_length = org_length - step;
435
0
    result_length--;
436
0
    v_index[i] = v_index[i - 1] + step;
437
0
  }
438
439
0
  if (i != num_result) /* Should never happen */
440
0
    return (1);        /* error downsampling */
441
442
0
  for (j = 0; j <= i;
443
0
       j++) /* Use downsample vector to index LoResolution vector. */
444
0
  {
445
0
    v_result[j] = freqBandTableRef[v_index[j]];
446
0
  }
447
448
0
  return (0);
449
0
}
450
451
/**************************************************************************/
452
/*!
453
  \brief    Initialize an instance of the noise floor level estimation module.
454
455
456
  \return    errorCode, noError if successful
457
458
*/
459
/**************************************************************************/
460
INT FDKsbrEnc_InitSbrNoiseFloorEstimate(
461
    HANDLE_SBR_NOISE_FLOOR_ESTIMATE
462
        h_sbrNoiseFloorEstimate, /*!< Handle to SBR_NOISE_FLOOR_ESTIMATE struct
463
                                  */
464
    INT ana_max_level,           /*!< Maximum level of the adaptive noise. */
465
    const UCHAR *freqBandTable,  /*!< Frequency band table. */
466
    INT nSfb,                    /*!< Number of frequency bands. */
467
    INT noiseBands,              /*!< Number of noise bands per octave. */
468
    INT noiseFloorOffset,        /*!< Noise floor offset. */
469
    INT timeSlots,               /*!< Number of time slots in a frame. */
470
    UINT useSpeechConfig /*!< Flag: adapt tuning parameters according to speech
471
                          */
472
0
) {
473
0
  INT i, qexp, qtmp;
474
0
  FIXP_DBL tmp, exp;
475
476
0
  FDKmemclear(h_sbrNoiseFloorEstimate, sizeof(SBR_NOISE_FLOOR_ESTIMATE));
477
478
0
  h_sbrNoiseFloorEstimate->smoothFilter = smoothFilter;
479
0
  if (useSpeechConfig) {
480
0
    h_sbrNoiseFloorEstimate->weightFac = (FIXP_DBL)MAXVAL_DBL;
481
0
    h_sbrNoiseFloorEstimate->diffThres = INVF_LOW_LEVEL;
482
0
  } else {
483
0
    h_sbrNoiseFloorEstimate->weightFac = FL2FXCONST_DBL(0.25f);
484
0
    h_sbrNoiseFloorEstimate->diffThres = INVF_MID_LEVEL;
485
0
  }
486
487
0
  h_sbrNoiseFloorEstimate->timeSlots = timeSlots;
488
0
  h_sbrNoiseFloorEstimate->noiseBands = noiseBands;
489
490
  /* h_sbrNoiseFloorEstimate->ana_max_level is scaled by 0.25  */
491
0
  switch (ana_max_level) {
492
0
    case 6:
493
0
      h_sbrNoiseFloorEstimate->ana_max_level = (FIXP_DBL)MAXVAL_DBL;
494
0
      break;
495
0
    case 3:
496
0
      h_sbrNoiseFloorEstimate->ana_max_level = FL2FXCONST_DBL(0.5);
497
0
      break;
498
0
    case -3:
499
0
      h_sbrNoiseFloorEstimate->ana_max_level = FL2FXCONST_DBL(0.125);
500
0
      break;
501
0
    default:
502
      /* Should not enter here */
503
0
      h_sbrNoiseFloorEstimate->ana_max_level = (FIXP_DBL)MAXVAL_DBL;
504
0
      break;
505
0
  }
506
507
  /*
508
    calculate number of noise bands and allocate
509
  */
510
0
  if (FDKsbrEnc_resetSbrNoiseFloorEstimate(h_sbrNoiseFloorEstimate,
511
0
                                           freqBandTable, nSfb))
512
0
    return (1);
513
514
0
  if (noiseFloorOffset == 0) {
515
0
    tmp = ((FIXP_DBL)MAXVAL_DBL) >> NOISE_FLOOR_OFFSET_SCALING;
516
0
  } else {
517
    /* noiseFloorOffset has to be smaller than 12, because
518
       the result of the calculation below must be smaller than 1:
519
       (2^(noiseFloorOffset/3))*2^4<1                                        */
520
0
    FDK_ASSERT(noiseFloorOffset < 12);
521
522
    /* Assumes the noise floor offset in tuning table are in q31    */
523
    /* Change the qformat here when non-zero values would be filled */
524
0
    exp = fDivNorm((FIXP_DBL)noiseFloorOffset, 3, &qexp);
525
0
    tmp = fPow(2, DFRACT_BITS - 1, exp, qexp, &qtmp);
526
0
    tmp = scaleValue(tmp, qtmp - NOISE_FLOOR_OFFSET_SCALING);
527
0
  }
528
529
0
  for (i = 0; i < h_sbrNoiseFloorEstimate->noNoiseBands; i++) {
530
0
    h_sbrNoiseFloorEstimate->noiseFloorOffset[i] = tmp;
531
0
  }
532
533
0
  return (0);
534
0
}
535
536
/**************************************************************************/
537
/*!
538
  \brief     Resets the current instance of the noise floor estiamtion
539
          module.
540
541
542
  \return    errorCode, noError if successful
543
544
*/
545
/**************************************************************************/
546
INT FDKsbrEnc_resetSbrNoiseFloorEstimate(
547
    HANDLE_SBR_NOISE_FLOOR_ESTIMATE
548
        h_sbrNoiseFloorEstimate, /*!< Handle to SBR_NOISE_FLOOR_ESTIMATE struct
549
                                  */
550
    const UCHAR *freqBandTable,  /*!< Frequency band table. */
551
    INT nSfb /*!< Number of bands in the frequency band table. */
552
0
) {
553
0
  INT k2, kx;
554
555
  /*
556
   * Calculate number of noise bands
557
   ***********************************/
558
0
  k2 = freqBandTable[nSfb];
559
0
  kx = freqBandTable[0];
560
0
  if (h_sbrNoiseFloorEstimate->noiseBands == 0) {
561
0
    h_sbrNoiseFloorEstimate->noNoiseBands = 1;
562
0
  } else {
563
    /*
564
     * Calculate number of noise bands 1,2 or 3 bands/octave
565
     ********************************************************/
566
0
    FIXP_DBL tmp, ratio, lg2;
567
0
    INT ratio_e, qlg2, nNoiseBands;
568
569
0
    ratio = fDivNorm(k2, kx, &ratio_e);
570
0
    lg2 = fLog2(ratio, ratio_e, &qlg2);
571
0
    tmp = fMult((FIXP_DBL)(h_sbrNoiseFloorEstimate->noiseBands << 24), lg2);
572
0
    tmp = scaleValue(tmp, qlg2 - 23);
573
574
0
    nNoiseBands = (INT)((tmp + (FIXP_DBL)1) >> 1);
575
576
0
    if (nNoiseBands > MAX_NUM_NOISE_COEFFS) {
577
0
      nNoiseBands = MAX_NUM_NOISE_COEFFS;
578
0
    }
579
580
0
    if (nNoiseBands == 0) {
581
0
      nNoiseBands = 1;
582
0
    }
583
584
0
    h_sbrNoiseFloorEstimate->noNoiseBands = nNoiseBands;
585
0
  }
586
587
0
  return (downSampleLoRes(h_sbrNoiseFloorEstimate->freqBandTableQmf,
588
0
                          h_sbrNoiseFloorEstimate->noNoiseBands, freqBandTable,
589
0
                          nSfb));
590
0
}
591
592
/**************************************************************************/
593
/*!
594
  \brief     Deletes the current instancce of the noise floor level
595
  estimation module.
596
597
598
  \return    none
599
600
*/
601
/**************************************************************************/
602
void FDKsbrEnc_deleteSbrNoiseFloorEstimate(
603
    HANDLE_SBR_NOISE_FLOOR_ESTIMATE
604
        h_sbrNoiseFloorEstimate) /*!< Handle to SBR_NOISE_FLOOR_ESTIMATE struct
605
                                  */
606
0
{
607
0
  if (h_sbrNoiseFloorEstimate) {
608
    /*
609
      nothing to do
610
    */
611
0
  }
612
0
}