/src/ffmpeg/libavcodec/opus/pvq.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2007-2008 CSIRO |
3 | | * Copyright (c) 2007-2009 Xiph.Org Foundation |
4 | | * Copyright (c) 2008-2009 Gregory Maxwell |
5 | | * Copyright (c) 2012 Andrew D'Addesio |
6 | | * Copyright (c) 2013-2014 Mozilla Corporation |
7 | | * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com> |
8 | | * |
9 | | * This file is part of FFmpeg. |
10 | | * |
11 | | * FFmpeg is free software; you can redistribute it and/or |
12 | | * modify it under the terms of the GNU Lesser General Public |
13 | | * License as published by the Free Software Foundation; either |
14 | | * version 2.1 of the License, or (at your option) any later version. |
15 | | * |
16 | | * FFmpeg is distributed in the hope that it will be useful, |
17 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
18 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
19 | | * Lesser General Public License for more details. |
20 | | * |
21 | | * You should have received a copy of the GNU Lesser General Public |
22 | | * License along with FFmpeg; if not, write to the Free Software |
23 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
24 | | */ |
25 | | |
26 | | #include <float.h> |
27 | | |
28 | | #include "config_components.h" |
29 | | |
30 | | #include "libavutil/mem.h" |
31 | | #include "mathops.h" |
32 | | #include "tab.h" |
33 | | #include "pvq.h" |
34 | | |
35 | 0 | #define ROUND_MUL16(a,b) ((MUL16(a, b) + 16384) >> 15) |
36 | | |
37 | 0 | #define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)]) |
38 | 0 | #define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1)) |
39 | | |
40 | | static inline int16_t celt_cos(int16_t x) |
41 | 0 | { |
42 | 0 | x = (MUL16(x, x) + 4096) >> 13; |
43 | 0 | x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x))))); |
44 | 0 | return x + 1; |
45 | 0 | } |
46 | | |
47 | | static inline int celt_log2tan(int isin, int icos) |
48 | 0 | { |
49 | 0 | int lc, ls; |
50 | 0 | lc = opus_ilog(icos); |
51 | 0 | ls = opus_ilog(isin); |
52 | 0 | icos <<= 15 - lc; |
53 | 0 | isin <<= 15 - ls; |
54 | 0 | return (ls << 11) - (lc << 11) + |
55 | 0 | ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) - |
56 | 0 | ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932); |
57 | 0 | } |
58 | | |
59 | | static inline int celt_bits2pulses(const uint8_t *cache, int bits) |
60 | 0 | { |
61 | | // TODO: Find the size of cache and make it into an array in the parameters list |
62 | 0 | int i, low = 0, high; |
63 | |
|
64 | 0 | high = cache[0]; |
65 | 0 | bits--; |
66 | |
|
67 | 0 | for (i = 0; i < 6; i++) { |
68 | 0 | int center = (low + high + 1) >> 1; |
69 | 0 | if (cache[center] >= bits) |
70 | 0 | high = center; |
71 | 0 | else |
72 | 0 | low = center; |
73 | 0 | } |
74 | |
|
75 | 0 | return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high; |
76 | 0 | } |
77 | | |
78 | | static inline int celt_pulses2bits(const uint8_t *cache, int pulses) |
79 | 0 | { |
80 | | // TODO: Find the size of cache and make it into an array in the parameters list |
81 | 0 | return (pulses == 0) ? 0 : cache[pulses] + 1; |
82 | 0 | } |
83 | | |
84 | | static inline void celt_normalize_residual(const int * restrict iy, float * restrict X, |
85 | | int N, float g) |
86 | 0 | { |
87 | 0 | int i; |
88 | 0 | for (i = 0; i < N; i++) |
89 | 0 | X[i] = g * iy[i]; |
90 | 0 | } |
91 | | |
92 | | static void celt_exp_rotation_impl(float *X, uint32_t len, uint32_t stride, |
93 | | float c, float s) |
94 | 0 | { |
95 | 0 | float *Xptr; |
96 | 0 | int i; |
97 | |
|
98 | 0 | Xptr = X; |
99 | 0 | for (i = 0; i < len - stride; i++) { |
100 | 0 | float x1 = Xptr[0]; |
101 | 0 | float x2 = Xptr[stride]; |
102 | 0 | Xptr[stride] = c * x2 + s * x1; |
103 | 0 | *Xptr++ = c * x1 - s * x2; |
104 | 0 | } |
105 | |
|
106 | 0 | Xptr = &X[len - 2 * stride - 1]; |
107 | 0 | for (i = len - 2 * stride - 1; i >= 0; i--) { |
108 | 0 | float x1 = Xptr[0]; |
109 | 0 | float x2 = Xptr[stride]; |
110 | 0 | Xptr[stride] = c * x2 + s * x1; |
111 | 0 | *Xptr-- = c * x1 - s * x2; |
112 | 0 | } |
113 | 0 | } |
114 | | |
115 | | static inline void celt_exp_rotation(float *X, uint32_t len, |
116 | | uint32_t stride, uint32_t K, |
117 | | enum CeltSpread spread, const int encode) |
118 | 0 | { |
119 | 0 | uint32_t stride2 = 0; |
120 | 0 | float c, s; |
121 | 0 | float gain, theta; |
122 | 0 | int i; |
123 | |
|
124 | 0 | if (2*K >= len || spread == CELT_SPREAD_NONE) |
125 | 0 | return; |
126 | | |
127 | 0 | gain = (float)len / (len + (20 - 5*spread) * K); |
128 | 0 | theta = M_PI * gain * gain / 4; |
129 | |
|
130 | 0 | c = cosf(theta); |
131 | 0 | s = sinf(theta); |
132 | |
|
133 | 0 | if (len >= stride << 3) { |
134 | 0 | stride2 = 1; |
135 | | /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding. |
136 | | It's basically incrementing long as (stride2+0.5)^2 < len/stride. */ |
137 | 0 | while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len) |
138 | 0 | stride2++; |
139 | 0 | } |
140 | |
|
141 | 0 | len /= stride; |
142 | 0 | for (i = 0; i < stride; i++) { |
143 | 0 | if (encode) { |
144 | 0 | celt_exp_rotation_impl(X + i * len, len, 1, c, -s); |
145 | 0 | if (stride2) |
146 | 0 | celt_exp_rotation_impl(X + i * len, len, stride2, s, -c); |
147 | 0 | } else { |
148 | 0 | if (stride2) |
149 | 0 | celt_exp_rotation_impl(X + i * len, len, stride2, s, c); |
150 | 0 | celt_exp_rotation_impl(X + i * len, len, 1, c, s); |
151 | 0 | } |
152 | 0 | } |
153 | 0 | } |
154 | | |
155 | | static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B) |
156 | 0 | { |
157 | 0 | int i, j, N0 = N / B; |
158 | 0 | uint32_t collapse_mask = 0; |
159 | |
|
160 | 0 | if (B <= 1) |
161 | 0 | return 1; |
162 | | |
163 | 0 | for (i = 0; i < B; i++) |
164 | 0 | for (j = 0; j < N0; j++) |
165 | 0 | collapse_mask |= (!!iy[i*N0+j]) << i; |
166 | 0 | return collapse_mask; |
167 | 0 | } |
168 | | |
169 | | static inline void celt_stereo_merge(float *X, float *Y, float mid, int N) |
170 | 0 | { |
171 | 0 | int i; |
172 | 0 | float xp = 0, side = 0; |
173 | 0 | float E[2]; |
174 | 0 | float mid2; |
175 | 0 | float gain[2]; |
176 | | |
177 | | /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ |
178 | 0 | for (i = 0; i < N; i++) { |
179 | 0 | xp += X[i] * Y[i]; |
180 | 0 | side += Y[i] * Y[i]; |
181 | 0 | } |
182 | | |
183 | | /* Compensating for the mid normalization */ |
184 | 0 | xp *= mid; |
185 | 0 | mid2 = mid; |
186 | 0 | E[0] = mid2 * mid2 + side - 2 * xp; |
187 | 0 | E[1] = mid2 * mid2 + side + 2 * xp; |
188 | 0 | if (E[0] < 6e-4f || E[1] < 6e-4f) { |
189 | 0 | for (i = 0; i < N; i++) |
190 | 0 | Y[i] = X[i]; |
191 | 0 | return; |
192 | 0 | } |
193 | | |
194 | 0 | gain[0] = 1.0f / sqrtf(E[0]); |
195 | 0 | gain[1] = 1.0f / sqrtf(E[1]); |
196 | |
|
197 | 0 | for (i = 0; i < N; i++) { |
198 | 0 | float value[2]; |
199 | | /* Apply mid scaling (side is already scaled) */ |
200 | 0 | value[0] = mid * X[i]; |
201 | 0 | value[1] = Y[i]; |
202 | 0 | X[i] = gain[0] * (value[0] - value[1]); |
203 | 0 | Y[i] = gain[1] * (value[0] + value[1]); |
204 | 0 | } |
205 | 0 | } |
206 | | |
207 | | static void celt_interleave_hadamard(float *tmp, float *X, int N0, |
208 | | int stride, int hadamard) |
209 | 0 | { |
210 | 0 | int i, j, N = N0*stride; |
211 | 0 | const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30]; |
212 | |
|
213 | 0 | for (i = 0; i < stride; i++) |
214 | 0 | for (j = 0; j < N0; j++) |
215 | 0 | tmp[j*stride+i] = X[order[i]*N0+j]; |
216 | |
|
217 | 0 | memcpy(X, tmp, N*sizeof(float)); |
218 | 0 | } |
219 | | |
220 | | static void celt_deinterleave_hadamard(float *tmp, float *X, int N0, |
221 | | int stride, int hadamard) |
222 | 0 | { |
223 | 0 | int i, j, N = N0*stride; |
224 | 0 | const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30]; |
225 | |
|
226 | 0 | for (i = 0; i < stride; i++) |
227 | 0 | for (j = 0; j < N0; j++) |
228 | 0 | tmp[order[i]*N0+j] = X[j*stride+i]; |
229 | |
|
230 | 0 | memcpy(X, tmp, N*sizeof(float)); |
231 | 0 | } |
232 | | |
233 | | static void celt_haar1(float *X, int N0, int stride) |
234 | 0 | { |
235 | 0 | int i, j; |
236 | 0 | N0 >>= 1; |
237 | 0 | for (i = 0; i < stride; i++) { |
238 | 0 | for (j = 0; j < N0; j++) { |
239 | 0 | float x0 = X[stride * (2 * j + 0) + i]; |
240 | 0 | float x1 = X[stride * (2 * j + 1) + i]; |
241 | 0 | X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2; |
242 | 0 | X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2; |
243 | 0 | } |
244 | 0 | } |
245 | 0 | } |
246 | | |
247 | | static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap, |
248 | | int stereo) |
249 | 0 | { |
250 | 0 | int qn, qb; |
251 | 0 | int N2 = 2 * N - 1; |
252 | 0 | if (stereo && N == 2) |
253 | 0 | N2--; |
254 | | |
255 | | /* The upper limit ensures that in a stereo split with itheta==16384, we'll |
256 | | * always have enough bits left over to code at least one pulse in the |
257 | | * side; otherwise it would collapse, since it doesn't get folded. */ |
258 | 0 | qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3); |
259 | 0 | qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1; |
260 | 0 | return qn; |
261 | 0 | } |
262 | | |
263 | | /* Convert the quantized vector to an index */ |
264 | | static inline uint32_t celt_icwrsi(uint32_t N, uint32_t K, const int *y) |
265 | 0 | { |
266 | 0 | int i, idx = 0, sum = 0; |
267 | 0 | for (i = N - 1; i >= 0; i--) { |
268 | 0 | const uint32_t i_s = CELT_PVQ_U(N - i, sum + FFABS(y[i]) + 1); |
269 | 0 | idx += CELT_PVQ_U(N - i, sum) + (y[i] < 0)*i_s; |
270 | 0 | sum += FFABS(y[i]); |
271 | 0 | } |
272 | 0 | return idx; |
273 | 0 | } |
274 | | |
275 | | // this code was adapted from libopus |
276 | | static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y) |
277 | 0 | { |
278 | 0 | uint64_t norm = 0; |
279 | 0 | uint32_t q, p; |
280 | 0 | int s, val; |
281 | 0 | int k0; |
282 | |
|
283 | 0 | while (N > 2) { |
284 | | /*Lots of pulses case:*/ |
285 | 0 | if (K >= N) { |
286 | 0 | const uint32_t *row = ff_celt_pvq_u_row[N]; |
287 | | |
288 | | /* Are the pulses in this dimension negative? */ |
289 | 0 | p = row[K + 1]; |
290 | 0 | s = -(i >= p); |
291 | 0 | i -= p & s; |
292 | | |
293 | | /*Count how many pulses were placed in this dimension.*/ |
294 | 0 | k0 = K; |
295 | 0 | q = row[N]; |
296 | 0 | if (q > i) { |
297 | 0 | K = N; |
298 | 0 | do { |
299 | 0 | p = ff_celt_pvq_u_row[--K][N]; |
300 | 0 | } while (p > i); |
301 | 0 | } else |
302 | 0 | for (p = row[K]; p > i; p = row[K]) |
303 | 0 | K--; |
304 | |
|
305 | 0 | i -= p; |
306 | 0 | val = (k0 - K + s) ^ s; |
307 | 0 | norm += val * val; |
308 | 0 | *y++ = val; |
309 | 0 | } else { /*Lots of dimensions case:*/ |
310 | | /*Are there any pulses in this dimension at all?*/ |
311 | 0 | p = ff_celt_pvq_u_row[K ][N]; |
312 | 0 | q = ff_celt_pvq_u_row[K + 1][N]; |
313 | |
|
314 | 0 | if (p <= i && i < q) { |
315 | 0 | i -= p; |
316 | 0 | *y++ = 0; |
317 | 0 | } else { |
318 | | /*Are the pulses in this dimension negative?*/ |
319 | 0 | s = -(i >= q); |
320 | 0 | i -= q & s; |
321 | | |
322 | | /*Count how many pulses were placed in this dimension.*/ |
323 | 0 | k0 = K; |
324 | 0 | do p = ff_celt_pvq_u_row[--K][N]; |
325 | 0 | while (p > i); |
326 | |
|
327 | 0 | i -= p; |
328 | 0 | val = (k0 - K + s) ^ s; |
329 | 0 | norm += val * val; |
330 | 0 | *y++ = val; |
331 | 0 | } |
332 | 0 | } |
333 | 0 | N--; |
334 | 0 | } |
335 | | |
336 | | /* N == 2 */ |
337 | 0 | p = 2 * K + 1; |
338 | 0 | s = -(i >= p); |
339 | 0 | i -= p & s; |
340 | 0 | k0 = K; |
341 | 0 | K = (i + 1) / 2; |
342 | |
|
343 | 0 | if (K) |
344 | 0 | i -= 2 * K - 1; |
345 | |
|
346 | 0 | val = (k0 - K + s) ^ s; |
347 | 0 | norm += val * val; |
348 | 0 | *y++ = val; |
349 | | |
350 | | /* N==1 */ |
351 | 0 | s = -i; |
352 | 0 | val = (K + s) ^ s; |
353 | 0 | norm += val * val; |
354 | 0 | *y = val; |
355 | |
|
356 | 0 | return norm; |
357 | 0 | } |
358 | | |
359 | | static inline void celt_encode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K) |
360 | 0 | { |
361 | 0 | ff_opus_rc_enc_uint(rc, celt_icwrsi(N, K, y), CELT_PVQ_V(N, K)); |
362 | 0 | } |
363 | | |
364 | | static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K) |
365 | 0 | { |
366 | 0 | const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K)); |
367 | 0 | return celt_cwrsi(N, K, idx, y); |
368 | 0 | } |
369 | | |
370 | | #if CONFIG_OPUS_ENCODER |
371 | | /* |
372 | | * Faster than libopus's search, operates entirely in the signed domain. |
373 | | * Slightly worse/better depending on N, K and the input vector. |
374 | | */ |
375 | | static float ppp_pvq_search_c(float *X, int *y, int K, int N) |
376 | 0 | { |
377 | 0 | int i, y_norm = 0; |
378 | 0 | float res = 0.0f, xy_norm = 0.0f; |
379 | |
|
380 | 0 | for (i = 0; i < N; i++) |
381 | 0 | res += FFABS(X[i]); |
382 | |
|
383 | 0 | res = K/(res + FLT_EPSILON); |
384 | |
|
385 | 0 | for (i = 0; i < N; i++) { |
386 | 0 | y[i] = lrintf(res*X[i]); |
387 | 0 | y_norm += y[i]*y[i]; |
388 | 0 | xy_norm += y[i]*X[i]; |
389 | 0 | K -= FFABS(y[i]); |
390 | 0 | } |
391 | |
|
392 | 0 | while (K) { |
393 | 0 | int max_idx = 0, phase = FFSIGN(K); |
394 | 0 | float max_num = 0.0f; |
395 | 0 | float max_den = 1.0f; |
396 | 0 | y_norm += 1.0f; |
397 | |
|
398 | 0 | for (i = 0; i < N; i++) { |
399 | | /* If the sum has been overshot and the best place has 0 pulses allocated |
400 | | * to it, attempting to decrease it further will actually increase the |
401 | | * sum. Prevent this by disregarding any 0 positions when decrementing. */ |
402 | 0 | const int ca = 1 ^ ((y[i] == 0) & (phase < 0)); |
403 | 0 | const int y_new = y_norm + 2*phase*FFABS(y[i]); |
404 | 0 | float xy_new = xy_norm + 1*phase*FFABS(X[i]); |
405 | 0 | xy_new = xy_new * xy_new; |
406 | 0 | if (ca && (max_den*xy_new) > (y_new*max_num)) { |
407 | 0 | max_den = y_new; |
408 | 0 | max_num = xy_new; |
409 | 0 | max_idx = i; |
410 | 0 | } |
411 | 0 | } |
412 | |
|
413 | 0 | K -= phase; |
414 | |
|
415 | 0 | phase *= FFSIGN(X[max_idx]); |
416 | 0 | xy_norm += 1*phase*X[max_idx]; |
417 | 0 | y_norm += 2*phase*y[max_idx]; |
418 | 0 | y[max_idx] += phase; |
419 | 0 | } |
420 | |
|
421 | 0 | return (float)y_norm; |
422 | 0 | } |
423 | | #endif |
424 | | |
425 | | static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K, |
426 | | enum CeltSpread spread, uint32_t blocks, float gain, |
427 | | CeltPVQ *pvq) |
428 | 0 | { |
429 | 0 | int *y = pvq->qcoeff; |
430 | |
|
431 | 0 | celt_exp_rotation(X, N, blocks, K, spread, 1); |
432 | 0 | gain /= sqrtf(pvq->pvq_search(X, y, K, N)); |
433 | 0 | celt_encode_pulses(rc, y, N, K); |
434 | 0 | celt_normalize_residual(y, X, N, gain); |
435 | 0 | celt_exp_rotation(X, N, blocks, K, spread, 0); |
436 | 0 | return celt_extract_collapse_mask(y, N, blocks); |
437 | 0 | } |
438 | | |
439 | | /** Decode pulse vector and combine the result with the pitch vector to produce |
440 | | the final normalised signal in the current band. */ |
441 | | static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K, |
442 | | enum CeltSpread spread, uint32_t blocks, float gain, |
443 | | CeltPVQ *pvq) |
444 | 0 | { |
445 | 0 | int *y = pvq->qcoeff; |
446 | |
|
447 | 0 | gain /= sqrtf(celt_decode_pulses(rc, y, N, K)); |
448 | 0 | celt_normalize_residual(y, X, N, gain); |
449 | 0 | celt_exp_rotation(X, N, blocks, K, spread, 0); |
450 | 0 | return celt_extract_collapse_mask(y, N, blocks); |
451 | 0 | } |
452 | | |
453 | | static int celt_calc_theta(const float *X, const float *Y, int coupling, int N) |
454 | 0 | { |
455 | 0 | int i; |
456 | 0 | float e[2] = { 0.0f, 0.0f }; |
457 | 0 | if (coupling) { /* Coupling case */ |
458 | 0 | for (i = 0; i < N; i++) { |
459 | 0 | e[0] += (X[i] + Y[i])*(X[i] + Y[i]); |
460 | 0 | e[1] += (X[i] - Y[i])*(X[i] - Y[i]); |
461 | 0 | } |
462 | 0 | } else { |
463 | 0 | for (i = 0; i < N; i++) { |
464 | 0 | e[0] += X[i]*X[i]; |
465 | 0 | e[1] += Y[i]*Y[i]; |
466 | 0 | } |
467 | 0 | } |
468 | 0 | return lrintf(32768.0f*atan2f(sqrtf(e[1]), sqrtf(e[0]))/M_PI); |
469 | 0 | } |
470 | | |
471 | | static void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, int N) |
472 | 0 | { |
473 | 0 | int i; |
474 | 0 | const float energy_n = 1.0f/(sqrtf(e_l*e_l + e_r*e_r) + FLT_EPSILON); |
475 | 0 | e_l *= energy_n; |
476 | 0 | e_r *= energy_n; |
477 | 0 | for (i = 0; i < N; i++) |
478 | 0 | X[i] = e_l*X[i] + e_r*Y[i]; |
479 | 0 | } |
480 | | |
481 | | static void celt_stereo_ms_decouple(float *X, float *Y, int N) |
482 | 0 | { |
483 | 0 | int i; |
484 | 0 | for (i = 0; i < N; i++) { |
485 | 0 | const float Xret = X[i]; |
486 | 0 | X[i] = (X[i] + Y[i])*M_SQRT1_2; |
487 | 0 | Y[i] = (Y[i] - Xret)*M_SQRT1_2; |
488 | 0 | } |
489 | 0 | } |
490 | | |
491 | | static av_always_inline uint32_t quant_band_template(CeltPVQ *pvq, CeltFrame *f, |
492 | | OpusRangeCoder *rc, |
493 | | const int band, float *X, |
494 | | float *Y, int N, int b, |
495 | | uint32_t blocks, float *lowband, |
496 | | int duration, float *lowband_out, |
497 | | int level, float gain, |
498 | | float *lowband_scratch, |
499 | | int fill, int quant) |
500 | 0 | { |
501 | 0 | int i; |
502 | 0 | const uint8_t *cache; |
503 | 0 | int stereo = !!Y, split = stereo; |
504 | 0 | int imid = 0, iside = 0; |
505 | 0 | uint32_t N0 = N; |
506 | 0 | int N_B = N / blocks; |
507 | 0 | int N_B0 = N_B; |
508 | 0 | int B0 = blocks; |
509 | 0 | int time_divide = 0; |
510 | 0 | int recombine = 0; |
511 | 0 | int inv = 0; |
512 | 0 | float mid = 0, side = 0; |
513 | 0 | int longblocks = (B0 == 1); |
514 | 0 | uint32_t cm = 0; |
515 | |
|
516 | 0 | if (N == 1) { |
517 | 0 | float *x = X; |
518 | 0 | for (i = 0; i <= stereo; i++) { |
519 | 0 | int sign = 0; |
520 | 0 | if (f->remaining2 >= 1 << 3) { |
521 | 0 | if (quant) { |
522 | 0 | sign = x[0] < 0; |
523 | 0 | ff_opus_rc_put_raw(rc, sign, 1); |
524 | 0 | } else { |
525 | 0 | sign = ff_opus_rc_get_raw(rc, 1); |
526 | 0 | } |
527 | 0 | f->remaining2 -= 1 << 3; |
528 | 0 | } |
529 | 0 | x[0] = 1.0f - 2.0f*sign; |
530 | 0 | x = Y; |
531 | 0 | } |
532 | 0 | if (lowband_out) |
533 | 0 | lowband_out[0] = X[0]; |
534 | 0 | return 1; |
535 | 0 | } |
536 | | |
537 | 0 | if (!stereo && level == 0) { |
538 | 0 | int tf_change = f->tf_change[band]; |
539 | 0 | int k; |
540 | 0 | if (tf_change > 0) |
541 | 0 | recombine = tf_change; |
542 | | /* Band recombining to increase frequency resolution */ |
543 | |
|
544 | 0 | if (lowband && |
545 | 0 | (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) { |
546 | 0 | for (i = 0; i < N; i++) |
547 | 0 | lowband_scratch[i] = lowband[i]; |
548 | 0 | lowband = lowband_scratch; |
549 | 0 | } |
550 | |
|
551 | 0 | for (k = 0; k < recombine; k++) { |
552 | 0 | if (quant || lowband) |
553 | 0 | celt_haar1(quant ? X : lowband, N >> k, 1 << k); |
554 | 0 | fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2; |
555 | 0 | } |
556 | 0 | blocks >>= recombine; |
557 | 0 | N_B <<= recombine; |
558 | | |
559 | | /* Increasing the time resolution */ |
560 | 0 | while ((N_B & 1) == 0 && tf_change < 0) { |
561 | 0 | if (quant || lowband) |
562 | 0 | celt_haar1(quant ? X : lowband, N_B, blocks); |
563 | 0 | fill |= fill << blocks; |
564 | 0 | blocks <<= 1; |
565 | 0 | N_B >>= 1; |
566 | 0 | time_divide++; |
567 | 0 | tf_change++; |
568 | 0 | } |
569 | 0 | B0 = blocks; |
570 | 0 | N_B0 = N_B; |
571 | | |
572 | | /* Reorganize the samples in time order instead of frequency order */ |
573 | 0 | if (B0 > 1 && (quant || lowband)) |
574 | 0 | celt_deinterleave_hadamard(pvq->hadamard_tmp, quant ? X : lowband, |
575 | 0 | N_B >> recombine, B0 << recombine, |
576 | 0 | longblocks); |
577 | 0 | } |
578 | | |
579 | | /* If we need 1.5 more bit than we can produce, split the band in two. */ |
580 | 0 | cache = ff_celt_cache_bits + |
581 | 0 | ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band]; |
582 | 0 | if (!stereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) { |
583 | 0 | N >>= 1; |
584 | 0 | Y = X + N; |
585 | 0 | split = 1; |
586 | 0 | duration -= 1; |
587 | 0 | if (blocks == 1) |
588 | 0 | fill = (fill & 1) | (fill << 1); |
589 | 0 | blocks = (blocks + 1) >> 1; |
590 | 0 | } |
591 | |
|
592 | 0 | if (split) { |
593 | 0 | int qn; |
594 | 0 | int itheta = quant ? celt_calc_theta(X, Y, stereo, N) : 0; |
595 | 0 | int mbits, sbits, delta; |
596 | 0 | int qalloc; |
597 | 0 | int pulse_cap; |
598 | 0 | int offset; |
599 | 0 | int orig_fill; |
600 | 0 | int tell; |
601 | | |
602 | | /* Decide on the resolution to give to the split parameter theta */ |
603 | 0 | pulse_cap = ff_celt_log_freq_range[band] + duration * 8; |
604 | 0 | offset = (pulse_cap >> 1) - (stereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE : |
605 | 0 | CELT_QTHETA_OFFSET); |
606 | 0 | qn = (stereo && band >= f->intensity_stereo) ? 1 : |
607 | 0 | celt_compute_qn(N, b, offset, pulse_cap, stereo); |
608 | 0 | tell = opus_rc_tell_frac(rc); |
609 | 0 | if (qn != 1) { |
610 | 0 | if (quant) |
611 | 0 | itheta = (itheta*qn + 8192) >> 14; |
612 | | /* Entropy coding of the angle. We use a uniform pdf for the |
613 | | * time split, a step for stereo, and a triangular one for the rest. */ |
614 | 0 | if (quant) { |
615 | 0 | if (stereo && N > 2) |
616 | 0 | ff_opus_rc_enc_uint_step(rc, itheta, qn / 2); |
617 | 0 | else if (stereo || B0 > 1) |
618 | 0 | ff_opus_rc_enc_uint(rc, itheta, qn + 1); |
619 | 0 | else |
620 | 0 | ff_opus_rc_enc_uint_tri(rc, itheta, qn); |
621 | 0 | itheta = itheta * 16384 / qn; |
622 | 0 | if (stereo) { |
623 | 0 | if (itheta == 0) |
624 | 0 | celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], |
625 | 0 | f->block[1].lin_energy[band], N); |
626 | 0 | else |
627 | 0 | celt_stereo_ms_decouple(X, Y, N); |
628 | 0 | } |
629 | 0 | } else { |
630 | 0 | if (stereo && N > 2) |
631 | 0 | itheta = ff_opus_rc_dec_uint_step(rc, qn / 2); |
632 | 0 | else if (stereo || B0 > 1) |
633 | 0 | itheta = ff_opus_rc_dec_uint(rc, qn+1); |
634 | 0 | else |
635 | 0 | itheta = ff_opus_rc_dec_uint_tri(rc, qn); |
636 | 0 | itheta = itheta * 16384 / qn; |
637 | 0 | } |
638 | 0 | } else if (stereo) { |
639 | 0 | if (quant) { |
640 | 0 | inv = f->apply_phase_inv ? itheta > 8192 : 0; |
641 | 0 | if (inv) { |
642 | 0 | for (i = 0; i < N; i++) |
643 | 0 | Y[i] *= -1; |
644 | 0 | } |
645 | 0 | celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], |
646 | 0 | f->block[1].lin_energy[band], N); |
647 | |
|
648 | 0 | if (b > 2 << 3 && f->remaining2 > 2 << 3) { |
649 | 0 | ff_opus_rc_enc_log(rc, inv, 2); |
650 | 0 | } else { |
651 | 0 | inv = 0; |
652 | 0 | } |
653 | 0 | } else { |
654 | 0 | inv = (b > 2 << 3 && f->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0; |
655 | 0 | inv = f->apply_phase_inv ? inv : 0; |
656 | 0 | } |
657 | 0 | itheta = 0; |
658 | 0 | } |
659 | 0 | qalloc = opus_rc_tell_frac(rc) - tell; |
660 | 0 | b -= qalloc; |
661 | |
|
662 | 0 | orig_fill = fill; |
663 | 0 | if (itheta == 0) { |
664 | 0 | imid = 32767; |
665 | 0 | iside = 0; |
666 | 0 | fill = av_zero_extend(fill, blocks); |
667 | 0 | delta = -16384; |
668 | 0 | } else if (itheta == 16384) { |
669 | 0 | imid = 0; |
670 | 0 | iside = 32767; |
671 | 0 | fill &= ((1 << blocks) - 1) << blocks; |
672 | 0 | delta = 16384; |
673 | 0 | } else { |
674 | 0 | imid = celt_cos(itheta); |
675 | 0 | iside = celt_cos(16384-itheta); |
676 | | /* This is the mid vs side allocation that minimizes squared error |
677 | | in that band. */ |
678 | 0 | delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid)); |
679 | 0 | } |
680 | |
|
681 | 0 | mid = imid / 32768.0f; |
682 | 0 | side = iside / 32768.0f; |
683 | | |
684 | | /* This is a special case for N=2 that only works for stereo and takes |
685 | | advantage of the fact that mid and side are orthogonal to encode |
686 | | the side with just one bit. */ |
687 | 0 | if (N == 2 && stereo) { |
688 | 0 | int c; |
689 | 0 | int sign = 0; |
690 | 0 | float tmp; |
691 | 0 | float *x2, *y2; |
692 | 0 | mbits = b; |
693 | | /* Only need one bit for the side */ |
694 | 0 | sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0; |
695 | 0 | mbits -= sbits; |
696 | 0 | c = (itheta > 8192); |
697 | 0 | f->remaining2 -= qalloc+sbits; |
698 | |
|
699 | 0 | x2 = c ? Y : X; |
700 | 0 | y2 = c ? X : Y; |
701 | 0 | if (sbits) { |
702 | 0 | if (quant) { |
703 | 0 | sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; |
704 | 0 | ff_opus_rc_put_raw(rc, sign, 1); |
705 | 0 | } else { |
706 | 0 | sign = ff_opus_rc_get_raw(rc, 1); |
707 | 0 | } |
708 | 0 | } |
709 | 0 | sign = 1 - 2 * sign; |
710 | | /* We use orig_fill here because we want to fold the side, but if |
711 | | itheta==16384, we'll have cleared the low bits of fill. */ |
712 | 0 | cm = pvq->quant_band(pvq, f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration, |
713 | 0 | lowband_out, level, gain, lowband_scratch, orig_fill); |
714 | | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), |
715 | | and there's no need to worry about mixing with the other channel. */ |
716 | 0 | y2[0] = -sign * x2[1]; |
717 | 0 | y2[1] = sign * x2[0]; |
718 | 0 | X[0] *= mid; |
719 | 0 | X[1] *= mid; |
720 | 0 | Y[0] *= side; |
721 | 0 | Y[1] *= side; |
722 | 0 | tmp = X[0]; |
723 | 0 | X[0] = tmp - Y[0]; |
724 | 0 | Y[0] = tmp + Y[0]; |
725 | 0 | tmp = X[1]; |
726 | 0 | X[1] = tmp - Y[1]; |
727 | 0 | Y[1] = tmp + Y[1]; |
728 | 0 | } else { |
729 | | /* "Normal" split code */ |
730 | 0 | float *next_lowband2 = NULL; |
731 | 0 | float *next_lowband_out1 = NULL; |
732 | 0 | int next_level = 0; |
733 | 0 | int rebalance; |
734 | 0 | uint32_t cmt; |
735 | | |
736 | | /* Give more bits to low-energy MDCTs than they would |
737 | | * otherwise deserve */ |
738 | 0 | if (B0 > 1 && !stereo && (itheta & 0x3fff)) { |
739 | 0 | if (itheta > 8192) |
740 | | /* Rough approximation for pre-echo masking */ |
741 | 0 | delta -= delta >> (4 - duration); |
742 | 0 | else |
743 | | /* Corresponds to a forward-masking slope of |
744 | | * 1.5 dB per 10 ms */ |
745 | 0 | delta = FFMIN(0, delta + (N << 3 >> (5 - duration))); |
746 | 0 | } |
747 | 0 | mbits = av_clip((b - delta) / 2, 0, b); |
748 | 0 | sbits = b - mbits; |
749 | 0 | f->remaining2 -= qalloc; |
750 | |
|
751 | 0 | if (lowband && !stereo) |
752 | 0 | next_lowband2 = lowband + N; /* >32-bit split case */ |
753 | | |
754 | | /* Only stereo needs to pass on lowband_out. |
755 | | * Otherwise, it's handled at the end */ |
756 | 0 | if (stereo) |
757 | 0 | next_lowband_out1 = lowband_out; |
758 | 0 | else |
759 | 0 | next_level = level + 1; |
760 | |
|
761 | 0 | rebalance = f->remaining2; |
762 | 0 | if (mbits >= sbits) { |
763 | | /* In stereo mode, we do not apply a scaling to the mid |
764 | | * because we need the normalized mid for folding later */ |
765 | 0 | cm = pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks, |
766 | 0 | lowband, duration, next_lowband_out1, next_level, |
767 | 0 | stereo ? 1.0f : (gain * mid), lowband_scratch, fill); |
768 | 0 | rebalance = mbits - (rebalance - f->remaining2); |
769 | 0 | if (rebalance > 3 << 3 && itheta != 0) |
770 | 0 | sbits += rebalance - (3 << 3); |
771 | | |
772 | | /* For a stereo split, the high bits of fill are always zero, |
773 | | * so no folding will be done to the side. */ |
774 | 0 | cmt = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks, |
775 | 0 | next_lowband2, duration, NULL, next_level, |
776 | 0 | gain * side, NULL, fill >> blocks); |
777 | 0 | cm |= cmt << ((B0 >> 1) & (stereo - 1)); |
778 | 0 | } else { |
779 | | /* For a stereo split, the high bits of fill are always zero, |
780 | | * so no folding will be done to the side. */ |
781 | 0 | cm = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks, |
782 | 0 | next_lowband2, duration, NULL, next_level, |
783 | 0 | gain * side, NULL, fill >> blocks); |
784 | 0 | cm <<= ((B0 >> 1) & (stereo - 1)); |
785 | 0 | rebalance = sbits - (rebalance - f->remaining2); |
786 | 0 | if (rebalance > 3 << 3 && itheta != 16384) |
787 | 0 | mbits += rebalance - (3 << 3); |
788 | | |
789 | | /* In stereo mode, we do not apply a scaling to the mid because |
790 | | * we need the normalized mid for folding later */ |
791 | 0 | cm |= pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks, |
792 | 0 | lowband, duration, next_lowband_out1, next_level, |
793 | 0 | stereo ? 1.0f : (gain * mid), lowband_scratch, fill); |
794 | 0 | } |
795 | 0 | } |
796 | 0 | } else { |
797 | | /* This is the basic no-split case */ |
798 | 0 | uint32_t q = celt_bits2pulses(cache, b); |
799 | 0 | uint32_t curr_bits = celt_pulses2bits(cache, q); |
800 | 0 | f->remaining2 -= curr_bits; |
801 | | |
802 | | /* Ensures we can never bust the budget */ |
803 | 0 | while (f->remaining2 < 0 && q > 0) { |
804 | 0 | f->remaining2 += curr_bits; |
805 | 0 | curr_bits = celt_pulses2bits(cache, --q); |
806 | 0 | f->remaining2 -= curr_bits; |
807 | 0 | } |
808 | |
|
809 | 0 | if (q != 0) { |
810 | | /* Finally do the actual (de)quantization */ |
811 | 0 | if (quant) { |
812 | 0 | cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), |
813 | 0 | f->spread, blocks, gain, pvq); |
814 | 0 | } else { |
815 | 0 | cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), |
816 | 0 | f->spread, blocks, gain, pvq); |
817 | 0 | } |
818 | 0 | } else { |
819 | | /* If there's no pulse, fill the band anyway */ |
820 | 0 | uint32_t cm_mask = (1 << blocks) - 1; |
821 | 0 | fill &= cm_mask; |
822 | 0 | if (fill) { |
823 | 0 | if (!lowband) { |
824 | | /* Noise */ |
825 | 0 | for (i = 0; i < N; i++) |
826 | 0 | X[i] = (((int32_t)celt_rng(f)) >> 20); |
827 | 0 | cm = cm_mask; |
828 | 0 | } else { |
829 | | /* Folded spectrum */ |
830 | 0 | for (i = 0; i < N; i++) { |
831 | | /* About 48 dB below the "normal" folding level */ |
832 | 0 | X[i] = lowband[i] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256); |
833 | 0 | } |
834 | 0 | cm = fill; |
835 | 0 | } |
836 | 0 | celt_renormalize_vector(X, N, gain); |
837 | 0 | } else { |
838 | 0 | memset(X, 0, N*sizeof(float)); |
839 | 0 | } |
840 | 0 | } |
841 | 0 | } |
842 | | |
843 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
844 | 0 | if (stereo) { |
845 | 0 | if (N > 2) |
846 | 0 | celt_stereo_merge(X, Y, mid, N); |
847 | 0 | if (inv) { |
848 | 0 | for (i = 0; i < N; i++) |
849 | 0 | Y[i] *= -1; |
850 | 0 | } |
851 | 0 | } else if (level == 0) { |
852 | 0 | int k; |
853 | | |
854 | | /* Undo the sample reorganization going from time order to frequency order */ |
855 | 0 | if (B0 > 1) |
856 | 0 | celt_interleave_hadamard(pvq->hadamard_tmp, X, N_B >> recombine, |
857 | 0 | B0 << recombine, longblocks); |
858 | | |
859 | | /* Undo time-freq changes that we did earlier */ |
860 | 0 | N_B = N_B0; |
861 | 0 | blocks = B0; |
862 | 0 | for (k = 0; k < time_divide; k++) { |
863 | 0 | blocks >>= 1; |
864 | 0 | N_B <<= 1; |
865 | 0 | cm |= cm >> blocks; |
866 | 0 | celt_haar1(X, N_B, blocks); |
867 | 0 | } |
868 | |
|
869 | 0 | for (k = 0; k < recombine; k++) { |
870 | 0 | cm = ff_celt_bit_deinterleave[cm]; |
871 | 0 | celt_haar1(X, N0>>k, 1<<k); |
872 | 0 | } |
873 | 0 | blocks <<= recombine; |
874 | | |
875 | | /* Scale output for later folding */ |
876 | 0 | if (lowband_out) { |
877 | 0 | float n = sqrtf(N0); |
878 | 0 | for (i = 0; i < N0; i++) |
879 | 0 | lowband_out[i] = n * X[i]; |
880 | 0 | } |
881 | 0 | cm = av_zero_extend(cm, blocks); |
882 | 0 | } |
883 | |
|
884 | 0 | return cm; |
885 | 0 | } |
886 | | |
887 | | static QUANT_FN(pvq_decode_band) |
888 | 0 | { |
889 | 0 | #if CONFIG_OPUS_DECODER |
890 | 0 | return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration, |
891 | 0 | lowband_out, level, gain, lowband_scratch, fill, 0); |
892 | | #else |
893 | | return 0; |
894 | | #endif |
895 | 0 | } |
896 | | |
897 | | static QUANT_FN(pvq_encode_band) |
898 | 0 | { |
899 | 0 | #if CONFIG_OPUS_ENCODER |
900 | 0 | return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration, |
901 | 0 | lowband_out, level, gain, lowband_scratch, fill, 1); |
902 | | #else |
903 | | return 0; |
904 | | #endif |
905 | 0 | } |
906 | | |
907 | | int av_cold ff_celt_pvq_init(CeltPVQ **pvq, int encode) |
908 | 0 | { |
909 | 0 | CeltPVQ *s = av_malloc(sizeof(CeltPVQ)); |
910 | 0 | if (!s) |
911 | 0 | return AVERROR(ENOMEM); |
912 | | |
913 | 0 | s->quant_band = encode ? pvq_encode_band : pvq_decode_band; |
914 | |
|
915 | 0 | #if CONFIG_OPUS_ENCODER |
916 | 0 | s->pvq_search = ppp_pvq_search_c; |
917 | 0 | #if ARCH_X86 |
918 | 0 | ff_celt_pvq_init_x86(s); |
919 | 0 | #endif |
920 | 0 | #endif |
921 | |
|
922 | 0 | *pvq = s; |
923 | |
|
924 | 0 | return 0; |
925 | 0 | } |
926 | | |
927 | | void av_cold ff_celt_pvq_uninit(CeltPVQ **pvq) |
928 | 0 | { |
929 | 0 | av_freep(pvq); |
930 | 0 | } |