Coverage Report

Created: 2024-09-06 07:53

/src/ffmpeg/libavcodec/atrac1.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * ATRAC1 compatible decoder
3
 * Copyright (c) 2009 Maxim Poliakovski
4
 * Copyright (c) 2009 Benjamin Larsson
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
23
/**
24
 * @file
25
 * ATRAC1 compatible decoder.
26
 * This decoder handles raw ATRAC1 data and probably SDDS data.
27
 */
28
29
/* Many thanks to Tim Craig for all the help! */
30
31
#include <math.h>
32
33
#include "libavutil/float_dsp.h"
34
#include "libavutil/mem.h"
35
#include "libavutil/mem_internal.h"
36
#include "libavutil/tx.h"
37
38
#include "avcodec.h"
39
#include "codec_internal.h"
40
#include "decode.h"
41
#include "get_bits.h"
42
#include "sinewin.h"
43
44
#include "atrac.h"
45
#include "atrac1data.h"
46
47
14.9M
#define AT1_MAX_BFU      52                 ///< max number of block floating units in a sound unit
48
24.4M
#define AT1_SU_SIZE      212                ///< number of bytes in a sound unit
49
464k
#define AT1_SU_SAMPLES   512                ///< number of samples in a sound unit
50
#define AT1_FRAME_SIZE   AT1_SU_SIZE * 2
51
24.4M
#define AT1_SU_MAX_BITS  AT1_SU_SIZE * 8
52
600
#define AT1_MAX_CHANNELS 2
53
54
3.76M
#define AT1_QMF_BANDS    3
55
#define IDX_LOW_BAND     0
56
#define IDX_MID_BAND     1
57
470k
#define IDX_HIGH_BAND    2
58
59
/**
60
 * Sound unit struct, one unit is used per channel
61
 */
62
typedef struct AT1SUCtx {
63
    int                 log2_block_count[AT1_QMF_BANDS];    ///< log2 number of blocks in a band
64
    int                 num_bfus;                           ///< number of Block Floating Units
65
    float*              spectrum[2];
66
    DECLARE_ALIGNED(32, float, spec1)[AT1_SU_SAMPLES];     ///< mdct buffer
67
    DECLARE_ALIGNED(32, float, spec2)[AT1_SU_SAMPLES];     ///< mdct buffer
68
    DECLARE_ALIGNED(32, float, fst_qmf_delay)[46];         ///< delay line for the 1st stacked QMF filter
69
    DECLARE_ALIGNED(32, float, snd_qmf_delay)[46];         ///< delay line for the 2nd stacked QMF filter
70
    DECLARE_ALIGNED(32, float, last_qmf_delay)[256+39];    ///< delay line for the last stacked QMF filter
71
} AT1SUCtx;
72
73
/**
74
 * The atrac1 context, holds all needed parameters for decoding
75
 */
76
typedef struct AT1Ctx {
77
    AT1SUCtx            SUs[AT1_MAX_CHANNELS];              ///< channel sound unit
78
    DECLARE_ALIGNED(32, float, spec)[AT1_SU_SAMPLES];      ///< the mdct spectrum buffer
79
80
    DECLARE_ALIGNED(32, float,  low)[256];
81
    DECLARE_ALIGNED(32, float,  mid)[256];
82
    DECLARE_ALIGNED(32, float, high)[512];
83
    float*              bands[3];
84
    AVTXContext        *mdct_ctx[3];
85
    av_tx_fn            mdct_fn[3];
86
    void (*vector_fmul_window)(float *dst, const float *src0,
87
                               const float *src1, const float *win, int len);
88
} AT1Ctx;
89
90
/** size of the transform in samples in the long mode for each QMF band */
91
static const uint16_t samples_per_band[3] = {128, 128, 256};
92
static const uint8_t   mdct_long_nbits[3] = {7, 7, 8};
93
94
95
static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
96
                      int rev_spec)
97
7.47M
{
98
7.47M
    AVTXContext *mdct_context = q->mdct_ctx[nbits - 5 - (nbits > 6)];
99
7.47M
    av_tx_fn mdct_fn = q->mdct_fn[nbits - 5 - (nbits > 6)];
100
7.47M
    int transf_size = 1 << nbits;
101
102
7.47M
    if (rev_spec) {
103
5.62M
        int i;
104
95.9M
        for (i = 0; i < transf_size / 2; i++)
105
90.3M
            FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
106
5.62M
    }
107
7.47M
    mdct_fn(mdct_context, out, spec, sizeof(float));
108
7.47M
}
109
110
111
static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
112
470k
{
113
470k
    int          band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
114
470k
    unsigned int start_pos, ref_pos = 0, pos = 0;
115
116
1.88M
    for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
117
1.41M
        float *prev_buf;
118
1.41M
        int j;
119
120
1.41M
        band_samples = samples_per_band[band_num];
121
1.41M
        log2_block_count = su->log2_block_count[band_num];
122
123
        /* number of mdct blocks in the current QMF band: 1 - for long mode */
124
        /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
125
1.41M
        num_blocks = 1 << log2_block_count;
126
127
1.41M
        if (num_blocks == 1) {
128
            /* mdct block size in samples: 128 (long mode, low & mid bands), */
129
            /* 256 (long mode, high band) and 32 (short mode, all bands) */
130
13.6k
            block_size = band_samples >> log2_block_count;
131
132
            /* calc transform size in bits according to the block_size_mode */
133
13.6k
            nbits = mdct_long_nbits[band_num] - log2_block_count;
134
135
13.6k
            if (nbits != 5 && nbits != 7 && nbits != 8)
136
0
                return AVERROR_INVALIDDATA;
137
1.39M
        } else {
138
1.39M
            block_size = 32;
139
1.39M
            nbits = 5;
140
1.39M
        }
141
142
1.41M
        start_pos = 0;
143
1.41M
        prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
144
8.89M
        for (j=0; j < num_blocks; j++) {
145
7.47M
            at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
146
147
            /* overlap and window */
148
7.47M
            q->vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
149
7.47M
                                  &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16);
150
151
7.47M
            prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
152
7.47M
            start_pos += block_size;
153
7.47M
            pos += block_size;
154
7.47M
        }
155
156
1.41M
        if (num_blocks == 1)
157
13.6k
            memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
158
159
1.41M
        ref_pos += band_samples;
160
1.41M
    }
161
162
    /* Swap buffers so the mdct overlap works */
163
470k
    FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
164
165
470k
    return 0;
166
470k
}
167
168
/**
169
 * Parse the block size mode byte
170
 */
171
172
static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
173
471k
{
174
471k
    int log2_block_count_tmp, i;
175
176
1.41M
    for (i = 0; i < 2; i++) {
177
        /* low and mid band */
178
942k
        log2_block_count_tmp = get_bits(gb, 2);
179
942k
        if (log2_block_count_tmp & 1)
180
464
            return AVERROR_INVALIDDATA;
181
942k
        log2_block_cnt[i] = 2 - log2_block_count_tmp;
182
942k
    }
183
184
    /* high band */
185
471k
    log2_block_count_tmp = get_bits(gb, 2);
186
471k
    if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
187
269
        return AVERROR_INVALIDDATA;
188
470k
    log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
189
190
470k
    skip_bits(gb, 2);
191
470k
    return 0;
192
471k
}
193
194
195
static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
196
                              float spec[AT1_SU_SAMPLES])
197
470k
{
198
470k
    int bits_used, band_num, bfu_num, i;
199
470k
    uint8_t idwls[AT1_MAX_BFU];                 ///< the word length indexes for each BFU
200
470k
    uint8_t idsfs[AT1_MAX_BFU];                 ///< the scalefactor indexes for each BFU
201
202
    /* parse the info byte (2nd byte) telling how much BFUs were coded */
203
470k
    su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
204
205
    /* calc number of consumed bits:
206
        num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
207
        + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
208
470k
    bits_used = su->num_bfus * 10 + 32 +
209
470k
                bfu_amount_tab2[get_bits(gb, 2)] +
210
470k
                (bfu_amount_tab3[get_bits(gb, 3)] << 1);
211
212
    /* get word length index (idwl) for each BFU */
213
10.5M
    for (i = 0; i < su->num_bfus; i++)
214
10.0M
        idwls[i] = get_bits(gb, 4);
215
216
    /* get scalefactor index (idsf) for each BFU */
217
10.5M
    for (i = 0; i < su->num_bfus; i++)
218
10.0M
        idsfs[i] = get_bits(gb, 6);
219
220
    /* zero idwl/idsf for empty BFUs */
221
14.9M
    for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
222
14.4M
        idwls[i] = idsfs[i] = 0;
223
224
    /* read in the spectral data and reconstruct MDCT spectrum of this channel */
225
1.88M
    for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
226
25.8M
        for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
227
24.4M
            int pos;
228
229
24.4M
            int num_specs = specs_per_bfu[bfu_num];
230
24.4M
            int word_len  = !!idwls[bfu_num] + idwls[bfu_num];
231
24.4M
            float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]];
232
24.4M
            bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
233
234
            /* check for bitstream overflow */
235
24.4M
            if (bits_used > AT1_SU_MAX_BITS)
236
507
                return AVERROR_INVALIDDATA;
237
238
            /* get the position of the 1st spec according to the block size mode */
239
24.4M
            pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
240
241
24.4M
            if (word_len) {
242
289k
                float   max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
243
244
2.72M
                for (i = 0; i < num_specs; i++) {
245
                    /* read in a quantized spec and convert it to
246
                     * signed int and then inverse quantization
247
                     */
248
2.43M
                    spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
249
2.43M
                }
250
24.1M
            } else { /* word_len = 0 -> empty BFU, zero all specs in the empty BFU */
251
24.1M
                memset(&spec[pos], 0, num_specs * sizeof(float));
252
24.1M
            }
253
24.4M
        }
254
1.41M
    }
255
256
470k
    return 0;
257
470k
}
258
259
260
static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
261
470k
{
262
470k
    float temp[256];
263
470k
    float iqmf_temp[512 + 46];
264
265
    /* combine low and middle bands */
266
470k
    ff_atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
267
268
    /* delay the signal of the high band by 39 samples */
269
470k
    memcpy( su->last_qmf_delay,    &su->last_qmf_delay[256], sizeof(float) *  39);
270
470k
    memcpy(&su->last_qmf_delay[39], q->bands[2],             sizeof(float) * 256);
271
272
    /* combine (low + middle) and high bands */
273
470k
    ff_atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
274
470k
}
275
276
277
static int atrac1_decode_frame(AVCodecContext *avctx, AVFrame *frame,
278
                               int *got_frame_ptr, AVPacket *avpkt)
279
672k
{
280
672k
    const uint8_t *buf = avpkt->data;
281
672k
    int buf_size       = avpkt->size;
282
672k
    AT1Ctx *q          = avctx->priv_data;
283
672k
    int channels       = avctx->ch_layout.nb_channels;
284
672k
    int ch, ret;
285
672k
    GetBitContext gb;
286
287
288
672k
    if (buf_size < 212 * channels) {
289
207k
        av_log(avctx, AV_LOG_ERROR, "Not enough data to decode!\n");
290
207k
        return AVERROR_INVALIDDATA;
291
207k
    }
292
293
    /* get output buffer */
294
464k
    frame->nb_samples = AT1_SU_SAMPLES;
295
464k
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
296
0
        return ret;
297
298
934k
    for (ch = 0; ch < channels; ch++) {
299
471k
        AT1SUCtx* su = &q->SUs[ch];
300
301
471k
        init_get_bits(&gb, &buf[212 * ch], 212 * 8);
302
303
        /* parse block_size_mode, 1st byte */
304
471k
        ret = at1_parse_bsm(&gb, su->log2_block_count);
305
471k
        if (ret < 0)
306
733
            return ret;
307
308
470k
        ret = at1_unpack_dequant(&gb, su, q->spec);
309
470k
        if (ret < 0)
310
507
            return ret;
311
312
470k
        ret = at1_imdct_block(su, q);
313
470k
        if (ret < 0)
314
0
            return ret;
315
470k
        at1_subband_synthesis(q, su, (float *)frame->extended_data[ch]);
316
470k
    }
317
318
462k
    *got_frame_ptr = 1;
319
320
462k
    return avctx->block_align;
321
464k
}
322
323
324
static av_cold int atrac1_decode_end(AVCodecContext * avctx)
325
600
{
326
600
    AT1Ctx *q = avctx->priv_data;
327
328
600
    av_tx_uninit(&q->mdct_ctx[0]);
329
600
    av_tx_uninit(&q->mdct_ctx[1]);
330
600
    av_tx_uninit(&q->mdct_ctx[2]);
331
332
600
    return 0;
333
600
}
334
335
336
static av_cold int atrac1_decode_init(AVCodecContext *avctx)
337
600
{
338
600
    AT1Ctx *q = avctx->priv_data;
339
600
    AVFloatDSPContext *fdsp;
340
600
    int channels = avctx->ch_layout.nb_channels;
341
600
    float scale = -1.0 / (1 << 15);
342
600
    int ret;
343
344
600
    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
345
346
600
    if (channels < 1 || channels > AT1_MAX_CHANNELS) {
347
56
        av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n",
348
56
               channels);
349
56
        return AVERROR(EINVAL);
350
56
    }
351
352
544
    if (avctx->block_align <= 0) {
353
1
        av_log(avctx, AV_LOG_ERROR, "Unsupported block align.");
354
1
        return AVERROR_PATCHWELCOME;
355
1
    }
356
357
    /* Init the mdct transforms */
358
543
    if ((ret = av_tx_init(&q->mdct_ctx[0], &q->mdct_fn[0], AV_TX_FLOAT_MDCT,
359
543
                          1, 32, &scale, 0) < 0))
360
0
        return ret;
361
543
    if ((ret = av_tx_init(&q->mdct_ctx[1], &q->mdct_fn[1], AV_TX_FLOAT_MDCT,
362
543
                          1, 128, &scale, 0) < 0))
363
0
        return ret;
364
543
    if ((ret = av_tx_init(&q->mdct_ctx[2], &q->mdct_fn[2], AV_TX_FLOAT_MDCT,
365
543
                          1, 256, &scale, 0) < 0))
366
0
        return ret;
367
368
543
    ff_init_ff_sine_windows(5);
369
370
543
    ff_atrac_generate_tables();
371
372
543
    fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
373
543
    if (!fdsp)
374
0
        return AVERROR(ENOMEM);
375
543
    q->vector_fmul_window = fdsp->vector_fmul_window;
376
543
    av_free(fdsp);
377
378
543
    q->bands[0] = q->low;
379
543
    q->bands[1] = q->mid;
380
543
    q->bands[2] = q->high;
381
382
    /* Prepare the mdct overlap buffers */
383
543
    q->SUs[0].spectrum[0] = q->SUs[0].spec1;
384
543
    q->SUs[0].spectrum[1] = q->SUs[0].spec2;
385
543
    q->SUs[1].spectrum[0] = q->SUs[1].spec1;
386
543
    q->SUs[1].spectrum[1] = q->SUs[1].spec2;
387
388
543
    return 0;
389
543
}
390
391
392
const FFCodec ff_atrac1_decoder = {
393
    .p.name         = "atrac1",
394
    CODEC_LONG_NAME("ATRAC1 (Adaptive TRansform Acoustic Coding)"),
395
    .p.type         = AVMEDIA_TYPE_AUDIO,
396
    .p.id           = AV_CODEC_ID_ATRAC1,
397
    .priv_data_size = sizeof(AT1Ctx),
398
    .init           = atrac1_decode_init,
399
    .close          = atrac1_decode_end,
400
    FF_CODEC_DECODE_CB(atrac1_decode_frame),
401
    .p.capabilities = AV_CODEC_CAP_DR1,
402
    .p.sample_fmts  = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
403
                                                      AV_SAMPLE_FMT_NONE },
404
    .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
405
};