/src/libvpx/vp8/encoder/firstpass.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
3 | | * |
4 | | * Use of this source code is governed by a BSD-style license |
5 | | * that can be found in the LICENSE file in the root of the source |
6 | | * tree. An additional intellectual property rights grant can be found |
7 | | * in the file PATENTS. All contributing project authors may |
8 | | * be found in the AUTHORS file in the root of the source tree. |
9 | | */ |
10 | | |
11 | | #include <math.h> |
12 | | #include <limits.h> |
13 | | #include <stdint.h> |
14 | | #include <stdio.h> |
15 | | |
16 | | #include "./vpx_dsp_rtcd.h" |
17 | | #include "./vpx_scale_rtcd.h" |
18 | | #include "block.h" |
19 | | #include "onyx_int.h" |
20 | | #include "vpx_dsp/variance.h" |
21 | | #include "vpx_dsp/vpx_dsp_common.h" |
22 | | #include "encodeintra.h" |
23 | | #include "vp8/common/common.h" |
24 | | #include "vp8/common/setupintrarecon.h" |
25 | | #include "vp8/common/systemdependent.h" |
26 | | #include "mcomp.h" |
27 | | #include "firstpass.h" |
28 | | #include "vpx_scale/vpx_scale.h" |
29 | | #include "encodemb.h" |
30 | | #include "vp8/common/extend.h" |
31 | | #include "vpx_ports/system_state.h" |
32 | | #include "vpx_mem/vpx_mem.h" |
33 | | #include "vp8/common/swapyv12buffer.h" |
34 | | #include "rdopt.h" |
35 | | #include "vp8/common/quant_common.h" |
36 | | #include "encodemv.h" |
37 | | #include "encodeframe.h" |
38 | | |
39 | | #define OUTPUT_FPF 0 |
40 | | |
41 | | extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi); |
42 | | |
43 | 0 | #define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] |
44 | | extern int vp8_kf_boost_qadjustment[QINDEX_RANGE]; |
45 | | |
46 | | extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE]; |
47 | | |
48 | 0 | #define IIFACTOR 1.5 |
49 | 0 | #define IIKFACTOR1 1.40 |
50 | 0 | #define IIKFACTOR2 1.5 |
51 | 0 | #define RMAX 14.0 |
52 | 0 | #define GF_RMAX 48.0 |
53 | | |
54 | 0 | #define KF_MB_INTRA_MIN 300 |
55 | 0 | #define GF_MB_INTRA_MIN 200 |
56 | | |
57 | 0 | #define DOUBLE_DIVIDE_CHECK(X) ((X) < 0 ? (X)-.000001 : (X) + .000001) |
58 | | |
59 | 0 | #define POW1 (double)cpi->oxcf.two_pass_vbrbias / 100.0 |
60 | 0 | #define POW2 (double)cpi->oxcf.two_pass_vbrbias / 100.0 |
61 | | |
62 | | #define NEW_BOOST 1 |
63 | | |
64 | | static int vscale_lookup[7] = { 0, 1, 1, 2, 2, 3, 3 }; |
65 | | static int hscale_lookup[7] = { 0, 0, 1, 1, 2, 2, 3 }; |
66 | | |
67 | | static const int cq_level[QINDEX_RANGE] = { |
68 | | 0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, |
69 | | 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24, |
70 | | 24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, |
71 | | 39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53, |
72 | | 54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69, |
73 | | 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86, |
74 | | 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 |
75 | | }; |
76 | | |
77 | | static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame); |
78 | | |
79 | | /* Resets the first pass file to the given position using a relative seek |
80 | | * from the current position |
81 | | */ |
82 | 0 | static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) { |
83 | 0 | cpi->twopass.stats_in = Position; |
84 | 0 | } |
85 | | |
86 | 0 | static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) { |
87 | 0 | if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; |
88 | | |
89 | 0 | *next_frame = *cpi->twopass.stats_in; |
90 | 0 | return 1; |
91 | 0 | } |
92 | | |
93 | | /* Read frame stats at an offset from the current position */ |
94 | | static int read_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *frame_stats, |
95 | 0 | int offset) { |
96 | 0 | FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in; |
97 | | |
98 | | /* Check legality of offset */ |
99 | 0 | if (offset >= 0) { |
100 | 0 | if (&fps_ptr[offset] >= cpi->twopass.stats_in_end) return EOF; |
101 | 0 | } else if (offset < 0) { |
102 | 0 | if (&fps_ptr[offset] < cpi->twopass.stats_in_start) return EOF; |
103 | 0 | } |
104 | | |
105 | 0 | *frame_stats = fps_ptr[offset]; |
106 | 0 | return 1; |
107 | 0 | } |
108 | | |
109 | 0 | static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) { |
110 | 0 | if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; |
111 | | |
112 | 0 | *fps = *cpi->twopass.stats_in; |
113 | 0 | cpi->twopass.stats_in = |
114 | 0 | (void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); |
115 | 0 | return 1; |
116 | 0 | } |
117 | | |
118 | | static void output_stats(struct vpx_codec_pkt_list *pktlist, |
119 | 0 | FIRSTPASS_STATS *stats) { |
120 | 0 | struct vpx_codec_cx_pkt pkt; |
121 | 0 | pkt.kind = VPX_CODEC_STATS_PKT; |
122 | 0 | pkt.data.twopass_stats.buf = stats; |
123 | 0 | pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); |
124 | 0 | vpx_codec_pkt_list_add(pktlist, &pkt); |
125 | | |
126 | | /* TEMP debug code */ |
127 | | #if OUTPUT_FPF |
128 | | |
129 | | { |
130 | | FILE *fpfile; |
131 | | fpfile = fopen("firstpass.stt", "a"); |
132 | | |
133 | | fprintf(fpfile, |
134 | | "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f" |
135 | | " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" |
136 | | " %12.0f %12.0f %12.4f\n", |
137 | | stats->frame, stats->intra_error, stats->coded_error, |
138 | | stats->ssim_weighted_pred_err, stats->pcnt_inter, |
139 | | stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral, |
140 | | stats->MVr, stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, |
141 | | stats->MVcv, stats->mv_in_out_count, stats->new_mv_count, |
142 | | stats->count, stats->duration); |
143 | | fclose(fpfile); |
144 | | } |
145 | | #endif |
146 | 0 | } |
147 | | |
148 | 0 | static void zero_stats(FIRSTPASS_STATS *section) { |
149 | 0 | section->frame = 0.0; |
150 | 0 | section->intra_error = 0.0; |
151 | 0 | section->coded_error = 0.0; |
152 | 0 | section->ssim_weighted_pred_err = 0.0; |
153 | 0 | section->pcnt_inter = 0.0; |
154 | 0 | section->pcnt_motion = 0.0; |
155 | 0 | section->pcnt_second_ref = 0.0; |
156 | 0 | section->pcnt_neutral = 0.0; |
157 | 0 | section->MVr = 0.0; |
158 | 0 | section->mvr_abs = 0.0; |
159 | 0 | section->MVc = 0.0; |
160 | 0 | section->mvc_abs = 0.0; |
161 | 0 | section->MVrv = 0.0; |
162 | 0 | section->MVcv = 0.0; |
163 | 0 | section->mv_in_out_count = 0.0; |
164 | 0 | section->new_mv_count = 0.0; |
165 | 0 | section->count = 0.0; |
166 | 0 | section->duration = 1.0; |
167 | 0 | } |
168 | | |
169 | 0 | static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { |
170 | 0 | section->frame += frame->frame; |
171 | 0 | section->intra_error += frame->intra_error; |
172 | 0 | section->coded_error += frame->coded_error; |
173 | 0 | section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; |
174 | 0 | section->pcnt_inter += frame->pcnt_inter; |
175 | 0 | section->pcnt_motion += frame->pcnt_motion; |
176 | 0 | section->pcnt_second_ref += frame->pcnt_second_ref; |
177 | 0 | section->pcnt_neutral += frame->pcnt_neutral; |
178 | 0 | section->MVr += frame->MVr; |
179 | 0 | section->mvr_abs += frame->mvr_abs; |
180 | 0 | section->MVc += frame->MVc; |
181 | 0 | section->mvc_abs += frame->mvc_abs; |
182 | 0 | section->MVrv += frame->MVrv; |
183 | 0 | section->MVcv += frame->MVcv; |
184 | 0 | section->mv_in_out_count += frame->mv_in_out_count; |
185 | 0 | section->new_mv_count += frame->new_mv_count; |
186 | 0 | section->count += frame->count; |
187 | 0 | section->duration += frame->duration; |
188 | 0 | } |
189 | | |
190 | 0 | static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { |
191 | 0 | section->frame -= frame->frame; |
192 | 0 | section->intra_error -= frame->intra_error; |
193 | 0 | section->coded_error -= frame->coded_error; |
194 | 0 | section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; |
195 | 0 | section->pcnt_inter -= frame->pcnt_inter; |
196 | 0 | section->pcnt_motion -= frame->pcnt_motion; |
197 | 0 | section->pcnt_second_ref -= frame->pcnt_second_ref; |
198 | 0 | section->pcnt_neutral -= frame->pcnt_neutral; |
199 | 0 | section->MVr -= frame->MVr; |
200 | 0 | section->mvr_abs -= frame->mvr_abs; |
201 | 0 | section->MVc -= frame->MVc; |
202 | 0 | section->mvc_abs -= frame->mvc_abs; |
203 | 0 | section->MVrv -= frame->MVrv; |
204 | 0 | section->MVcv -= frame->MVcv; |
205 | 0 | section->mv_in_out_count -= frame->mv_in_out_count; |
206 | 0 | section->new_mv_count -= frame->new_mv_count; |
207 | 0 | section->count -= frame->count; |
208 | 0 | section->duration -= frame->duration; |
209 | 0 | } |
210 | | |
211 | 0 | static void avg_stats(FIRSTPASS_STATS *section) { |
212 | 0 | if (section->count < 1.0) return; |
213 | | |
214 | 0 | section->intra_error /= section->count; |
215 | 0 | section->coded_error /= section->count; |
216 | 0 | section->ssim_weighted_pred_err /= section->count; |
217 | 0 | section->pcnt_inter /= section->count; |
218 | 0 | section->pcnt_second_ref /= section->count; |
219 | 0 | section->pcnt_neutral /= section->count; |
220 | 0 | section->pcnt_motion /= section->count; |
221 | 0 | section->MVr /= section->count; |
222 | 0 | section->mvr_abs /= section->count; |
223 | 0 | section->MVc /= section->count; |
224 | 0 | section->mvc_abs /= section->count; |
225 | 0 | section->MVrv /= section->count; |
226 | 0 | section->MVcv /= section->count; |
227 | 0 | section->mv_in_out_count /= section->count; |
228 | 0 | section->duration /= section->count; |
229 | 0 | } |
230 | | |
231 | | /* Calculate a modified Error used in distributing bits between easier |
232 | | * and harder frames |
233 | | */ |
234 | | static double calculate_modified_err(VP8_COMP *cpi, |
235 | 0 | FIRSTPASS_STATS *this_frame) { |
236 | 0 | double av_err = (cpi->twopass.total_stats.ssim_weighted_pred_err / |
237 | 0 | cpi->twopass.total_stats.count); |
238 | 0 | double this_err = this_frame->ssim_weighted_pred_err; |
239 | 0 | double modified_err; |
240 | |
|
241 | 0 | if (this_err > av_err) { |
242 | 0 | modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1); |
243 | 0 | } else { |
244 | 0 | modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2); |
245 | 0 | } |
246 | |
|
247 | 0 | return modified_err; |
248 | 0 | } |
249 | | |
250 | | static const double weight_table[256] = { |
251 | | 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
252 | | 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
253 | | 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
254 | | 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
255 | | 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.031250, 0.062500, |
256 | | 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 0.250000, 0.281250, |
257 | | 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 0.500000, |
258 | | 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, |
259 | | 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, |
260 | | 0.968750, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
261 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
262 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
263 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
264 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
265 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
266 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
267 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
268 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
269 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
270 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
271 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
272 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
273 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
274 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
275 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
276 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
277 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
278 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
279 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
280 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
281 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
282 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
283 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
284 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
285 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
286 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
287 | | 1.000000, 1.000000, 1.000000, 1.000000 |
288 | | }; |
289 | | |
290 | 0 | static double simple_weight(YV12_BUFFER_CONFIG *source) { |
291 | 0 | int i, j; |
292 | |
|
293 | 0 | unsigned char *src = source->y_buffer; |
294 | 0 | double sum_weights = 0.0; |
295 | | |
296 | | /* Loop throught the Y plane raw examining levels and creating a weight |
297 | | * for the image |
298 | | */ |
299 | 0 | i = source->y_height; |
300 | 0 | do { |
301 | 0 | j = source->y_width; |
302 | 0 | do { |
303 | 0 | sum_weights += weight_table[*src]; |
304 | 0 | src++; |
305 | 0 | } while (--j); |
306 | 0 | src -= source->y_width; |
307 | 0 | src += source->y_stride; |
308 | 0 | } while (--i); |
309 | |
|
310 | 0 | sum_weights /= (source->y_height * source->y_width); |
311 | |
|
312 | 0 | return sum_weights; |
313 | 0 | } |
314 | | |
315 | | /* This function returns the current per frame maximum bitrate target */ |
316 | 0 | static int frame_max_bits(VP8_COMP *cpi) { |
317 | | /* Max allocation for a single frame based on the max section guidelines |
318 | | * passed in and how many bits are left |
319 | | */ |
320 | 0 | int max_bits; |
321 | | |
322 | | /* For CBR we need to also consider buffer fullness. |
323 | | * If we are running below the optimal level then we need to gradually |
324 | | * tighten up on max_bits. |
325 | | */ |
326 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
327 | 0 | double buffer_fullness_ratio = |
328 | 0 | (double)cpi->buffer_level / |
329 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level); |
330 | | |
331 | | /* For CBR base this on the target average bits per frame plus the |
332 | | * maximum sedction rate passed in by the user |
333 | | */ |
334 | 0 | max_bits = (int)(cpi->av_per_frame_bandwidth * |
335 | 0 | ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); |
336 | | |
337 | | /* If our buffer is below the optimum level */ |
338 | 0 | if (buffer_fullness_ratio < 1.0) { |
339 | | /* The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. */ |
340 | 0 | int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) |
341 | 0 | ? cpi->av_per_frame_bandwidth >> 2 |
342 | 0 | : max_bits >> 2; |
343 | |
|
344 | 0 | max_bits = (int)(max_bits * buffer_fullness_ratio); |
345 | | |
346 | | /* Lowest value we will set ... which should allow the buffer to |
347 | | * refill. |
348 | | */ |
349 | 0 | if (max_bits < min_max_bits) max_bits = min_max_bits; |
350 | 0 | } |
351 | 0 | } |
352 | | /* VBR */ |
353 | 0 | else { |
354 | | /* For VBR base this on the bits and frames left plus the |
355 | | * two_pass_vbrmax_section rate passed in by the user |
356 | | */ |
357 | 0 | max_bits = saturate_cast_double_to_int( |
358 | 0 | ((double)cpi->twopass.bits_left / |
359 | 0 | (cpi->twopass.total_stats.count - |
360 | 0 | (double)cpi->common.current_video_frame)) * |
361 | 0 | ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); |
362 | 0 | } |
363 | | |
364 | | /* Trap case where we are out of bits */ |
365 | 0 | if (max_bits < 0) max_bits = 0; |
366 | |
|
367 | 0 | return max_bits; |
368 | 0 | } |
369 | | |
370 | 0 | void vp8_init_first_pass(VP8_COMP *cpi) { |
371 | 0 | zero_stats(&cpi->twopass.total_stats); |
372 | 0 | } |
373 | | |
374 | 0 | void vp8_end_first_pass(VP8_COMP *cpi) { |
375 | 0 | output_stats(cpi->output_pkt_list, &cpi->twopass.total_stats); |
376 | 0 | } |
377 | | |
378 | | static void zz_motion_search(MACROBLOCK *x, YV12_BUFFER_CONFIG *raw_buffer, |
379 | | int *raw_motion_err, |
380 | | YV12_BUFFER_CONFIG *recon_buffer, |
381 | 0 | int *best_motion_err, int recon_yoffset) { |
382 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
383 | 0 | BLOCK *b = &x->block[0]; |
384 | 0 | BLOCKD *d = &x->e_mbd.block[0]; |
385 | |
|
386 | 0 | unsigned char *src_ptr = (*(b->base_src) + b->src); |
387 | 0 | int src_stride = b->src_stride; |
388 | 0 | unsigned char *raw_ptr; |
389 | 0 | int raw_stride = raw_buffer->y_stride; |
390 | 0 | unsigned char *ref_ptr; |
391 | 0 | int ref_stride = x->e_mbd.pre.y_stride; |
392 | | |
393 | | /* Set up pointers for this macro block raw buffer */ |
394 | 0 | raw_ptr = (unsigned char *)(raw_buffer->y_buffer + recon_yoffset + d->offset); |
395 | 0 | vpx_mse16x16(src_ptr, src_stride, raw_ptr, raw_stride, |
396 | 0 | (unsigned int *)(raw_motion_err)); |
397 | | |
398 | | /* Set up pointers for this macro block recon buffer */ |
399 | 0 | xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; |
400 | 0 | ref_ptr = (unsigned char *)(xd->pre.y_buffer + d->offset); |
401 | 0 | vpx_mse16x16(src_ptr, src_stride, ref_ptr, ref_stride, |
402 | 0 | (unsigned int *)(best_motion_err)); |
403 | 0 | } |
404 | | |
405 | | static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, |
406 | | int_mv *ref_mv, MV *best_mv, |
407 | | YV12_BUFFER_CONFIG *recon_buffer, |
408 | 0 | int *best_motion_err, int recon_yoffset) { |
409 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
410 | 0 | BLOCK *b = &x->block[0]; |
411 | 0 | BLOCKD *d = &x->e_mbd.block[0]; |
412 | 0 | int num00; |
413 | |
|
414 | 0 | int_mv tmp_mv; |
415 | 0 | int_mv ref_mv_full; |
416 | |
|
417 | 0 | int tmp_err; |
418 | 0 | int step_param = 3; /* Don't search over full range for first pass */ |
419 | 0 | int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; |
420 | 0 | int n; |
421 | 0 | vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; |
422 | 0 | int new_mv_mode_penalty = 256; |
423 | | |
424 | | /* override the default variance function to use MSE */ |
425 | 0 | v_fn_ptr.vf = vpx_mse16x16; |
426 | | |
427 | | /* Set up pointers for this macro block recon buffer */ |
428 | 0 | xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; |
429 | | |
430 | | /* Initial step/diamond search centred on best mv */ |
431 | 0 | tmp_mv.as_int = 0; |
432 | 0 | ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3; |
433 | 0 | ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3; |
434 | 0 | tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param, |
435 | 0 | x->sadperbit16, &num00, &v_fn_ptr, |
436 | 0 | x->mvcost, ref_mv); |
437 | 0 | if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; |
438 | |
|
439 | 0 | if (tmp_err < *best_motion_err) { |
440 | 0 | *best_motion_err = tmp_err; |
441 | 0 | best_mv->row = tmp_mv.as_mv.row; |
442 | 0 | best_mv->col = tmp_mv.as_mv.col; |
443 | 0 | } |
444 | | |
445 | | /* Further step/diamond searches as necessary */ |
446 | 0 | n = num00; |
447 | 0 | num00 = 0; |
448 | |
|
449 | 0 | while (n < further_steps) { |
450 | 0 | n++; |
451 | |
|
452 | 0 | if (num00) { |
453 | 0 | num00--; |
454 | 0 | } else { |
455 | 0 | tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, |
456 | 0 | step_param + n, x->sadperbit16, &num00, |
457 | 0 | &v_fn_ptr, x->mvcost, ref_mv); |
458 | 0 | if (tmp_err < INT_MAX - new_mv_mode_penalty) { |
459 | 0 | tmp_err += new_mv_mode_penalty; |
460 | 0 | } |
461 | |
|
462 | 0 | if (tmp_err < *best_motion_err) { |
463 | 0 | *best_motion_err = tmp_err; |
464 | 0 | best_mv->row = tmp_mv.as_mv.row; |
465 | 0 | best_mv->col = tmp_mv.as_mv.col; |
466 | 0 | } |
467 | 0 | } |
468 | 0 | } |
469 | 0 | } |
470 | | |
471 | 0 | void vp8_first_pass(VP8_COMP *cpi) { |
472 | 0 | int mb_row, mb_col; |
473 | 0 | MACROBLOCK *const x = &cpi->mb; |
474 | 0 | VP8_COMMON *const cm = &cpi->common; |
475 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
476 | |
|
477 | 0 | int recon_yoffset, recon_uvoffset; |
478 | 0 | YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; |
479 | 0 | YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; |
480 | 0 | YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; |
481 | 0 | int recon_y_stride = lst_yv12->y_stride; |
482 | 0 | int recon_uv_stride = lst_yv12->uv_stride; |
483 | 0 | int64_t intra_error = 0; |
484 | 0 | int64_t coded_error = 0; |
485 | |
|
486 | 0 | int sum_mvr = 0, sum_mvc = 0; |
487 | 0 | int sum_mvr_abs = 0, sum_mvc_abs = 0; |
488 | 0 | int sum_mvrs = 0, sum_mvcs = 0; |
489 | 0 | int mvcount = 0; |
490 | 0 | int intercount = 0; |
491 | 0 | int second_ref_count = 0; |
492 | 0 | int intrapenalty = 256; |
493 | 0 | int neutral_count = 0; |
494 | 0 | int new_mv_count = 0; |
495 | 0 | int sum_in_vectors = 0; |
496 | 0 | uint32_t lastmv_as_int = 0; |
497 | |
|
498 | 0 | int_mv zero_ref_mv; |
499 | |
|
500 | 0 | zero_ref_mv.as_int = 0; |
501 | |
|
502 | 0 | vpx_clear_system_state(); |
503 | |
|
504 | 0 | x->src = *cpi->Source; |
505 | 0 | xd->pre = *lst_yv12; |
506 | 0 | xd->dst = *new_yv12; |
507 | |
|
508 | 0 | x->partition_info = x->pi; |
509 | |
|
510 | 0 | xd->mode_info_context = cm->mi; |
511 | |
|
512 | 0 | if (!cm->use_bilinear_mc_filter) { |
513 | 0 | xd->subpixel_predict = vp8_sixtap_predict4x4; |
514 | 0 | xd->subpixel_predict8x4 = vp8_sixtap_predict8x4; |
515 | 0 | xd->subpixel_predict8x8 = vp8_sixtap_predict8x8; |
516 | 0 | xd->subpixel_predict16x16 = vp8_sixtap_predict16x16; |
517 | 0 | } else { |
518 | 0 | xd->subpixel_predict = vp8_bilinear_predict4x4; |
519 | 0 | xd->subpixel_predict8x4 = vp8_bilinear_predict8x4; |
520 | 0 | xd->subpixel_predict8x8 = vp8_bilinear_predict8x8; |
521 | 0 | xd->subpixel_predict16x16 = vp8_bilinear_predict16x16; |
522 | 0 | } |
523 | |
|
524 | 0 | vp8_build_block_offsets(x); |
525 | | |
526 | | /* set up frame new frame for intra coded blocks */ |
527 | 0 | vp8_setup_intra_recon(new_yv12); |
528 | 0 | vp8cx_frame_init_quantizer(cpi); |
529 | | |
530 | | /* Initialise the MV cost table to the defaults */ |
531 | 0 | { |
532 | 0 | int flag[2] = { 1, 1 }; |
533 | 0 | vp8_initialize_rd_consts(cpi, x, |
534 | 0 | vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); |
535 | 0 | memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); |
536 | 0 | vp8_build_component_cost_table(cpi->mb.mvcost, |
537 | 0 | (const MV_CONTEXT *)cm->fc.mvc, flag); |
538 | 0 | } |
539 | | |
540 | | /* for each macroblock row in image */ |
541 | 0 | for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { |
542 | 0 | int_mv best_ref_mv; |
543 | |
|
544 | 0 | best_ref_mv.as_int = 0; |
545 | | |
546 | | /* reset above block coeffs */ |
547 | 0 | xd->up_available = (mb_row != 0); |
548 | 0 | recon_yoffset = (mb_row * recon_y_stride * 16); |
549 | 0 | recon_uvoffset = (mb_row * recon_uv_stride * 8); |
550 | | |
551 | | /* Set up limit values for motion vectors to prevent them extending |
552 | | * outside the UMV borders |
553 | | */ |
554 | 0 | x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); |
555 | 0 | x->mv_row_max = |
556 | 0 | ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); |
557 | | |
558 | | /* for each macroblock col in image */ |
559 | 0 | for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { |
560 | 0 | int this_error; |
561 | 0 | int gf_motion_error = INT_MAX; |
562 | 0 | int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); |
563 | |
|
564 | 0 | xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; |
565 | 0 | xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset; |
566 | 0 | xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; |
567 | 0 | xd->left_available = (mb_col != 0); |
568 | | |
569 | | /* Copy current mb to a buffer */ |
570 | 0 | vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); |
571 | | |
572 | | /* do intra 16x16 prediction */ |
573 | 0 | this_error = vp8_encode_intra(x, use_dc_pred); |
574 | | |
575 | | /* "intrapenalty" below deals with situations where the intra |
576 | | * and inter error scores are very low (eg a plain black frame) |
577 | | * We do not have special cases in first pass for 0,0 and |
578 | | * nearest etc so all inter modes carry an overhead cost |
579 | | * estimate fot the mv. When the error score is very low this |
580 | | * causes us to pick all or lots of INTRA modes and throw lots |
581 | | * of key frames. This penalty adds a cost matching that of a |
582 | | * 0,0 mv to the intra case. |
583 | | */ |
584 | 0 | this_error += intrapenalty; |
585 | | |
586 | | /* Cumulative intra error total */ |
587 | 0 | intra_error += (int64_t)this_error; |
588 | | |
589 | | /* Set up limit values for motion vectors to prevent them |
590 | | * extending outside the UMV borders |
591 | | */ |
592 | 0 | x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); |
593 | 0 | x->mv_col_max = |
594 | 0 | ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); |
595 | | |
596 | | /* Other than for the first frame do a motion search */ |
597 | 0 | if (cm->current_video_frame > 0) { |
598 | 0 | BLOCKD *d = &x->e_mbd.block[0]; |
599 | 0 | MV tmp_mv = { 0, 0 }; |
600 | 0 | int tmp_err; |
601 | 0 | int motion_error = INT_MAX; |
602 | 0 | int raw_motion_error = INT_MAX; |
603 | | |
604 | | /* Simple 0,0 motion with no mv overhead */ |
605 | 0 | zz_motion_search(x, cpi->last_frame_unscaled_source, &raw_motion_error, |
606 | 0 | lst_yv12, &motion_error, recon_yoffset); |
607 | 0 | d->bmi.mv.as_mv.row = 0; |
608 | 0 | d->bmi.mv.as_mv.col = 0; |
609 | |
|
610 | 0 | if (raw_motion_error < cpi->oxcf.encode_breakout) { |
611 | 0 | goto skip_motion_search; |
612 | 0 | } |
613 | | |
614 | | /* Test last reference frame using the previous best mv as the |
615 | | * starting point (best reference) for the search |
616 | | */ |
617 | 0 | first_pass_motion_search(cpi, x, &best_ref_mv, &d->bmi.mv.as_mv, |
618 | 0 | lst_yv12, &motion_error, recon_yoffset); |
619 | | |
620 | | /* If the current best reference mv is not centred on 0,0 |
621 | | * then do a 0,0 based search as well |
622 | | */ |
623 | 0 | if (best_ref_mv.as_int) { |
624 | 0 | tmp_err = INT_MAX; |
625 | 0 | first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, lst_yv12, |
626 | 0 | &tmp_err, recon_yoffset); |
627 | |
|
628 | 0 | if (tmp_err < motion_error) { |
629 | 0 | motion_error = tmp_err; |
630 | 0 | d->bmi.mv.as_mv.row = tmp_mv.row; |
631 | 0 | d->bmi.mv.as_mv.col = tmp_mv.col; |
632 | 0 | } |
633 | 0 | } |
634 | | |
635 | | /* Experimental search in a second reference frame ((0,0) |
636 | | * based only) |
637 | | */ |
638 | 0 | if (cm->current_video_frame > 1) { |
639 | 0 | first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, |
640 | 0 | &gf_motion_error, recon_yoffset); |
641 | |
|
642 | 0 | if ((gf_motion_error < motion_error) && |
643 | 0 | (gf_motion_error < this_error)) { |
644 | 0 | second_ref_count++; |
645 | 0 | } |
646 | | |
647 | | /* Reset to last frame as reference buffer */ |
648 | 0 | xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset; |
649 | 0 | xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset; |
650 | 0 | xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset; |
651 | 0 | } |
652 | |
|
653 | 0 | skip_motion_search: |
654 | | /* Intra assumed best */ |
655 | 0 | best_ref_mv.as_int = 0; |
656 | |
|
657 | 0 | if (motion_error <= this_error) { |
658 | | /* Keep a count of cases where the inter and intra were |
659 | | * very close and very low. This helps with scene cut |
660 | | * detection for example in cropped clips with black bars |
661 | | * at the sides or top and bottom. |
662 | | */ |
663 | 0 | if ((((this_error - intrapenalty) * 9) <= (motion_error * 10)) && |
664 | 0 | (this_error < (2 * intrapenalty))) { |
665 | 0 | neutral_count++; |
666 | 0 | } |
667 | |
|
668 | 0 | d->bmi.mv.as_mv.row *= 8; |
669 | 0 | d->bmi.mv.as_mv.col *= 8; |
670 | 0 | this_error = motion_error; |
671 | 0 | vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv); |
672 | 0 | vp8_encode_inter16x16y(x); |
673 | 0 | sum_mvr += d->bmi.mv.as_mv.row; |
674 | 0 | sum_mvr_abs += abs(d->bmi.mv.as_mv.row); |
675 | 0 | sum_mvc += d->bmi.mv.as_mv.col; |
676 | 0 | sum_mvc_abs += abs(d->bmi.mv.as_mv.col); |
677 | 0 | sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row; |
678 | 0 | sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col; |
679 | 0 | intercount++; |
680 | |
|
681 | 0 | best_ref_mv.as_int = d->bmi.mv.as_int; |
682 | | |
683 | | /* Was the vector non-zero */ |
684 | 0 | if (d->bmi.mv.as_int) { |
685 | 0 | mvcount++; |
686 | | |
687 | | /* Was it different from the last non zero vector */ |
688 | 0 | if (d->bmi.mv.as_int != lastmv_as_int) new_mv_count++; |
689 | 0 | lastmv_as_int = d->bmi.mv.as_int; |
690 | | |
691 | | /* Does the Row vector point inwards or outwards */ |
692 | 0 | if (mb_row < cm->mb_rows / 2) { |
693 | 0 | if (d->bmi.mv.as_mv.row > 0) { |
694 | 0 | sum_in_vectors--; |
695 | 0 | } else if (d->bmi.mv.as_mv.row < 0) { |
696 | 0 | sum_in_vectors++; |
697 | 0 | } |
698 | 0 | } else if (mb_row > cm->mb_rows / 2) { |
699 | 0 | if (d->bmi.mv.as_mv.row > 0) { |
700 | 0 | sum_in_vectors++; |
701 | 0 | } else if (d->bmi.mv.as_mv.row < 0) { |
702 | 0 | sum_in_vectors--; |
703 | 0 | } |
704 | 0 | } |
705 | | |
706 | | /* Does the Row vector point inwards or outwards */ |
707 | 0 | if (mb_col < cm->mb_cols / 2) { |
708 | 0 | if (d->bmi.mv.as_mv.col > 0) { |
709 | 0 | sum_in_vectors--; |
710 | 0 | } else if (d->bmi.mv.as_mv.col < 0) { |
711 | 0 | sum_in_vectors++; |
712 | 0 | } |
713 | 0 | } else if (mb_col > cm->mb_cols / 2) { |
714 | 0 | if (d->bmi.mv.as_mv.col > 0) { |
715 | 0 | sum_in_vectors++; |
716 | 0 | } else if (d->bmi.mv.as_mv.col < 0) { |
717 | 0 | sum_in_vectors--; |
718 | 0 | } |
719 | 0 | } |
720 | 0 | } |
721 | 0 | } |
722 | 0 | } |
723 | | |
724 | 0 | coded_error += (int64_t)this_error; |
725 | | |
726 | | /* adjust to the next column of macroblocks */ |
727 | 0 | x->src.y_buffer += 16; |
728 | 0 | x->src.u_buffer += 8; |
729 | 0 | x->src.v_buffer += 8; |
730 | |
|
731 | 0 | recon_yoffset += 16; |
732 | 0 | recon_uvoffset += 8; |
733 | 0 | } |
734 | | |
735 | | /* adjust to the next row of mbs */ |
736 | 0 | x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; |
737 | 0 | x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; |
738 | 0 | x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; |
739 | | |
740 | | /* extend the recon for intra prediction */ |
741 | 0 | vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, |
742 | 0 | xd->dst.v_buffer + 8); |
743 | 0 | vpx_clear_system_state(); |
744 | 0 | } |
745 | | |
746 | 0 | vpx_clear_system_state(); |
747 | 0 | { |
748 | 0 | double weight = 0.0; |
749 | |
|
750 | 0 | FIRSTPASS_STATS fps; |
751 | |
|
752 | 0 | fps.frame = cm->current_video_frame; |
753 | 0 | fps.intra_error = (double)(intra_error >> 8); |
754 | 0 | fps.coded_error = (double)(coded_error >> 8); |
755 | 0 | weight = simple_weight(cpi->Source); |
756 | |
|
757 | 0 | if (weight < 0.1) weight = 0.1; |
758 | |
|
759 | 0 | fps.ssim_weighted_pred_err = fps.coded_error * weight; |
760 | |
|
761 | 0 | fps.pcnt_inter = 0.0; |
762 | 0 | fps.pcnt_motion = 0.0; |
763 | 0 | fps.MVr = 0.0; |
764 | 0 | fps.mvr_abs = 0.0; |
765 | 0 | fps.MVc = 0.0; |
766 | 0 | fps.mvc_abs = 0.0; |
767 | 0 | fps.MVrv = 0.0; |
768 | 0 | fps.MVcv = 0.0; |
769 | 0 | fps.mv_in_out_count = 0.0; |
770 | 0 | fps.new_mv_count = 0.0; |
771 | 0 | fps.count = 1.0; |
772 | |
|
773 | 0 | fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; |
774 | 0 | fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; |
775 | 0 | fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; |
776 | |
|
777 | 0 | if (mvcount > 0) { |
778 | 0 | fps.MVr = (double)sum_mvr / (double)mvcount; |
779 | 0 | fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; |
780 | 0 | fps.MVc = (double)sum_mvc / (double)mvcount; |
781 | 0 | fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; |
782 | 0 | fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / |
783 | 0 | (double)mvcount; |
784 | 0 | fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / |
785 | 0 | (double)mvcount; |
786 | 0 | fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); |
787 | 0 | fps.new_mv_count = new_mv_count; |
788 | |
|
789 | 0 | fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; |
790 | 0 | } |
791 | | |
792 | | /* TODO: handle the case when duration is set to 0, or something less |
793 | | * than the full time between subsequent cpi->source_time_stamps |
794 | | */ |
795 | 0 | fps.duration = (double)(cpi->source->ts_end - cpi->source->ts_start); |
796 | | |
797 | | /* don't want to do output stats with a stack variable! */ |
798 | 0 | memcpy(&cpi->twopass.this_frame_stats, &fps, sizeof(FIRSTPASS_STATS)); |
799 | 0 | output_stats(cpi->output_pkt_list, &cpi->twopass.this_frame_stats); |
800 | 0 | accumulate_stats(&cpi->twopass.total_stats, &fps); |
801 | 0 | } |
802 | | |
803 | | /* Copy the previous Last Frame into the GF buffer if specific |
804 | | * conditions for doing so are met |
805 | | */ |
806 | 0 | if ((cm->current_video_frame > 0) && |
807 | 0 | (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) && |
808 | 0 | ((cpi->twopass.this_frame_stats.intra_error / |
809 | 0 | DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) > |
810 | 0 | 2.0)) { |
811 | 0 | vp8_yv12_copy_frame(lst_yv12, gld_yv12); |
812 | 0 | } |
813 | | |
814 | | /* swap frame pointers so last frame refers to the frame we just |
815 | | * compressed |
816 | | */ |
817 | 0 | vp8_swap_yv12_buffer(lst_yv12, new_yv12); |
818 | 0 | vp8_yv12_extend_frame_borders(lst_yv12); |
819 | | |
820 | | /* Special case for the first frame. Copy into the GF buffer as a |
821 | | * second reference. |
822 | | */ |
823 | 0 | if (cm->current_video_frame == 0) { |
824 | 0 | vp8_yv12_copy_frame(lst_yv12, gld_yv12); |
825 | 0 | } |
826 | |
|
827 | 0 | cm->current_video_frame++; |
828 | 0 | } |
829 | | extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; |
830 | | |
831 | | /* Estimate a cost per mb attributable to overheads such as the coding of |
832 | | * modes and motion vectors. |
833 | | * Currently simplistic in its assumptions for testing. |
834 | | */ |
835 | | |
836 | 0 | static double bitcost(double prob) { |
837 | 0 | if (prob > 0.000122) { |
838 | 0 | return -log(prob) / log(2.0); |
839 | 0 | } else { |
840 | 0 | return 13.0; |
841 | 0 | } |
842 | 0 | } |
843 | 0 | static int64_t estimate_modemvcost(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats) { |
844 | 0 | int mv_cost; |
845 | 0 | int64_t mode_cost; |
846 | |
|
847 | 0 | double av_pct_inter = fpstats->pcnt_inter / fpstats->count; |
848 | 0 | double av_pct_motion = fpstats->pcnt_motion / fpstats->count; |
849 | 0 | double av_intra = (1.0 - av_pct_inter); |
850 | |
|
851 | 0 | double zz_cost; |
852 | 0 | double motion_cost; |
853 | 0 | double intra_cost; |
854 | |
|
855 | 0 | zz_cost = bitcost(av_pct_inter - av_pct_motion); |
856 | 0 | motion_cost = bitcost(av_pct_motion); |
857 | 0 | intra_cost = bitcost(av_intra); |
858 | | |
859 | | /* Estimate of extra bits per mv overhead for mbs |
860 | | * << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb |
861 | | */ |
862 | 0 | mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; |
863 | | |
864 | | /* Crude estimate of overhead cost from modes |
865 | | * << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb |
866 | | */ |
867 | 0 | mode_cost = |
868 | 0 | (int64_t)((((av_pct_inter - av_pct_motion) * zz_cost) + |
869 | 0 | (av_pct_motion * motion_cost) + (av_intra * intra_cost)) * |
870 | 0 | cpi->common.MBs) * |
871 | 0 | 512; |
872 | |
|
873 | 0 | return mv_cost + mode_cost; |
874 | 0 | } |
875 | | |
876 | | static double calc_correction_factor(double err_per_mb, double err_devisor, |
877 | 0 | double pt_low, double pt_high, int Q) { |
878 | 0 | double power_term; |
879 | 0 | double error_term = err_per_mb / err_devisor; |
880 | 0 | double correction_factor; |
881 | | |
882 | | /* Adjustment based on Q to power term. */ |
883 | 0 | power_term = pt_low + (Q * 0.01); |
884 | 0 | power_term = (power_term > pt_high) ? pt_high : power_term; |
885 | | |
886 | | /* Adjustments to error term */ |
887 | | /* TBD */ |
888 | | |
889 | | /* Calculate correction factor */ |
890 | 0 | correction_factor = pow(error_term, power_term); |
891 | | |
892 | | /* Clip range */ |
893 | 0 | correction_factor = (correction_factor < 0.05) ? 0.05 |
894 | 0 | : (correction_factor > 5.0) ? 5.0 |
895 | 0 | : correction_factor; |
896 | |
|
897 | 0 | return correction_factor; |
898 | 0 | } |
899 | | |
900 | | static int estimate_max_q(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats, |
901 | 0 | int section_target_bandwitdh, int overhead_bits) { |
902 | 0 | int Q; |
903 | 0 | int num_mbs = cpi->common.MBs; |
904 | 0 | int target_norm_bits_per_mb; |
905 | |
|
906 | 0 | double section_err = (fpstats->coded_error / fpstats->count); |
907 | 0 | double err_per_mb = section_err / num_mbs; |
908 | 0 | double err_correction_factor; |
909 | 0 | double speed_correction = 1.0; |
910 | 0 | int overhead_bits_per_mb; |
911 | |
|
912 | 0 | if (section_target_bandwitdh <= 0) { |
913 | 0 | return cpi->twopass.maxq_max_limit; /* Highest value allowed */ |
914 | 0 | } |
915 | | |
916 | 0 | target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) |
917 | 0 | ? (512 * section_target_bandwitdh) / num_mbs |
918 | 0 | : 512 * (section_target_bandwitdh / num_mbs); |
919 | | |
920 | | /* Calculate a corrective factor based on a rolling ratio of bits spent |
921 | | * vs target bits |
922 | | */ |
923 | 0 | if ((cpi->rolling_target_bits > 0) && |
924 | 0 | (cpi->active_worst_quality < cpi->worst_quality)) { |
925 | 0 | double rolling_ratio; |
926 | |
|
927 | 0 | rolling_ratio = |
928 | 0 | (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits; |
929 | |
|
930 | 0 | if (rolling_ratio < 0.95) { |
931 | 0 | cpi->twopass.est_max_qcorrection_factor -= 0.005; |
932 | 0 | } else if (rolling_ratio > 1.05) { |
933 | 0 | cpi->twopass.est_max_qcorrection_factor += 0.005; |
934 | 0 | } |
935 | |
|
936 | 0 | cpi->twopass.est_max_qcorrection_factor = |
937 | 0 | (cpi->twopass.est_max_qcorrection_factor < 0.1) ? 0.1 |
938 | 0 | : (cpi->twopass.est_max_qcorrection_factor > 10.0) |
939 | 0 | ? 10.0 |
940 | 0 | : cpi->twopass.est_max_qcorrection_factor; |
941 | 0 | } |
942 | | |
943 | | /* Corrections for higher compression speed settings |
944 | | * (reduced compression expected) |
945 | | */ |
946 | 0 | if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { |
947 | 0 | if (cpi->oxcf.cpu_used <= 5) { |
948 | 0 | speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
949 | 0 | } else { |
950 | 0 | speed_correction = 1.25; |
951 | 0 | } |
952 | 0 | } |
953 | | |
954 | | /* Estimate of overhead bits per mb */ |
955 | | /* Correction to overhead bits for min allowed Q. */ |
956 | 0 | overhead_bits_per_mb = overhead_bits / num_mbs; |
957 | 0 | overhead_bits_per_mb = (int)(overhead_bits_per_mb * |
958 | 0 | pow(0.98, (double)cpi->twopass.maxq_min_limit)); |
959 | | |
960 | | /* Try and pick a max Q that will be high enough to encode the |
961 | | * content at the given rate. |
962 | | */ |
963 | 0 | for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; ++Q) { |
964 | 0 | int bits_per_mb_at_this_q; |
965 | | |
966 | | /* Error per MB based correction factor */ |
967 | 0 | err_correction_factor = |
968 | 0 | calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); |
969 | |
|
970 | 0 | bits_per_mb_at_this_q = |
971 | 0 | vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; |
972 | |
|
973 | 0 | bits_per_mb_at_this_q = |
974 | 0 | (int)(.5 + err_correction_factor * speed_correction * |
975 | 0 | cpi->twopass.est_max_qcorrection_factor * |
976 | 0 | cpi->twopass.section_max_qfactor * |
977 | 0 | (double)bits_per_mb_at_this_q); |
978 | | |
979 | | /* Mode and motion overhead */ |
980 | | /* As Q rises in real encode loop rd code will force overhead down |
981 | | * We make a crude adjustment for this here as *.98 per Q step. |
982 | | */ |
983 | 0 | overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); |
984 | |
|
985 | 0 | if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; |
986 | 0 | } |
987 | | |
988 | | /* Restriction on active max q for constrained quality mode. */ |
989 | 0 | if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && |
990 | 0 | (Q < cpi->cq_target_quality)) { |
991 | 0 | Q = cpi->cq_target_quality; |
992 | 0 | } |
993 | | |
994 | | /* Adjust maxq_min_limit and maxq_max_limit limits based on |
995 | | * average q observed in clip for non kf/gf.arf frames |
996 | | * Give average a chance to settle though. |
997 | | */ |
998 | 0 | if ((cpi->ni_frames > ((int)cpi->twopass.total_stats.count >> 8)) && |
999 | 0 | (cpi->ni_frames > 150)) { |
1000 | 0 | cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality) |
1001 | 0 | ? (cpi->ni_av_qi + 32) |
1002 | 0 | : cpi->worst_quality; |
1003 | 0 | cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality) |
1004 | 0 | ? (cpi->ni_av_qi - 32) |
1005 | 0 | : cpi->best_quality; |
1006 | 0 | } |
1007 | |
|
1008 | 0 | return Q; |
1009 | 0 | } |
1010 | | |
1011 | | /* For cq mode estimate a cq level that matches the observed |
1012 | | * complexity and data rate. |
1013 | | */ |
1014 | | static int estimate_cq(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats, |
1015 | 0 | int section_target_bandwitdh, int overhead_bits) { |
1016 | 0 | int Q; |
1017 | 0 | int num_mbs = cpi->common.MBs; |
1018 | 0 | int target_norm_bits_per_mb; |
1019 | |
|
1020 | 0 | double section_err = (fpstats->coded_error / fpstats->count); |
1021 | 0 | double err_per_mb = section_err / num_mbs; |
1022 | 0 | double err_correction_factor; |
1023 | 0 | double speed_correction = 1.0; |
1024 | 0 | double clip_iiratio; |
1025 | 0 | double clip_iifactor; |
1026 | 0 | int overhead_bits_per_mb; |
1027 | |
|
1028 | 0 | target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) |
1029 | 0 | ? (512 * section_target_bandwitdh) / num_mbs |
1030 | 0 | : 512 * (section_target_bandwitdh / num_mbs); |
1031 | | |
1032 | | /* Estimate of overhead bits per mb */ |
1033 | 0 | overhead_bits_per_mb = overhead_bits / num_mbs; |
1034 | | |
1035 | | /* Corrections for higher compression speed settings |
1036 | | * (reduced compression expected) |
1037 | | */ |
1038 | 0 | if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { |
1039 | 0 | if (cpi->oxcf.cpu_used <= 5) { |
1040 | 0 | speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
1041 | 0 | } else { |
1042 | 0 | speed_correction = 1.25; |
1043 | 0 | } |
1044 | 0 | } |
1045 | | |
1046 | | /* II ratio correction factor for clip as a whole */ |
1047 | 0 | clip_iiratio = cpi->twopass.total_stats.intra_error / |
1048 | 0 | DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error); |
1049 | 0 | clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); |
1050 | 0 | if (clip_iifactor < 0.80) clip_iifactor = 0.80; |
1051 | | |
1052 | | /* Try and pick a Q that can encode the content at the given rate. */ |
1053 | 0 | for (Q = 0; Q < MAXQ; ++Q) { |
1054 | 0 | int bits_per_mb_at_this_q; |
1055 | | |
1056 | | /* Error per MB based correction factor */ |
1057 | 0 | err_correction_factor = |
1058 | 0 | calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q); |
1059 | |
|
1060 | 0 | bits_per_mb_at_this_q = |
1061 | 0 | vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; |
1062 | |
|
1063 | 0 | bits_per_mb_at_this_q = |
1064 | 0 | (int)(.5 + err_correction_factor * speed_correction * clip_iifactor * |
1065 | 0 | (double)bits_per_mb_at_this_q); |
1066 | | |
1067 | | /* Mode and motion overhead */ |
1068 | | /* As Q rises in real encode loop rd code will force overhead down |
1069 | | * We make a crude adjustment for this here as *.98 per Q step. |
1070 | | */ |
1071 | 0 | overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); |
1072 | |
|
1073 | 0 | if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; |
1074 | 0 | } |
1075 | | |
1076 | | /* Clip value to range "best allowed to (worst allowed - 1)" */ |
1077 | 0 | Q = cq_level[Q]; |
1078 | 0 | if (Q >= cpi->worst_quality) Q = cpi->worst_quality - 1; |
1079 | 0 | if (Q < cpi->best_quality) Q = cpi->best_quality; |
1080 | |
|
1081 | 0 | return Q; |
1082 | 0 | } |
1083 | | |
1084 | | static int estimate_q(VP8_COMP *cpi, double section_err, |
1085 | 0 | int section_target_bandwitdh) { |
1086 | 0 | int Q; |
1087 | 0 | int num_mbs = cpi->common.MBs; |
1088 | 0 | int target_norm_bits_per_mb; |
1089 | |
|
1090 | 0 | double err_per_mb = section_err / num_mbs; |
1091 | 0 | double err_correction_factor; |
1092 | 0 | double speed_correction = 1.0; |
1093 | |
|
1094 | 0 | target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) |
1095 | 0 | ? (512 * section_target_bandwitdh) / num_mbs |
1096 | 0 | : 512 * (section_target_bandwitdh / num_mbs); |
1097 | | |
1098 | | /* Corrections for higher compression speed settings |
1099 | | * (reduced compression expected) |
1100 | | */ |
1101 | 0 | if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { |
1102 | 0 | if (cpi->oxcf.cpu_used <= 5) { |
1103 | 0 | speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
1104 | 0 | } else { |
1105 | 0 | speed_correction = 1.25; |
1106 | 0 | } |
1107 | 0 | } |
1108 | | |
1109 | | /* Try and pick a Q that can encode the content at the given rate. */ |
1110 | 0 | for (Q = 0; Q < MAXQ; ++Q) { |
1111 | 0 | int bits_per_mb_at_this_q; |
1112 | | |
1113 | | /* Error per MB based correction factor */ |
1114 | 0 | err_correction_factor = |
1115 | 0 | calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); |
1116 | |
|
1117 | 0 | bits_per_mb_at_this_q = |
1118 | 0 | (int)(.5 + (err_correction_factor * speed_correction * |
1119 | 0 | cpi->twopass.est_max_qcorrection_factor * |
1120 | 0 | (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0)); |
1121 | |
|
1122 | 0 | if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; |
1123 | 0 | } |
1124 | |
|
1125 | 0 | return Q; |
1126 | 0 | } |
1127 | | |
1128 | | /* Estimate a worst case Q for a KF group */ |
1129 | | static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, |
1130 | | int section_target_bandwitdh, |
1131 | 0 | double group_iiratio) { |
1132 | 0 | int Q; |
1133 | 0 | int num_mbs = cpi->common.MBs; |
1134 | 0 | int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs; |
1135 | 0 | int bits_per_mb_at_this_q; |
1136 | |
|
1137 | 0 | double err_per_mb = section_err / num_mbs; |
1138 | 0 | double err_correction_factor; |
1139 | 0 | double speed_correction = 1.0; |
1140 | 0 | double current_spend_ratio = 1.0; |
1141 | |
|
1142 | 0 | double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90; |
1143 | 0 | double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80; |
1144 | |
|
1145 | 0 | double iiratio_correction_factor = 1.0; |
1146 | |
|
1147 | 0 | double combined_correction_factor; |
1148 | | |
1149 | | /* Trap special case where the target is <= 0 */ |
1150 | 0 | if (target_norm_bits_per_mb <= 0) return MAXQ * 2; |
1151 | | |
1152 | | /* Calculate a corrective factor based on a rolling ratio of bits spent |
1153 | | * vs target bits |
1154 | | * This is clamped to the range 0.1 to 10.0 |
1155 | | */ |
1156 | 0 | if (cpi->long_rolling_target_bits <= 0) { |
1157 | 0 | current_spend_ratio = 10.0; |
1158 | 0 | } else { |
1159 | 0 | current_spend_ratio = (double)cpi->long_rolling_actual_bits / |
1160 | 0 | (double)cpi->long_rolling_target_bits; |
1161 | 0 | current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0 |
1162 | 0 | : (current_spend_ratio < 0.1) ? 0.1 |
1163 | 0 | : current_spend_ratio; |
1164 | 0 | } |
1165 | | |
1166 | | /* Calculate a correction factor based on the quality of prediction in |
1167 | | * the sequence as indicated by intra_inter error score ratio (IIRatio) |
1168 | | * The idea here is to favour subsampling in the hardest sections vs |
1169 | | * the easyest. |
1170 | | */ |
1171 | 0 | iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1); |
1172 | |
|
1173 | 0 | if (iiratio_correction_factor < 0.5) iiratio_correction_factor = 0.5; |
1174 | | |
1175 | | /* Corrections for higher compression speed settings |
1176 | | * (reduced compression expected) |
1177 | | */ |
1178 | 0 | if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { |
1179 | 0 | if (cpi->oxcf.cpu_used <= 5) { |
1180 | 0 | speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
1181 | 0 | } else { |
1182 | 0 | speed_correction = 1.25; |
1183 | 0 | } |
1184 | 0 | } |
1185 | | |
1186 | | /* Combine the various factors calculated above */ |
1187 | 0 | combined_correction_factor = |
1188 | 0 | speed_correction * iiratio_correction_factor * current_spend_ratio; |
1189 | | |
1190 | | /* Try and pick a Q that should be high enough to encode the content at |
1191 | | * the given rate. |
1192 | | */ |
1193 | 0 | for (Q = 0; Q < MAXQ; ++Q) { |
1194 | | /* Error per MB based correction factor */ |
1195 | 0 | err_correction_factor = |
1196 | 0 | calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q); |
1197 | |
|
1198 | 0 | bits_per_mb_at_this_q = |
1199 | 0 | (int)(.5 + (err_correction_factor * combined_correction_factor * |
1200 | 0 | (double)vp8_bits_per_mb[INTER_FRAME][Q])); |
1201 | |
|
1202 | 0 | if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; |
1203 | 0 | } |
1204 | | |
1205 | | /* If we could not hit the target even at Max Q then estimate what Q |
1206 | | * would have been required |
1207 | | */ |
1208 | 0 | while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) && |
1209 | 0 | (Q < (MAXQ * 2))) { |
1210 | 0 | bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q); |
1211 | 0 | Q++; |
1212 | 0 | } |
1213 | |
|
1214 | 0 | return Q; |
1215 | 0 | } |
1216 | | |
1217 | 0 | void vp8_init_second_pass(VP8_COMP *cpi) { |
1218 | 0 | FIRSTPASS_STATS this_frame; |
1219 | 0 | FIRSTPASS_STATS *start_pos; |
1220 | |
|
1221 | 0 | double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * |
1222 | 0 | cpi->oxcf.two_pass_vbrmin_section / 100); |
1223 | |
|
1224 | 0 | zero_stats(&cpi->twopass.total_stats); |
1225 | 0 | zero_stats(&cpi->twopass.total_left_stats); |
1226 | |
|
1227 | 0 | if (!cpi->twopass.stats_in_end) return; |
1228 | | |
1229 | 0 | cpi->twopass.total_stats = *cpi->twopass.stats_in_end; |
1230 | 0 | cpi->twopass.total_left_stats = cpi->twopass.total_stats; |
1231 | | |
1232 | | /* each frame can have a different duration, as the frame rate in the |
1233 | | * source isn't guaranteed to be constant. The frame rate prior to |
1234 | | * the first frame encoded in the second pass is a guess. However the |
1235 | | * sum duration is not. Its calculated based on the actual durations of |
1236 | | * all frames from the first pass. |
1237 | | */ |
1238 | 0 | vp8_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count / |
1239 | 0 | cpi->twopass.total_stats.duration); |
1240 | |
|
1241 | 0 | cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * |
1242 | 0 | cpi->oxcf.target_bandwidth / 10000000.0); |
1243 | 0 | cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration * |
1244 | 0 | two_pass_min_rate / 10000000.0); |
1245 | | |
1246 | | /* Calculate a minimum intra value to be used in determining the IIratio |
1247 | | * scores used in the second pass. We have this minimum to make sure |
1248 | | * that clips that are static but "low complexity" in the intra domain |
1249 | | * are still boosted appropriately for KF/GF/ARF |
1250 | | */ |
1251 | 0 | cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; |
1252 | 0 | cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; |
1253 | | |
1254 | | /* Scan the first pass file and calculate an average Intra / Inter error |
1255 | | * score ratio for the sequence |
1256 | | */ |
1257 | 0 | { |
1258 | 0 | double sum_iiratio = 0.0; |
1259 | 0 | double IIRatio; |
1260 | |
|
1261 | 0 | start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ |
1262 | |
|
1263 | 0 | while (input_stats(cpi, &this_frame) != EOF) { |
1264 | 0 | IIRatio = |
1265 | 0 | this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); |
1266 | 0 | IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; |
1267 | 0 | sum_iiratio += IIRatio; |
1268 | 0 | } |
1269 | |
|
1270 | 0 | cpi->twopass.avg_iiratio = |
1271 | 0 | sum_iiratio / |
1272 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count); |
1273 | | |
1274 | | /* Reset file position */ |
1275 | 0 | reset_fpf_position(cpi, start_pos); |
1276 | 0 | } |
1277 | | |
1278 | | /* Scan the first pass file and calculate a modified total error based |
1279 | | * upon the bias/power function used to allocate bits |
1280 | | */ |
1281 | 0 | { |
1282 | 0 | start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ |
1283 | |
|
1284 | 0 | cpi->twopass.modified_error_total = 0.0; |
1285 | 0 | cpi->twopass.modified_error_used = 0.0; |
1286 | |
|
1287 | 0 | while (input_stats(cpi, &this_frame) != EOF) { |
1288 | 0 | cpi->twopass.modified_error_total += |
1289 | 0 | calculate_modified_err(cpi, &this_frame); |
1290 | 0 | } |
1291 | 0 | cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; |
1292 | |
|
1293 | 0 | reset_fpf_position(cpi, start_pos); /* Reset file position */ |
1294 | 0 | } |
1295 | 0 | } |
1296 | | |
1297 | 0 | void vp8_end_second_pass(VP8_COMP *cpi) { (void)cpi; } |
1298 | | |
1299 | | /* This function gives and estimate of how badly we believe the prediction |
1300 | | * quality is decaying from frame to frame. |
1301 | | */ |
1302 | 0 | static double get_prediction_decay_rate(FIRSTPASS_STATS *next_frame) { |
1303 | 0 | double prediction_decay_rate; |
1304 | 0 | double motion_decay; |
1305 | 0 | double motion_pct = next_frame->pcnt_motion; |
1306 | | |
1307 | | /* Initial basis is the % mbs inter coded */ |
1308 | 0 | prediction_decay_rate = next_frame->pcnt_inter; |
1309 | | |
1310 | | /* High % motion -> somewhat higher decay rate */ |
1311 | 0 | motion_decay = (1.0 - (motion_pct / 20.0)); |
1312 | 0 | if (motion_decay < prediction_decay_rate) { |
1313 | 0 | prediction_decay_rate = motion_decay; |
1314 | 0 | } |
1315 | | |
1316 | | /* Adjustment to decay rate based on speed of motion */ |
1317 | 0 | { |
1318 | 0 | double this_mv_rabs; |
1319 | 0 | double this_mv_cabs; |
1320 | 0 | double distance_factor; |
1321 | |
|
1322 | 0 | this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct); |
1323 | 0 | this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct); |
1324 | |
|
1325 | 0 | distance_factor = |
1326 | 0 | sqrt((this_mv_rabs * this_mv_rabs) + (this_mv_cabs * this_mv_cabs)) / |
1327 | 0 | 250.0; |
1328 | 0 | distance_factor = ((distance_factor > 1.0) ? 0.0 : (1.0 - distance_factor)); |
1329 | 0 | if (distance_factor < prediction_decay_rate) { |
1330 | 0 | prediction_decay_rate = distance_factor; |
1331 | 0 | } |
1332 | 0 | } |
1333 | |
|
1334 | 0 | return prediction_decay_rate; |
1335 | 0 | } |
1336 | | |
1337 | | /* Function to test for a condition where a complex transition is followed |
1338 | | * by a static section. For example in slide shows where there is a fade |
1339 | | * between slides. This is to help with more optimal kf and gf positioning. |
1340 | | */ |
1341 | | static int detect_transition_to_still(VP8_COMP *cpi, int frame_interval, |
1342 | | int still_interval, |
1343 | | double loop_decay_rate, |
1344 | 0 | double decay_accumulator) { |
1345 | 0 | int trans_to_still = 0; |
1346 | | |
1347 | | /* Break clause to detect very still sections after motion |
1348 | | * For example a static image after a fade or other transition |
1349 | | * instead of a clean scene cut. |
1350 | | */ |
1351 | 0 | if ((frame_interval > MIN_GF_INTERVAL) && (loop_decay_rate >= 0.999) && |
1352 | 0 | (decay_accumulator < 0.9)) { |
1353 | 0 | int j; |
1354 | 0 | FIRSTPASS_STATS *position = cpi->twopass.stats_in; |
1355 | 0 | FIRSTPASS_STATS tmp_next_frame; |
1356 | 0 | double decay_rate; |
1357 | | |
1358 | | /* Look ahead a few frames to see if static condition persists... */ |
1359 | 0 | for (j = 0; j < still_interval; ++j) { |
1360 | 0 | if (EOF == input_stats(cpi, &tmp_next_frame)) break; |
1361 | | |
1362 | 0 | decay_rate = get_prediction_decay_rate(&tmp_next_frame); |
1363 | 0 | if (decay_rate < 0.999) break; |
1364 | 0 | } |
1365 | | /* Reset file position */ |
1366 | 0 | reset_fpf_position(cpi, position); |
1367 | | |
1368 | | /* Only if it does do we signal a transition to still */ |
1369 | 0 | if (j == still_interval) trans_to_still = 1; |
1370 | 0 | } |
1371 | |
|
1372 | 0 | return trans_to_still; |
1373 | 0 | } |
1374 | | |
1375 | | /* This function detects a flash through the high relative pcnt_second_ref |
1376 | | * score in the frame following a flash frame. The offset passed in should |
1377 | | * reflect this |
1378 | | */ |
1379 | 0 | static int detect_flash(VP8_COMP *cpi, int offset) { |
1380 | 0 | FIRSTPASS_STATS next_frame; |
1381 | |
|
1382 | 0 | int flash_detected = 0; |
1383 | | |
1384 | | /* Read the frame data. */ |
1385 | | /* The return is 0 (no flash detected) if not a valid frame */ |
1386 | 0 | if (read_frame_stats(cpi, &next_frame, offset) != EOF) { |
1387 | | /* What we are looking for here is a situation where there is a |
1388 | | * brief break in prediction (such as a flash) but subsequent frames |
1389 | | * are reasonably well predicted by an earlier (pre flash) frame. |
1390 | | * The recovery after a flash is indicated by a high pcnt_second_ref |
1391 | | * comapred to pcnt_inter. |
1392 | | */ |
1393 | 0 | if ((next_frame.pcnt_second_ref > next_frame.pcnt_inter) && |
1394 | 0 | (next_frame.pcnt_second_ref >= 0.5)) { |
1395 | 0 | flash_detected = 1; |
1396 | | |
1397 | | /*if (1) |
1398 | | { |
1399 | | FILE *f = fopen("flash.stt", "a"); |
1400 | | fprintf(f, "%8.0f %6.2f %6.2f\n", |
1401 | | next_frame.frame, |
1402 | | next_frame.pcnt_inter, |
1403 | | next_frame.pcnt_second_ref); |
1404 | | fclose(f); |
1405 | | }*/ |
1406 | 0 | } |
1407 | 0 | } |
1408 | |
|
1409 | 0 | return flash_detected; |
1410 | 0 | } |
1411 | | |
1412 | | /* Update the motion related elements to the GF arf boost calculation */ |
1413 | | static void accumulate_frame_motion_stats(FIRSTPASS_STATS *this_frame, |
1414 | | double *this_frame_mv_in_out, |
1415 | | double *mv_in_out_accumulator, |
1416 | | double *abs_mv_in_out_accumulator, |
1417 | 0 | double *mv_ratio_accumulator) { |
1418 | 0 | double this_frame_mvr_ratio; |
1419 | 0 | double this_frame_mvc_ratio; |
1420 | 0 | double motion_pct; |
1421 | | |
1422 | | /* Accumulate motion stats. */ |
1423 | 0 | motion_pct = this_frame->pcnt_motion; |
1424 | | |
1425 | | /* Accumulate Motion In/Out of frame stats */ |
1426 | 0 | *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; |
1427 | 0 | *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; |
1428 | 0 | *abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct); |
1429 | | |
1430 | | /* Accumulate a measure of how uniform (or conversely how random) |
1431 | | * the motion field is. (A ratio of absmv / mv) |
1432 | | */ |
1433 | 0 | if (motion_pct > 0.05) { |
1434 | 0 | this_frame_mvr_ratio = |
1435 | 0 | fabs(this_frame->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); |
1436 | |
|
1437 | 0 | this_frame_mvc_ratio = |
1438 | 0 | fabs(this_frame->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); |
1439 | |
|
1440 | 0 | *mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs) |
1441 | 0 | ? (this_frame_mvr_ratio * motion_pct) |
1442 | 0 | : this_frame->mvr_abs * motion_pct; |
1443 | |
|
1444 | 0 | *mv_ratio_accumulator += (this_frame_mvc_ratio < this_frame->mvc_abs) |
1445 | 0 | ? (this_frame_mvc_ratio * motion_pct) |
1446 | 0 | : this_frame->mvc_abs * motion_pct; |
1447 | 0 | } |
1448 | 0 | } |
1449 | | |
1450 | | /* Calculate a baseline boost number for the current frame. */ |
1451 | | static double calc_frame_boost(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame, |
1452 | 0 | double this_frame_mv_in_out) { |
1453 | 0 | double frame_boost; |
1454 | | |
1455 | | /* Underlying boost factor is based on inter intra error ratio */ |
1456 | 0 | if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) { |
1457 | 0 | frame_boost = (IIFACTOR * this_frame->intra_error / |
1458 | 0 | DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); |
1459 | 0 | } else { |
1460 | 0 | frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / |
1461 | 0 | DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); |
1462 | 0 | } |
1463 | | |
1464 | | /* Increase boost for frames where new data coming into frame |
1465 | | * (eg zoom out). Slightly reduce boost if there is a net balance |
1466 | | * of motion out of the frame (zoom in). |
1467 | | * The range for this_frame_mv_in_out is -1.0 to +1.0 |
1468 | | */ |
1469 | 0 | if (this_frame_mv_in_out > 0.0) { |
1470 | 0 | frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); |
1471 | | /* In extreme case boost is halved */ |
1472 | 0 | } else { |
1473 | 0 | frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); |
1474 | 0 | } |
1475 | | |
1476 | | /* Clip to maximum */ |
1477 | 0 | if (frame_boost > GF_RMAX) frame_boost = GF_RMAX; |
1478 | |
|
1479 | 0 | return frame_boost; |
1480 | 0 | } |
1481 | | |
1482 | | #if NEW_BOOST |
1483 | | static int calc_arf_boost(VP8_COMP *cpi, int offset, int f_frames, int b_frames, |
1484 | 0 | int *f_boost, int *b_boost) { |
1485 | 0 | FIRSTPASS_STATS this_frame; |
1486 | |
|
1487 | 0 | int i; |
1488 | 0 | double boost_score = 0.0; |
1489 | 0 | double mv_ratio_accumulator = 0.0; |
1490 | 0 | double decay_accumulator = 1.0; |
1491 | 0 | double this_frame_mv_in_out = 0.0; |
1492 | 0 | double mv_in_out_accumulator = 0.0; |
1493 | 0 | double abs_mv_in_out_accumulator = 0.0; |
1494 | 0 | double r; |
1495 | 0 | int flash_detected = 0; |
1496 | | |
1497 | | /* Search forward from the proposed arf/next gf position */ |
1498 | 0 | for (i = 0; i < f_frames; ++i) { |
1499 | 0 | if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break; |
1500 | | |
1501 | | /* Update the motion related elements to the boost calculation */ |
1502 | 0 | accumulate_frame_motion_stats( |
1503 | 0 | &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, |
1504 | 0 | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
1505 | | |
1506 | | /* Calculate the baseline boost number for this frame */ |
1507 | 0 | r = calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out); |
1508 | | |
1509 | | /* We want to discount the flash frame itself and the recovery |
1510 | | * frame that follows as both will have poor scores. |
1511 | | */ |
1512 | 0 | flash_detected = |
1513 | 0 | detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1)); |
1514 | | |
1515 | | /* Cumulative effect of prediction quality decay */ |
1516 | 0 | if (!flash_detected) { |
1517 | 0 | decay_accumulator = |
1518 | 0 | decay_accumulator * get_prediction_decay_rate(&this_frame); |
1519 | 0 | decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
1520 | 0 | } |
1521 | 0 | boost_score += (decay_accumulator * r); |
1522 | | |
1523 | | /* Break out conditions. */ |
1524 | 0 | if ((!flash_detected) && |
1525 | 0 | ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || |
1526 | 0 | (mv_in_out_accumulator < -2.0))) { |
1527 | 0 | break; |
1528 | 0 | } |
1529 | 0 | } |
1530 | |
|
1531 | 0 | *f_boost = (int)(boost_score * 100.0) >> 4; |
1532 | | |
1533 | | /* Reset for backward looking loop */ |
1534 | 0 | boost_score = 0.0; |
1535 | 0 | mv_ratio_accumulator = 0.0; |
1536 | 0 | decay_accumulator = 1.0; |
1537 | 0 | this_frame_mv_in_out = 0.0; |
1538 | 0 | mv_in_out_accumulator = 0.0; |
1539 | 0 | abs_mv_in_out_accumulator = 0.0; |
1540 | | |
1541 | | /* Search forward from the proposed arf/next gf position */ |
1542 | 0 | for (i = -1; i >= -b_frames; i--) { |
1543 | 0 | if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break; |
1544 | | |
1545 | | /* Update the motion related elements to the boost calculation */ |
1546 | 0 | accumulate_frame_motion_stats( |
1547 | 0 | &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, |
1548 | 0 | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
1549 | | |
1550 | | /* Calculate the baseline boost number for this frame */ |
1551 | 0 | r = calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out); |
1552 | | |
1553 | | /* We want to discount the flash frame itself and the recovery |
1554 | | * frame that follows as both will have poor scores. |
1555 | | */ |
1556 | 0 | flash_detected = |
1557 | 0 | detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1)); |
1558 | | |
1559 | | /* Cumulative effect of prediction quality decay */ |
1560 | 0 | if (!flash_detected) { |
1561 | 0 | decay_accumulator = |
1562 | 0 | decay_accumulator * get_prediction_decay_rate(&this_frame); |
1563 | 0 | decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
1564 | 0 | } |
1565 | |
|
1566 | 0 | boost_score += (decay_accumulator * r); |
1567 | | |
1568 | | /* Break out conditions. */ |
1569 | 0 | if ((!flash_detected) && |
1570 | 0 | ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || |
1571 | 0 | (mv_in_out_accumulator < -2.0))) { |
1572 | 0 | break; |
1573 | 0 | } |
1574 | 0 | } |
1575 | 0 | *b_boost = (int)(boost_score * 100.0) >> 4; |
1576 | |
|
1577 | 0 | return (*f_boost + *b_boost); |
1578 | 0 | } |
1579 | | #endif |
1580 | | |
1581 | | /* Analyse and define a gf/arf group . */ |
1582 | 0 | static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
1583 | 0 | FIRSTPASS_STATS next_frame; |
1584 | 0 | FIRSTPASS_STATS *start_pos; |
1585 | 0 | int i; |
1586 | 0 | double r; |
1587 | 0 | double boost_score = 0.0; |
1588 | 0 | double old_boost_score = 0.0; |
1589 | 0 | double gf_group_err = 0.0; |
1590 | 0 | double gf_first_frame_err = 0.0; |
1591 | 0 | double mod_frame_err = 0.0; |
1592 | |
|
1593 | 0 | double mv_ratio_accumulator = 0.0; |
1594 | 0 | double decay_accumulator = 1.0; |
1595 | |
|
1596 | 0 | double loop_decay_rate = 1.00; /* Starting decay rate */ |
1597 | |
|
1598 | 0 | double this_frame_mv_in_out = 0.0; |
1599 | 0 | double mv_in_out_accumulator = 0.0; |
1600 | 0 | double abs_mv_in_out_accumulator = 0.0; |
1601 | |
|
1602 | 0 | int max_bits = frame_max_bits(cpi); /* Max for a single frame */ |
1603 | |
|
1604 | 0 | unsigned int allow_alt_ref = |
1605 | 0 | cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; |
1606 | |
|
1607 | 0 | int alt_boost = 0; |
1608 | 0 | int f_boost = 0; |
1609 | 0 | int b_boost = 0; |
1610 | 0 | int flash_detected; |
1611 | |
|
1612 | 0 | cpi->twopass.gf_group_bits = 0; |
1613 | 0 | cpi->twopass.gf_decay_rate = 0; |
1614 | |
|
1615 | 0 | vpx_clear_system_state(); |
1616 | |
|
1617 | 0 | start_pos = cpi->twopass.stats_in; |
1618 | |
|
1619 | 0 | memset(&next_frame, 0, sizeof(next_frame)); /* assure clean */ |
1620 | | |
1621 | | /* Load stats for the current frame. */ |
1622 | 0 | mod_frame_err = calculate_modified_err(cpi, this_frame); |
1623 | | |
1624 | | /* Note the error of the frame at the start of the group (this will be |
1625 | | * the GF frame error if we code a normal gf |
1626 | | */ |
1627 | 0 | gf_first_frame_err = mod_frame_err; |
1628 | | |
1629 | | /* Special treatment if the current frame is a key frame (which is also |
1630 | | * a gf). If it is then its error score (and hence bit allocation) need |
1631 | | * to be subtracted out from the calculation for the GF group |
1632 | | */ |
1633 | 0 | if (cpi->common.frame_type == KEY_FRAME) gf_group_err -= gf_first_frame_err; |
1634 | | |
1635 | | /* Scan forward to try and work out how many frames the next gf group |
1636 | | * should contain and what level of boost is appropriate for the GF |
1637 | | * or ARF that will be coded with the group |
1638 | | */ |
1639 | 0 | i = 0; |
1640 | |
|
1641 | 0 | while (((i < cpi->twopass.static_scene_max_gf_interval) || |
1642 | 0 | ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && |
1643 | 0 | (i < cpi->twopass.frames_to_key)) { |
1644 | 0 | i++; |
1645 | | |
1646 | | /* Accumulate error score of frames in this gf group */ |
1647 | 0 | mod_frame_err = calculate_modified_err(cpi, this_frame); |
1648 | |
|
1649 | 0 | gf_group_err += mod_frame_err; |
1650 | |
|
1651 | 0 | if (EOF == input_stats(cpi, &next_frame)) break; |
1652 | | |
1653 | | /* Test for the case where there is a brief flash but the prediction |
1654 | | * quality back to an earlier frame is then restored. |
1655 | | */ |
1656 | 0 | flash_detected = detect_flash(cpi, 0); |
1657 | | |
1658 | | /* Update the motion related elements to the boost calculation */ |
1659 | 0 | accumulate_frame_motion_stats( |
1660 | 0 | &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, |
1661 | 0 | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
1662 | | |
1663 | | /* Calculate a baseline boost number for this frame */ |
1664 | 0 | r = calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out); |
1665 | | |
1666 | | /* Cumulative effect of prediction quality decay */ |
1667 | 0 | if (!flash_detected) { |
1668 | 0 | loop_decay_rate = get_prediction_decay_rate(&next_frame); |
1669 | 0 | decay_accumulator = decay_accumulator * loop_decay_rate; |
1670 | 0 | decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
1671 | 0 | } |
1672 | 0 | boost_score += (decay_accumulator * r); |
1673 | | |
1674 | | /* Break clause to detect very still sections after motion |
1675 | | * For example a staic image after a fade or other transition. |
1676 | | */ |
1677 | 0 | if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, |
1678 | 0 | decay_accumulator)) { |
1679 | 0 | allow_alt_ref = 0; |
1680 | 0 | boost_score = old_boost_score; |
1681 | 0 | break; |
1682 | 0 | } |
1683 | | |
1684 | | /* Break out conditions. */ |
1685 | 0 | if ( |
1686 | | /* Break at cpi->max_gf_interval unless almost totally static */ |
1687 | 0 | (i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) || |
1688 | 0 | ( |
1689 | | /* Don't break out with a very short interval */ |
1690 | 0 | (i > MIN_GF_INTERVAL) && |
1691 | | /* Don't break out very close to a key frame */ |
1692 | 0 | ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && |
1693 | 0 | ((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) && |
1694 | 0 | (!flash_detected) && |
1695 | 0 | ((mv_ratio_accumulator > 100.0) || |
1696 | 0 | (abs_mv_in_out_accumulator > 3.0) || |
1697 | 0 | (mv_in_out_accumulator < -2.0) || |
1698 | 0 | ((boost_score - old_boost_score) < 2.0)))) { |
1699 | 0 | boost_score = old_boost_score; |
1700 | 0 | break; |
1701 | 0 | } |
1702 | | |
1703 | 0 | memcpy(this_frame, &next_frame, sizeof(*this_frame)); |
1704 | |
|
1705 | 0 | old_boost_score = boost_score; |
1706 | 0 | } |
1707 | |
|
1708 | 0 | cpi->twopass.gf_decay_rate = |
1709 | 0 | (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0; |
1710 | | |
1711 | | /* When using CBR apply additional buffer related upper limits */ |
1712 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
1713 | 0 | double max_boost; |
1714 | | |
1715 | | /* For cbr apply buffer related limits */ |
1716 | 0 | if (cpi->drop_frames_allowed) { |
1717 | 0 | int64_t df_buffer_level = cpi->oxcf.drop_frames_water_mark * |
1718 | 0 | (cpi->oxcf.optimal_buffer_level / 100); |
1719 | |
|
1720 | 0 | if (cpi->buffer_level > df_buffer_level) { |
1721 | 0 | max_boost = |
1722 | 0 | ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / |
1723 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
1724 | 0 | } else { |
1725 | 0 | max_boost = 0.0; |
1726 | 0 | } |
1727 | 0 | } else if (cpi->buffer_level > 0) { |
1728 | 0 | max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / |
1729 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
1730 | 0 | } else { |
1731 | 0 | max_boost = 0.0; |
1732 | 0 | } |
1733 | |
|
1734 | 0 | if (boost_score > max_boost) boost_score = max_boost; |
1735 | 0 | } |
1736 | | |
1737 | | /* Don't allow conventional gf too near the next kf */ |
1738 | 0 | if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) { |
1739 | 0 | while (i < cpi->twopass.frames_to_key) { |
1740 | 0 | i++; |
1741 | |
|
1742 | 0 | if (EOF == input_stats(cpi, this_frame)) break; |
1743 | | |
1744 | 0 | if (i < cpi->twopass.frames_to_key) { |
1745 | 0 | mod_frame_err = calculate_modified_err(cpi, this_frame); |
1746 | 0 | gf_group_err += mod_frame_err; |
1747 | 0 | } |
1748 | 0 | } |
1749 | 0 | } |
1750 | |
|
1751 | 0 | cpi->gfu_boost = (int)(boost_score * 100.0) >> 4; |
1752 | |
|
1753 | 0 | #if NEW_BOOST |
1754 | | /* Alterrnative boost calculation for alt ref */ |
1755 | 0 | alt_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost); |
1756 | 0 | #endif |
1757 | | |
1758 | | /* Should we use the alternate reference frame */ |
1759 | 0 | if (allow_alt_ref && (i >= MIN_GF_INTERVAL) && |
1760 | | /* don't use ARF very near next kf */ |
1761 | 0 | (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && |
1762 | 0 | #if NEW_BOOST |
1763 | 0 | ((next_frame.pcnt_inter > 0.75) || (next_frame.pcnt_second_ref > 0.5)) && |
1764 | 0 | ((mv_in_out_accumulator / (double)i > -0.2) || |
1765 | 0 | (mv_in_out_accumulator > -2.0)) && |
1766 | 0 | (b_boost > 100) && (f_boost > 100)) |
1767 | | #else |
1768 | | (next_frame.pcnt_inter > 0.75) && |
1769 | | ((mv_in_out_accumulator / (double)i > -0.2) || |
1770 | | (mv_in_out_accumulator > -2.0)) && |
1771 | | (cpi->gfu_boost > 100) && |
1772 | | (cpi->twopass.gf_decay_rate <= |
1773 | | (ARF_DECAY_THRESH + (cpi->gfu_boost / 200)))) |
1774 | | #endif |
1775 | 0 | { |
1776 | 0 | int Boost; |
1777 | 0 | int allocation_chunks; |
1778 | 0 | int Q = |
1779 | 0 | (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
1780 | 0 | int tmp_q; |
1781 | 0 | int arf_frame_bits = 0; |
1782 | 0 | int group_bits; |
1783 | |
|
1784 | 0 | #if NEW_BOOST |
1785 | 0 | cpi->gfu_boost = alt_boost; |
1786 | 0 | #endif |
1787 | | |
1788 | | /* Estimate the bits to be allocated to the group as a whole */ |
1789 | 0 | if ((cpi->twopass.kf_group_bits > 0) && |
1790 | 0 | (cpi->twopass.kf_group_error_left > 0)) { |
1791 | 0 | group_bits = |
1792 | 0 | (int)((double)cpi->twopass.kf_group_bits * |
1793 | 0 | (gf_group_err / (double)cpi->twopass.kf_group_error_left)); |
1794 | 0 | } else { |
1795 | 0 | group_bits = 0; |
1796 | 0 | } |
1797 | | |
1798 | | /* Boost for arf frame */ |
1799 | 0 | #if NEW_BOOST |
1800 | 0 | Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; |
1801 | | #else |
1802 | | Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); |
1803 | | #endif |
1804 | 0 | Boost += (i * 50); |
1805 | | |
1806 | | /* Set max and minimum boost and hence minimum allocation */ |
1807 | 0 | if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) { |
1808 | 0 | Boost = ((cpi->baseline_gf_interval + 1) * 200); |
1809 | 0 | } else if (Boost < 125) { |
1810 | 0 | Boost = 125; |
1811 | 0 | } |
1812 | |
|
1813 | 0 | allocation_chunks = (i * 100) + Boost; |
1814 | | |
1815 | | /* Normalize Altboost and allocations chunck down to prevent overflow */ |
1816 | 0 | while (Boost > 1000) { |
1817 | 0 | Boost /= 2; |
1818 | 0 | allocation_chunks /= 2; |
1819 | 0 | } |
1820 | | |
1821 | | /* Calculate the number of bits to be spent on the arf based on the |
1822 | | * boost number |
1823 | | */ |
1824 | 0 | arf_frame_bits = |
1825 | 0 | (int)((double)Boost * (group_bits / (double)allocation_chunks)); |
1826 | | |
1827 | | /* Estimate if there are enough bits available to make worthwhile use |
1828 | | * of an arf. |
1829 | | */ |
1830 | 0 | tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits); |
1831 | | |
1832 | | /* Only use an arf if it is likely we will be able to code |
1833 | | * it at a lower Q than the surrounding frames. |
1834 | | */ |
1835 | 0 | if (tmp_q < cpi->worst_quality) { |
1836 | 0 | int half_gf_int; |
1837 | 0 | int frames_after_arf; |
1838 | 0 | int frames_bwd = cpi->oxcf.arnr_max_frames - 1; |
1839 | 0 | int frames_fwd = cpi->oxcf.arnr_max_frames - 1; |
1840 | |
|
1841 | 0 | cpi->source_alt_ref_pending = 1; |
1842 | | |
1843 | | /* |
1844 | | * For alt ref frames the error score for the end frame of the |
1845 | | * group (the alt ref frame) should not contribute to the group |
1846 | | * total and hence the number of bit allocated to the group. |
1847 | | * Rather it forms part of the next group (it is the GF at the |
1848 | | * start of the next group) |
1849 | | * gf_group_err -= mod_frame_err; |
1850 | | * |
1851 | | * For alt ref frames alt ref frame is technically part of the |
1852 | | * GF frame for the next group but we always base the error |
1853 | | * calculation and bit allocation on the current group of frames. |
1854 | | * |
1855 | | * Set the interval till the next gf or arf. |
1856 | | * For ARFs this is the number of frames to be coded before the |
1857 | | * future frame that is coded as an ARF. |
1858 | | * The future frame itself is part of the next group |
1859 | | */ |
1860 | 0 | cpi->baseline_gf_interval = i; |
1861 | | |
1862 | | /* |
1863 | | * Define the arnr filter width for this group of frames: |
1864 | | * We only filter frames that lie within a distance of half |
1865 | | * the GF interval from the ARF frame. We also have to trap |
1866 | | * cases where the filter extends beyond the end of clip. |
1867 | | * Note: this_frame->frame has been updated in the loop |
1868 | | * so it now points at the ARF frame. |
1869 | | */ |
1870 | 0 | half_gf_int = cpi->baseline_gf_interval >> 1; |
1871 | 0 | frames_after_arf = |
1872 | 0 | (int)(cpi->twopass.total_stats.count - this_frame->frame - 1); |
1873 | |
|
1874 | 0 | switch (cpi->oxcf.arnr_type) { |
1875 | 0 | case 1: /* Backward filter */ |
1876 | 0 | frames_fwd = 0; |
1877 | 0 | if (frames_bwd > half_gf_int) frames_bwd = half_gf_int; |
1878 | 0 | break; |
1879 | | |
1880 | 0 | case 2: /* Forward filter */ |
1881 | 0 | if (frames_fwd > half_gf_int) frames_fwd = half_gf_int; |
1882 | 0 | if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; |
1883 | 0 | frames_bwd = 0; |
1884 | 0 | break; |
1885 | | |
1886 | 0 | case 3: /* Centered filter */ |
1887 | 0 | default: |
1888 | 0 | frames_fwd >>= 1; |
1889 | 0 | if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; |
1890 | 0 | if (frames_fwd > half_gf_int) frames_fwd = half_gf_int; |
1891 | |
|
1892 | 0 | frames_bwd = frames_fwd; |
1893 | | |
1894 | | /* For even length filter there is one more frame backward |
1895 | | * than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. |
1896 | | */ |
1897 | 0 | if (frames_bwd < half_gf_int) { |
1898 | 0 | frames_bwd += (cpi->oxcf.arnr_max_frames + 1) & 0x1; |
1899 | 0 | } |
1900 | 0 | break; |
1901 | 0 | } |
1902 | | |
1903 | 0 | cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd; |
1904 | 0 | } else { |
1905 | 0 | cpi->source_alt_ref_pending = 0; |
1906 | 0 | cpi->baseline_gf_interval = i; |
1907 | 0 | } |
1908 | 0 | } else { |
1909 | 0 | cpi->source_alt_ref_pending = 0; |
1910 | 0 | cpi->baseline_gf_interval = i; |
1911 | 0 | } |
1912 | | |
1913 | | /* |
1914 | | * Now decide how many bits should be allocated to the GF group as a |
1915 | | * proportion of those remaining in the kf group. |
1916 | | * The final key frame group in the clip is treated as a special case |
1917 | | * where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. |
1918 | | * This is also important for short clips where there may only be one |
1919 | | * key frame. |
1920 | | */ |
1921 | 0 | if (cpi->twopass.frames_to_key >= |
1922 | 0 | (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame)) { |
1923 | 0 | cpi->twopass.kf_group_bits = |
1924 | 0 | (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; |
1925 | 0 | } |
1926 | | |
1927 | | /* Calculate the bits to be allocated to the group as a whole */ |
1928 | 0 | if ((cpi->twopass.kf_group_bits > 0) && |
1929 | 0 | (cpi->twopass.kf_group_error_left > 0)) { |
1930 | 0 | cpi->twopass.gf_group_bits = |
1931 | 0 | (int64_t)(cpi->twopass.kf_group_bits * |
1932 | 0 | (gf_group_err / cpi->twopass.kf_group_error_left)); |
1933 | 0 | } else { |
1934 | 0 | cpi->twopass.gf_group_bits = 0; |
1935 | 0 | } |
1936 | |
|
1937 | 0 | cpi->twopass.gf_group_bits = |
1938 | 0 | (cpi->twopass.gf_group_bits < 0) ? 0 |
1939 | 0 | : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) |
1940 | 0 | ? cpi->twopass.kf_group_bits |
1941 | 0 | : cpi->twopass.gf_group_bits; |
1942 | | |
1943 | | /* Clip cpi->twopass.gf_group_bits based on user supplied data rate |
1944 | | * variability limit (cpi->oxcf.two_pass_vbrmax_section) |
1945 | | */ |
1946 | 0 | if (cpi->twopass.gf_group_bits > |
1947 | 0 | (int64_t)max_bits * cpi->baseline_gf_interval) { |
1948 | 0 | cpi->twopass.gf_group_bits = (int64_t)max_bits * cpi->baseline_gf_interval; |
1949 | 0 | } |
1950 | | |
1951 | | /* Reset the file position */ |
1952 | 0 | reset_fpf_position(cpi, start_pos); |
1953 | | |
1954 | | /* Update the record of error used so far (only done once per gf group) */ |
1955 | 0 | cpi->twopass.modified_error_used += gf_group_err; |
1956 | | |
1957 | | /* Assign bits to the arf or gf. */ |
1958 | 0 | for (i = 0; i <= (cpi->source_alt_ref_pending && |
1959 | 0 | cpi->common.frame_type != KEY_FRAME); |
1960 | 0 | i++) { |
1961 | 0 | int Boost; |
1962 | 0 | int allocation_chunks; |
1963 | 0 | int Q = |
1964 | 0 | (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
1965 | 0 | int gf_bits; |
1966 | | |
1967 | | /* For ARF frames */ |
1968 | 0 | if (cpi->source_alt_ref_pending && i == 0) { |
1969 | 0 | #if NEW_BOOST |
1970 | 0 | Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; |
1971 | | #else |
1972 | | Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); |
1973 | | #endif |
1974 | 0 | Boost += (cpi->baseline_gf_interval * 50); |
1975 | | |
1976 | | /* Set max and minimum boost and hence minimum allocation */ |
1977 | 0 | if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) { |
1978 | 0 | Boost = ((cpi->baseline_gf_interval + 1) * 200); |
1979 | 0 | } else if (Boost < 125) { |
1980 | 0 | Boost = 125; |
1981 | 0 | } |
1982 | |
|
1983 | 0 | allocation_chunks = ((cpi->baseline_gf_interval + 1) * 100) + Boost; |
1984 | 0 | } |
1985 | | /* Else for standard golden frames */ |
1986 | 0 | else { |
1987 | | /* boost based on inter / intra ratio of subsequent frames */ |
1988 | 0 | Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100; |
1989 | | |
1990 | | /* Set max and minimum boost and hence minimum allocation */ |
1991 | 0 | if (Boost > (cpi->baseline_gf_interval * 150)) { |
1992 | 0 | Boost = (cpi->baseline_gf_interval * 150); |
1993 | 0 | } else if (Boost < 125) { |
1994 | 0 | Boost = 125; |
1995 | 0 | } |
1996 | |
|
1997 | 0 | allocation_chunks = (cpi->baseline_gf_interval * 100) + (Boost - 100); |
1998 | 0 | } |
1999 | | |
2000 | | /* Normalize Altboost and allocations chunck down to prevent overflow */ |
2001 | 0 | while (Boost > 1000) { |
2002 | 0 | Boost /= 2; |
2003 | 0 | allocation_chunks /= 2; |
2004 | 0 | } |
2005 | | |
2006 | | /* Calculate the number of bits to be spent on the gf or arf based on |
2007 | | * the boost number |
2008 | | */ |
2009 | 0 | gf_bits = saturate_cast_double_to_int( |
2010 | 0 | (double)Boost * |
2011 | 0 | (cpi->twopass.gf_group_bits / (double)allocation_chunks)); |
2012 | | |
2013 | | /* If the frame that is to be boosted is simpler than the average for |
2014 | | * the gf/arf group then use an alternative calculation |
2015 | | * based on the error score of the frame itself |
2016 | | */ |
2017 | 0 | if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) { |
2018 | 0 | double alt_gf_grp_bits; |
2019 | 0 | int alt_gf_bits; |
2020 | |
|
2021 | 0 | alt_gf_grp_bits = |
2022 | 0 | (double)cpi->twopass.kf_group_bits * |
2023 | 0 | (mod_frame_err * (double)cpi->baseline_gf_interval) / |
2024 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left); |
2025 | |
|
2026 | 0 | alt_gf_bits = |
2027 | 0 | (int)((double)Boost * (alt_gf_grp_bits / (double)allocation_chunks)); |
2028 | |
|
2029 | 0 | if (gf_bits > alt_gf_bits) { |
2030 | 0 | gf_bits = alt_gf_bits; |
2031 | 0 | } |
2032 | 0 | } |
2033 | | /* Else if it is harder than other frames in the group make sure it at |
2034 | | * least receives an allocation in keeping with its relative error |
2035 | | * score, otherwise it may be worse off than an "un-boosted" frame |
2036 | | */ |
2037 | 0 | else { |
2038 | | // Avoid division by 0 by clamping cpi->twopass.kf_group_error_left to 1 |
2039 | 0 | int alt_gf_bits = saturate_cast_double_to_int( |
2040 | 0 | (double)cpi->twopass.kf_group_bits * mod_frame_err / |
2041 | 0 | (double)VPXMAX(cpi->twopass.kf_group_error_left, 1)); |
2042 | |
|
2043 | 0 | if (alt_gf_bits > gf_bits) { |
2044 | 0 | gf_bits = alt_gf_bits; |
2045 | 0 | } |
2046 | 0 | } |
2047 | | |
2048 | | /* Apply an additional limit for CBR */ |
2049 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
2050 | 0 | if (cpi->twopass.gf_bits > (int)(cpi->buffer_level >> 1)) { |
2051 | 0 | cpi->twopass.gf_bits = (int)(cpi->buffer_level >> 1); |
2052 | 0 | } |
2053 | 0 | } |
2054 | | |
2055 | | /* Don't allow a negative value for gf_bits */ |
2056 | 0 | if (gf_bits < 0) gf_bits = 0; |
2057 | | |
2058 | | /* Add in minimum for a frame */ |
2059 | 0 | gf_bits += cpi->min_frame_bandwidth; |
2060 | |
|
2061 | 0 | if (i == 0) { |
2062 | 0 | cpi->twopass.gf_bits = gf_bits; |
2063 | 0 | } |
2064 | 0 | if (i == 1 || (!cpi->source_alt_ref_pending && |
2065 | 0 | (cpi->common.frame_type != KEY_FRAME))) { |
2066 | | /* Per frame bit target for this frame */ |
2067 | 0 | cpi->per_frame_bandwidth = gf_bits; |
2068 | 0 | } |
2069 | 0 | } |
2070 | |
|
2071 | 0 | { |
2072 | | /* Adjust KF group bits and error remainin */ |
2073 | 0 | cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err; |
2074 | 0 | cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; |
2075 | |
|
2076 | 0 | if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0; |
2077 | | |
2078 | | /* Note the error score left in the remaining frames of the group. |
2079 | | * For normal GFs we want to remove the error score for the first |
2080 | | * frame of the group (except in Key frame case where this has |
2081 | | * already happened) |
2082 | | */ |
2083 | 0 | if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) { |
2084 | 0 | cpi->twopass.gf_group_error_left = |
2085 | 0 | (int)(gf_group_err - gf_first_frame_err); |
2086 | 0 | } else { |
2087 | 0 | cpi->twopass.gf_group_error_left = (int)gf_group_err; |
2088 | 0 | } |
2089 | |
|
2090 | 0 | cpi->twopass.gf_group_bits -= |
2091 | 0 | cpi->twopass.gf_bits - cpi->min_frame_bandwidth; |
2092 | |
|
2093 | 0 | if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; |
2094 | | |
2095 | | /* This condition could fail if there are two kfs very close together |
2096 | | * despite (MIN_GF_INTERVAL) and would cause a divide by 0 in the |
2097 | | * calculation of cpi->twopass.alt_extra_bits. |
2098 | | */ |
2099 | 0 | if (cpi->baseline_gf_interval >= 3) { |
2100 | 0 | #if NEW_BOOST |
2101 | 0 | int boost = (cpi->source_alt_ref_pending) ? b_boost : cpi->gfu_boost; |
2102 | | #else |
2103 | | int boost = cpi->gfu_boost; |
2104 | | #endif |
2105 | 0 | if (boost >= 150) { |
2106 | 0 | int pct_extra; |
2107 | |
|
2108 | 0 | pct_extra = (boost - 100) / 50; |
2109 | 0 | pct_extra = (pct_extra > 20) ? 20 : pct_extra; |
2110 | |
|
2111 | 0 | cpi->twopass.alt_extra_bits = |
2112 | 0 | (int)(cpi->twopass.gf_group_bits * pct_extra) / 100; |
2113 | 0 | cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits; |
2114 | 0 | cpi->twopass.alt_extra_bits /= ((cpi->baseline_gf_interval - 1) >> 1); |
2115 | 0 | } else { |
2116 | 0 | cpi->twopass.alt_extra_bits = 0; |
2117 | 0 | } |
2118 | 0 | } else { |
2119 | 0 | cpi->twopass.alt_extra_bits = 0; |
2120 | 0 | } |
2121 | 0 | } |
2122 | | |
2123 | | /* Adjustments based on a measure of complexity of the section */ |
2124 | 0 | if (cpi->common.frame_type != KEY_FRAME) { |
2125 | 0 | FIRSTPASS_STATS sectionstats; |
2126 | 0 | double Ratio; |
2127 | |
|
2128 | 0 | zero_stats(§ionstats); |
2129 | 0 | reset_fpf_position(cpi, start_pos); |
2130 | |
|
2131 | 0 | for (i = 0; i < cpi->baseline_gf_interval; ++i) { |
2132 | 0 | input_stats(cpi, &next_frame); |
2133 | 0 | accumulate_stats(§ionstats, &next_frame); |
2134 | 0 | } |
2135 | |
|
2136 | 0 | avg_stats(§ionstats); |
2137 | |
|
2138 | 0 | cpi->twopass.section_intra_rating = |
2139 | 0 | (unsigned int)(sectionstats.intra_error / |
2140 | 0 | DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); |
2141 | |
|
2142 | 0 | Ratio = sectionstats.intra_error / |
2143 | 0 | DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
2144 | 0 | cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); |
2145 | |
|
2146 | 0 | if (cpi->twopass.section_max_qfactor < 0.80) { |
2147 | 0 | cpi->twopass.section_max_qfactor = 0.80; |
2148 | 0 | } |
2149 | |
|
2150 | 0 | reset_fpf_position(cpi, start_pos); |
2151 | 0 | } |
2152 | 0 | } |
2153 | | |
2154 | | /* Allocate bits to a normal frame that is neither a gf an arf or a key frame. |
2155 | | */ |
2156 | 0 | static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
2157 | 0 | int target_frame_size; |
2158 | |
|
2159 | 0 | double modified_err; |
2160 | 0 | double err_fraction; |
2161 | |
|
2162 | 0 | int max_bits = frame_max_bits(cpi); /* Max for a single frame */ |
2163 | | |
2164 | | /* Calculate modified prediction error used in bit allocation */ |
2165 | 0 | modified_err = calculate_modified_err(cpi, this_frame); |
2166 | | |
2167 | | /* What portion of the remaining GF group error is used by this frame */ |
2168 | 0 | if (cpi->twopass.gf_group_error_left > 0) { |
2169 | 0 | err_fraction = modified_err / cpi->twopass.gf_group_error_left; |
2170 | 0 | } else { |
2171 | 0 | err_fraction = 0.0; |
2172 | 0 | } |
2173 | | |
2174 | | /* How many of those bits available for allocation should we give it? */ |
2175 | 0 | target_frame_size = saturate_cast_double_to_int( |
2176 | 0 | (double)cpi->twopass.gf_group_bits * err_fraction); |
2177 | | |
2178 | | /* Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) |
2179 | | * at the top end. |
2180 | | */ |
2181 | 0 | if (target_frame_size < 0) { |
2182 | 0 | target_frame_size = 0; |
2183 | 0 | } else { |
2184 | 0 | if (target_frame_size > max_bits) target_frame_size = max_bits; |
2185 | |
|
2186 | 0 | if (target_frame_size > cpi->twopass.gf_group_bits) { |
2187 | 0 | target_frame_size = (int)cpi->twopass.gf_group_bits; |
2188 | 0 | } |
2189 | 0 | } |
2190 | | |
2191 | | /* Adjust error and bits remaining */ |
2192 | 0 | cpi->twopass.gf_group_error_left -= (int)modified_err; |
2193 | 0 | cpi->twopass.gf_group_bits -= target_frame_size; |
2194 | |
|
2195 | 0 | if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; |
2196 | | |
2197 | | /* Add in the minimum number of bits that is set aside for every frame. */ |
2198 | 0 | target_frame_size += cpi->min_frame_bandwidth; |
2199 | | |
2200 | | /* Every other frame gets a few extra bits */ |
2201 | 0 | if ((cpi->frames_since_golden & 0x01) && |
2202 | 0 | (cpi->frames_till_gf_update_due > 0)) { |
2203 | 0 | target_frame_size += cpi->twopass.alt_extra_bits; |
2204 | 0 | } |
2205 | | |
2206 | | /* Per frame bit target for this frame */ |
2207 | 0 | cpi->per_frame_bandwidth = target_frame_size; |
2208 | 0 | } |
2209 | | |
2210 | 0 | void vp8_second_pass(VP8_COMP *cpi) { |
2211 | 0 | int tmp_q; |
2212 | 0 | int frames_left = |
2213 | 0 | (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame); |
2214 | |
|
2215 | 0 | FIRSTPASS_STATS this_frame; |
2216 | 0 | FIRSTPASS_STATS this_frame_copy; |
2217 | |
|
2218 | 0 | double this_frame_intra_error; |
2219 | 0 | double this_frame_coded_error; |
2220 | |
|
2221 | 0 | int overhead_bits; |
2222 | |
|
2223 | 0 | vp8_zero(this_frame); |
2224 | |
|
2225 | 0 | if (!cpi->twopass.stats_in) { |
2226 | 0 | return; |
2227 | 0 | } |
2228 | | |
2229 | 0 | vpx_clear_system_state(); |
2230 | |
|
2231 | 0 | if (EOF == input_stats(cpi, &this_frame)) return; |
2232 | | |
2233 | 0 | this_frame_intra_error = this_frame.intra_error; |
2234 | 0 | this_frame_coded_error = this_frame.coded_error; |
2235 | | |
2236 | | /* keyframe and section processing ! */ |
2237 | 0 | if (cpi->twopass.frames_to_key == 0) { |
2238 | | /* Define next KF group and assign bits to it */ |
2239 | 0 | memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
2240 | 0 | find_next_key_frame(cpi, &this_frame_copy); |
2241 | | |
2242 | | /* Special case: Error error_resilient_mode mode does not make much |
2243 | | * sense for two pass but with its current meaning this code is |
2244 | | * designed to stop outlandish behaviour if someone does set it when |
2245 | | * using two pass. It effectively disables GF groups. This is |
2246 | | * temporary code until we decide what should really happen in this |
2247 | | * case. |
2248 | | */ |
2249 | 0 | if (cpi->oxcf.error_resilient_mode) { |
2250 | 0 | cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits; |
2251 | 0 | cpi->twopass.gf_group_error_left = (int)cpi->twopass.kf_group_error_left; |
2252 | 0 | cpi->baseline_gf_interval = cpi->twopass.frames_to_key; |
2253 | 0 | cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
2254 | 0 | cpi->source_alt_ref_pending = 0; |
2255 | 0 | } |
2256 | 0 | } |
2257 | | |
2258 | | /* Is this a GF / ARF (Note that a KF is always also a GF) */ |
2259 | 0 | if (cpi->frames_till_gf_update_due == 0) { |
2260 | | /* Define next gf group and assign bits to it */ |
2261 | 0 | memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
2262 | 0 | define_gf_group(cpi, &this_frame_copy); |
2263 | | |
2264 | | /* If we are going to code an altref frame at the end of the group |
2265 | | * and the current frame is not a key frame.... If the previous |
2266 | | * group used an arf this frame has already benefited from that arf |
2267 | | * boost and it should not be given extra bits If the previous |
2268 | | * group was NOT coded using arf we may want to apply some boost to |
2269 | | * this GF as well |
2270 | | */ |
2271 | 0 | if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) { |
2272 | | /* Assign a standard frames worth of bits from those allocated |
2273 | | * to the GF group |
2274 | | */ |
2275 | 0 | int bak = cpi->per_frame_bandwidth; |
2276 | 0 | memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
2277 | 0 | assign_std_frame_bits(cpi, &this_frame_copy); |
2278 | 0 | cpi->per_frame_bandwidth = bak; |
2279 | 0 | } |
2280 | 0 | } |
2281 | | |
2282 | | /* Otherwise this is an ordinary frame */ |
2283 | 0 | else { |
2284 | | /* Special case: Error error_resilient_mode mode does not make much |
2285 | | * sense for two pass but with its current meaning but this code is |
2286 | | * designed to stop outlandish behaviour if someone does set it |
2287 | | * when using two pass. It effectively disables GF groups. This is |
2288 | | * temporary code till we decide what should really happen in this |
2289 | | * case. |
2290 | | */ |
2291 | 0 | if (cpi->oxcf.error_resilient_mode) { |
2292 | 0 | cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key; |
2293 | |
|
2294 | 0 | if (cpi->common.frame_type != KEY_FRAME) { |
2295 | | /* Assign bits from those allocated to the GF group */ |
2296 | 0 | memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
2297 | 0 | assign_std_frame_bits(cpi, &this_frame_copy); |
2298 | 0 | } |
2299 | 0 | } else { |
2300 | | /* Assign bits from those allocated to the GF group */ |
2301 | 0 | memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
2302 | 0 | assign_std_frame_bits(cpi, &this_frame_copy); |
2303 | 0 | } |
2304 | 0 | } |
2305 | | |
2306 | | /* Keep a globally available copy of this and the next frame's iiratio. */ |
2307 | 0 | cpi->twopass.this_iiratio = |
2308 | 0 | (unsigned int)(this_frame_intra_error / |
2309 | 0 | DOUBLE_DIVIDE_CHECK(this_frame_coded_error)); |
2310 | 0 | { |
2311 | 0 | FIRSTPASS_STATS next_frame; |
2312 | 0 | if (lookup_next_frame_stats(cpi, &next_frame) != EOF) { |
2313 | 0 | cpi->twopass.next_iiratio = |
2314 | 0 | (unsigned int)(next_frame.intra_error / |
2315 | 0 | DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
2316 | 0 | } |
2317 | 0 | } |
2318 | | |
2319 | | /* Set nominal per second bandwidth for this frame */ |
2320 | 0 | cpi->target_bandwidth = |
2321 | 0 | (int)(cpi->per_frame_bandwidth * cpi->output_framerate); |
2322 | 0 | if (cpi->target_bandwidth < 0) cpi->target_bandwidth = 0; |
2323 | | |
2324 | | /* Account for mv, mode and other overheads. */ |
2325 | 0 | overhead_bits = (int)estimate_modemvcost(cpi, &cpi->twopass.total_left_stats); |
2326 | | |
2327 | | /* Special case code for first frame. */ |
2328 | 0 | if (cpi->common.current_video_frame == 0) { |
2329 | 0 | cpi->twopass.est_max_qcorrection_factor = 1.0; |
2330 | |
|
2331 | 0 | int64_t section_target_bandwidth = cpi->twopass.bits_left / frames_left; |
2332 | 0 | section_target_bandwidth = VPXMIN(section_target_bandwidth, INT_MAX); |
2333 | | |
2334 | | /* Set a cq_level in constrained quality mode. */ |
2335 | 0 | if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { |
2336 | 0 | int est_cq; |
2337 | |
|
2338 | 0 | est_cq = estimate_cq(cpi, &cpi->twopass.total_left_stats, |
2339 | 0 | (int)section_target_bandwidth, overhead_bits); |
2340 | |
|
2341 | 0 | cpi->cq_target_quality = cpi->oxcf.cq_level; |
2342 | 0 | if (est_cq > cpi->cq_target_quality) cpi->cq_target_quality = est_cq; |
2343 | 0 | } |
2344 | | |
2345 | | /* guess at maxq needed in 2nd pass */ |
2346 | 0 | cpi->twopass.maxq_max_limit = cpi->worst_quality; |
2347 | 0 | cpi->twopass.maxq_min_limit = cpi->best_quality; |
2348 | |
|
2349 | 0 | tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats, |
2350 | 0 | (int)section_target_bandwidth, overhead_bits); |
2351 | | |
2352 | | /* Limit the maxq value returned subsequently. |
2353 | | * This increases the risk of overspend or underspend if the initial |
2354 | | * estimate for the clip is bad, but helps prevent excessive |
2355 | | * variation in Q, especially near the end of a clip |
2356 | | * where for example a small overspend may cause Q to crash |
2357 | | */ |
2358 | 0 | cpi->twopass.maxq_max_limit = |
2359 | 0 | ((tmp_q + 32) < cpi->worst_quality) ? (tmp_q + 32) : cpi->worst_quality; |
2360 | 0 | cpi->twopass.maxq_min_limit = |
2361 | 0 | ((tmp_q - 32) > cpi->best_quality) ? (tmp_q - 32) : cpi->best_quality; |
2362 | |
|
2363 | 0 | cpi->active_worst_quality = tmp_q; |
2364 | 0 | cpi->ni_av_qi = tmp_q; |
2365 | 0 | } |
2366 | | |
2367 | | /* The last few frames of a clip almost always have to few or too many |
2368 | | * bits and for the sake of over exact rate control we don't want to make |
2369 | | * radical adjustments to the allowed quantizer range just to use up a |
2370 | | * few surplus bits or get beneath the target rate. |
2371 | | */ |
2372 | 0 | else if ((cpi->common.current_video_frame < |
2373 | 0 | (((unsigned int)cpi->twopass.total_stats.count * 255) >> 8)) && |
2374 | 0 | ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < |
2375 | 0 | (unsigned int)cpi->twopass.total_stats.count)) { |
2376 | 0 | if (frames_left < 1) frames_left = 1; |
2377 | |
|
2378 | 0 | int64_t section_target_bandwidth = cpi->twopass.bits_left / frames_left; |
2379 | 0 | section_target_bandwidth = VPXMIN(section_target_bandwidth, INT_MAX); |
2380 | |
|
2381 | 0 | tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats, |
2382 | 0 | (int)section_target_bandwidth, overhead_bits); |
2383 | | |
2384 | | /* Move active_worst_quality but in a damped way */ |
2385 | 0 | if (tmp_q > cpi->active_worst_quality) { |
2386 | 0 | cpi->active_worst_quality++; |
2387 | 0 | } else if (tmp_q < cpi->active_worst_quality) { |
2388 | 0 | cpi->active_worst_quality--; |
2389 | 0 | } |
2390 | |
|
2391 | 0 | cpi->active_worst_quality = |
2392 | 0 | ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4; |
2393 | 0 | } |
2394 | |
|
2395 | 0 | cpi->twopass.frames_to_key--; |
2396 | | |
2397 | | /* Update the total stats remaining sturcture */ |
2398 | 0 | subtract_stats(&cpi->twopass.total_left_stats, &this_frame); |
2399 | 0 | } |
2400 | | |
2401 | | static int test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, |
2402 | | FIRSTPASS_STATS *this_frame, |
2403 | 0 | FIRSTPASS_STATS *next_frame) { |
2404 | 0 | int is_viable_kf = 0; |
2405 | | |
2406 | | /* Does the frame satisfy the primary criteria of a key frame |
2407 | | * If so, then examine how well it predicts subsequent frames |
2408 | | */ |
2409 | 0 | if ((this_frame->pcnt_second_ref < 0.10) && |
2410 | 0 | (next_frame->pcnt_second_ref < 0.10) && |
2411 | 0 | ((this_frame->pcnt_inter < 0.05) || |
2412 | 0 | (((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) && |
2413 | 0 | ((this_frame->intra_error / |
2414 | 0 | DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && |
2415 | 0 | ((fabs(last_frame->coded_error - this_frame->coded_error) / |
2416 | 0 | DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > |
2417 | 0 | .40) || |
2418 | 0 | (fabs(last_frame->intra_error - this_frame->intra_error) / |
2419 | 0 | DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > |
2420 | 0 | .40) || |
2421 | 0 | ((next_frame->intra_error / |
2422 | 0 | DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) { |
2423 | 0 | int i; |
2424 | 0 | FIRSTPASS_STATS *start_pos; |
2425 | |
|
2426 | 0 | FIRSTPASS_STATS local_next_frame; |
2427 | |
|
2428 | 0 | double boost_score = 0.0; |
2429 | 0 | double old_boost_score = 0.0; |
2430 | 0 | double decay_accumulator = 1.0; |
2431 | 0 | double next_iiratio; |
2432 | |
|
2433 | 0 | memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); |
2434 | | |
2435 | | /* Note the starting file position so we can reset to it */ |
2436 | 0 | start_pos = cpi->twopass.stats_in; |
2437 | | |
2438 | | /* Examine how well the key frame predicts subsequent frames */ |
2439 | 0 | for (i = 0; i < 16; ++i) { |
2440 | 0 | next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / |
2441 | 0 | DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); |
2442 | |
|
2443 | 0 | if (next_iiratio > RMAX) next_iiratio = RMAX; |
2444 | | |
2445 | | /* Cumulative effect of decay in prediction quality */ |
2446 | 0 | if (local_next_frame.pcnt_inter > 0.85) { |
2447 | 0 | decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; |
2448 | 0 | } else { |
2449 | 0 | decay_accumulator = |
2450 | 0 | decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); |
2451 | 0 | } |
2452 | | |
2453 | | /* Keep a running total */ |
2454 | 0 | boost_score += (decay_accumulator * next_iiratio); |
2455 | | |
2456 | | /* Test various breakout clauses */ |
2457 | 0 | if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || |
2458 | 0 | (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < |
2459 | 0 | 0.20) && |
2460 | 0 | (next_iiratio < 3.0)) || |
2461 | 0 | ((boost_score - old_boost_score) < 0.5) || |
2462 | 0 | (local_next_frame.intra_error < 200)) { |
2463 | 0 | break; |
2464 | 0 | } |
2465 | | |
2466 | 0 | old_boost_score = boost_score; |
2467 | | |
2468 | | /* Get the next frame details */ |
2469 | 0 | if (EOF == input_stats(cpi, &local_next_frame)) break; |
2470 | 0 | } |
2471 | | |
2472 | | /* If there is tolerable prediction for at least the next 3 frames |
2473 | | * then break out else discard this pottential key frame and move on |
2474 | | */ |
2475 | 0 | if (boost_score > 5.0 && (i > 3)) { |
2476 | 0 | is_viable_kf = 1; |
2477 | 0 | } else { |
2478 | | /* Reset the file position */ |
2479 | 0 | reset_fpf_position(cpi, start_pos); |
2480 | |
|
2481 | 0 | is_viable_kf = 0; |
2482 | 0 | } |
2483 | 0 | } |
2484 | |
|
2485 | 0 | return is_viable_kf; |
2486 | 0 | } |
2487 | 0 | static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
2488 | 0 | int i, j; |
2489 | 0 | FIRSTPASS_STATS last_frame; |
2490 | 0 | FIRSTPASS_STATS first_frame; |
2491 | 0 | FIRSTPASS_STATS next_frame; |
2492 | 0 | FIRSTPASS_STATS *start_position; |
2493 | |
|
2494 | 0 | double decay_accumulator = 1.0; |
2495 | 0 | double boost_score = 0; |
2496 | 0 | double old_boost_score = 0.0; |
2497 | 0 | double loop_decay_rate; |
2498 | |
|
2499 | 0 | double kf_mod_err = 0.0; |
2500 | 0 | double kf_group_err = 0.0; |
2501 | 0 | double kf_group_intra_err = 0.0; |
2502 | 0 | double kf_group_coded_err = 0.0; |
2503 | 0 | double recent_loop_decay[8] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; |
2504 | |
|
2505 | 0 | memset(&next_frame, 0, sizeof(next_frame)); |
2506 | |
|
2507 | 0 | vpx_clear_system_state(); |
2508 | 0 | start_position = cpi->twopass.stats_in; |
2509 | |
|
2510 | 0 | cpi->common.frame_type = KEY_FRAME; |
2511 | | |
2512 | | /* is this a forced key frame by interval */ |
2513 | 0 | cpi->this_key_frame_forced = cpi->next_key_frame_forced; |
2514 | | |
2515 | | /* Clear the alt ref active flag as this can never be active on a key |
2516 | | * frame |
2517 | | */ |
2518 | 0 | cpi->source_alt_ref_active = 0; |
2519 | | |
2520 | | /* Kf is always a gf so clear frames till next gf counter */ |
2521 | 0 | cpi->frames_till_gf_update_due = 0; |
2522 | |
|
2523 | 0 | cpi->twopass.frames_to_key = 1; |
2524 | | |
2525 | | /* Take a copy of the initial frame details */ |
2526 | 0 | memcpy(&first_frame, this_frame, sizeof(*this_frame)); |
2527 | |
|
2528 | 0 | cpi->twopass.kf_group_bits = 0; |
2529 | 0 | cpi->twopass.kf_group_error_left = 0; |
2530 | |
|
2531 | 0 | kf_mod_err = calculate_modified_err(cpi, this_frame); |
2532 | | |
2533 | | /* find the next keyframe */ |
2534 | 0 | i = 0; |
2535 | 0 | while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) { |
2536 | | /* Accumulate kf group error */ |
2537 | 0 | kf_group_err += calculate_modified_err(cpi, this_frame); |
2538 | | |
2539 | | /* These figures keep intra and coded error counts for all frames |
2540 | | * including key frames in the group. The effect of the key frame |
2541 | | * itself can be subtracted out using the first_frame data |
2542 | | * collected above |
2543 | | */ |
2544 | 0 | kf_group_intra_err += this_frame->intra_error; |
2545 | 0 | kf_group_coded_err += this_frame->coded_error; |
2546 | | |
2547 | | /* Load the next frame's stats. */ |
2548 | 0 | memcpy(&last_frame, this_frame, sizeof(*this_frame)); |
2549 | 0 | input_stats(cpi, this_frame); |
2550 | | |
2551 | | /* Provided that we are not at the end of the file... */ |
2552 | 0 | if (cpi->oxcf.auto_key && |
2553 | 0 | lookup_next_frame_stats(cpi, &next_frame) != EOF) { |
2554 | | /* Normal scene cut check */ |
2555 | 0 | if ((i >= MIN_GF_INTERVAL) && |
2556 | 0 | test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) { |
2557 | 0 | break; |
2558 | 0 | } |
2559 | | |
2560 | | /* How fast is prediction quality decaying */ |
2561 | 0 | loop_decay_rate = get_prediction_decay_rate(&next_frame); |
2562 | | |
2563 | | /* We want to know something about the recent past... rather than |
2564 | | * as used elsewhere where we are concened with decay in prediction |
2565 | | * quality since the last GF or KF. |
2566 | | */ |
2567 | 0 | recent_loop_decay[i % 8] = loop_decay_rate; |
2568 | 0 | decay_accumulator = 1.0; |
2569 | 0 | for (j = 0; j < 8; ++j) { |
2570 | 0 | decay_accumulator = decay_accumulator * recent_loop_decay[j]; |
2571 | 0 | } |
2572 | | |
2573 | | /* Special check for transition or high motion followed by a |
2574 | | * static scene. |
2575 | | */ |
2576 | 0 | if (detect_transition_to_still(cpi, i, |
2577 | 0 | ((int)(cpi->key_frame_frequency) - (int)i), |
2578 | 0 | loop_decay_rate, decay_accumulator)) { |
2579 | 0 | break; |
2580 | 0 | } |
2581 | | |
2582 | | /* Step on to the next frame */ |
2583 | 0 | cpi->twopass.frames_to_key++; |
2584 | | |
2585 | | /* If we don't have a real key frame within the next two |
2586 | | * forcekeyframeevery intervals then break out of the loop. |
2587 | | */ |
2588 | 0 | if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency) { |
2589 | 0 | break; |
2590 | 0 | } |
2591 | 0 | } else { |
2592 | 0 | cpi->twopass.frames_to_key++; |
2593 | 0 | } |
2594 | | |
2595 | 0 | i++; |
2596 | 0 | } |
2597 | | |
2598 | | /* If there is a max kf interval set by the user we must obey it. |
2599 | | * We already breakout of the loop above at 2x max. |
2600 | | * This code centers the extra kf if the actual natural |
2601 | | * interval is between 1x and 2x |
2602 | | */ |
2603 | 0 | if (cpi->oxcf.auto_key && |
2604 | 0 | cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) { |
2605 | 0 | FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; |
2606 | 0 | FIRSTPASS_STATS tmp_frame; |
2607 | |
|
2608 | 0 | cpi->twopass.frames_to_key /= 2; |
2609 | | |
2610 | | /* Copy first frame details */ |
2611 | 0 | memcpy(&tmp_frame, &first_frame, sizeof(first_frame)); |
2612 | | |
2613 | | /* Reset to the start of the group */ |
2614 | 0 | reset_fpf_position(cpi, start_position); |
2615 | |
|
2616 | 0 | kf_group_err = 0; |
2617 | 0 | kf_group_intra_err = 0; |
2618 | 0 | kf_group_coded_err = 0; |
2619 | | |
2620 | | /* Rescan to get the correct error data for the forced kf group */ |
2621 | 0 | for (i = 0; i < cpi->twopass.frames_to_key; ++i) { |
2622 | | /* Accumulate kf group errors */ |
2623 | 0 | kf_group_err += calculate_modified_err(cpi, &tmp_frame); |
2624 | 0 | kf_group_intra_err += tmp_frame.intra_error; |
2625 | 0 | kf_group_coded_err += tmp_frame.coded_error; |
2626 | | |
2627 | | /* Load a the next frame's stats */ |
2628 | 0 | input_stats(cpi, &tmp_frame); |
2629 | 0 | } |
2630 | | |
2631 | | /* Reset to the start of the group */ |
2632 | 0 | reset_fpf_position(cpi, current_pos); |
2633 | |
|
2634 | 0 | cpi->next_key_frame_forced = 1; |
2635 | 0 | } else { |
2636 | 0 | cpi->next_key_frame_forced = 0; |
2637 | 0 | } |
2638 | | |
2639 | | /* Special case for the last frame of the file */ |
2640 | 0 | if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) { |
2641 | | /* Accumulate kf group error */ |
2642 | 0 | kf_group_err += calculate_modified_err(cpi, this_frame); |
2643 | | |
2644 | | /* These figures keep intra and coded error counts for all frames |
2645 | | * including key frames in the group. The effect of the key frame |
2646 | | * itself can be subtracted out using the first_frame data |
2647 | | * collected above |
2648 | | */ |
2649 | 0 | kf_group_intra_err += this_frame->intra_error; |
2650 | 0 | kf_group_coded_err += this_frame->coded_error; |
2651 | 0 | } |
2652 | | |
2653 | | /* Calculate the number of bits that should be assigned to the kf group. */ |
2654 | 0 | if ((cpi->twopass.bits_left > 0) && |
2655 | 0 | (cpi->twopass.modified_error_left > 0.0)) { |
2656 | | /* Max for a single normal frame (not key frame) */ |
2657 | 0 | int max_bits = frame_max_bits(cpi); |
2658 | | |
2659 | | /* Maximum bits for the kf group */ |
2660 | 0 | int64_t max_grp_bits; |
2661 | | |
2662 | | /* Default allocation based on bits left and relative |
2663 | | * complexity of the section |
2664 | | */ |
2665 | 0 | cpi->twopass.kf_group_bits = |
2666 | 0 | (int64_t)(cpi->twopass.bits_left * |
2667 | 0 | (kf_group_err / cpi->twopass.modified_error_left)); |
2668 | | |
2669 | | /* Clip based on maximum per frame rate defined by the user. */ |
2670 | 0 | max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; |
2671 | 0 | if (cpi->twopass.kf_group_bits > max_grp_bits) { |
2672 | 0 | cpi->twopass.kf_group_bits = max_grp_bits; |
2673 | 0 | } |
2674 | | |
2675 | | /* Additional special case for CBR if buffer is getting full. */ |
2676 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
2677 | 0 | int64_t opt_buffer_lvl = cpi->oxcf.optimal_buffer_level; |
2678 | 0 | int64_t buffer_lvl = cpi->buffer_level; |
2679 | | |
2680 | | /* If the buffer is near or above the optimal and this kf group is |
2681 | | * not being allocated much then increase the allocation a bit. |
2682 | | */ |
2683 | 0 | if (buffer_lvl >= opt_buffer_lvl) { |
2684 | 0 | int64_t high_water_mark = |
2685 | 0 | (opt_buffer_lvl + cpi->oxcf.maximum_buffer_size) >> 1; |
2686 | |
|
2687 | 0 | int64_t av_group_bits; |
2688 | | |
2689 | | /* Av bits per frame * number of frames */ |
2690 | 0 | av_group_bits = (int64_t)cpi->av_per_frame_bandwidth * |
2691 | 0 | (int64_t)cpi->twopass.frames_to_key; |
2692 | | |
2693 | | /* We are at or above the maximum. */ |
2694 | 0 | if (cpi->buffer_level >= high_water_mark) { |
2695 | 0 | int64_t min_group_bits; |
2696 | |
|
2697 | 0 | min_group_bits = |
2698 | 0 | av_group_bits + (int64_t)(buffer_lvl - high_water_mark); |
2699 | |
|
2700 | 0 | if (cpi->twopass.kf_group_bits < min_group_bits) { |
2701 | 0 | cpi->twopass.kf_group_bits = min_group_bits; |
2702 | 0 | } |
2703 | 0 | } |
2704 | | /* We are above optimal but below the maximum */ |
2705 | 0 | else if (cpi->twopass.kf_group_bits < av_group_bits) { |
2706 | 0 | int64_t bits_below_av = av_group_bits - cpi->twopass.kf_group_bits; |
2707 | |
|
2708 | 0 | cpi->twopass.kf_group_bits += |
2709 | 0 | (int64_t)((double)bits_below_av * |
2710 | 0 | (double)(buffer_lvl - opt_buffer_lvl) / |
2711 | 0 | (double)(high_water_mark - opt_buffer_lvl)); |
2712 | 0 | } |
2713 | 0 | } |
2714 | 0 | } |
2715 | 0 | } else { |
2716 | 0 | cpi->twopass.kf_group_bits = 0; |
2717 | 0 | } |
2718 | | |
2719 | | /* Reset the first pass file position */ |
2720 | 0 | reset_fpf_position(cpi, start_position); |
2721 | | |
2722 | | /* determine how big to make this keyframe based on how well the |
2723 | | * subsequent frames use inter blocks |
2724 | | */ |
2725 | 0 | decay_accumulator = 1.0; |
2726 | 0 | boost_score = 0.0; |
2727 | |
|
2728 | 0 | for (i = 0; i < cpi->twopass.frames_to_key; ++i) { |
2729 | 0 | double r; |
2730 | |
|
2731 | 0 | if (EOF == input_stats(cpi, &next_frame)) break; |
2732 | | |
2733 | 0 | if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) { |
2734 | 0 | r = (IIKFACTOR2 * next_frame.intra_error / |
2735 | 0 | DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
2736 | 0 | } else { |
2737 | 0 | r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / |
2738 | 0 | DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
2739 | 0 | } |
2740 | |
|
2741 | 0 | if (r > RMAX) r = RMAX; |
2742 | | |
2743 | | /* How fast is prediction quality decaying */ |
2744 | 0 | loop_decay_rate = get_prediction_decay_rate(&next_frame); |
2745 | |
|
2746 | 0 | decay_accumulator = decay_accumulator * loop_decay_rate; |
2747 | 0 | decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
2748 | |
|
2749 | 0 | boost_score += (decay_accumulator * r); |
2750 | |
|
2751 | 0 | if ((i > MIN_GF_INTERVAL) && ((boost_score - old_boost_score) < 1.0)) { |
2752 | 0 | break; |
2753 | 0 | } |
2754 | | |
2755 | 0 | old_boost_score = boost_score; |
2756 | 0 | } |
2757 | |
|
2758 | 0 | if (1) { |
2759 | 0 | FIRSTPASS_STATS sectionstats; |
2760 | 0 | double Ratio; |
2761 | |
|
2762 | 0 | zero_stats(§ionstats); |
2763 | 0 | reset_fpf_position(cpi, start_position); |
2764 | |
|
2765 | 0 | for (i = 0; i < cpi->twopass.frames_to_key; ++i) { |
2766 | 0 | input_stats(cpi, &next_frame); |
2767 | 0 | accumulate_stats(§ionstats, &next_frame); |
2768 | 0 | } |
2769 | |
|
2770 | 0 | avg_stats(§ionstats); |
2771 | |
|
2772 | 0 | cpi->twopass.section_intra_rating = |
2773 | 0 | (unsigned int)(sectionstats.intra_error / |
2774 | 0 | DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); |
2775 | |
|
2776 | 0 | Ratio = sectionstats.intra_error / |
2777 | 0 | DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
2778 | 0 | cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); |
2779 | |
|
2780 | 0 | if (cpi->twopass.section_max_qfactor < 0.80) { |
2781 | 0 | cpi->twopass.section_max_qfactor = 0.80; |
2782 | 0 | } |
2783 | 0 | } |
2784 | | |
2785 | | /* When using CBR apply additional buffer fullness related upper limits */ |
2786 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
2787 | 0 | double max_boost; |
2788 | |
|
2789 | 0 | if (cpi->drop_frames_allowed) { |
2790 | 0 | int df_buffer_level = (int)(cpi->oxcf.drop_frames_water_mark * |
2791 | 0 | (cpi->oxcf.optimal_buffer_level / 100)); |
2792 | |
|
2793 | 0 | if (cpi->buffer_level > df_buffer_level) { |
2794 | 0 | max_boost = |
2795 | 0 | ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / |
2796 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
2797 | 0 | } else { |
2798 | 0 | max_boost = 0.0; |
2799 | 0 | } |
2800 | 0 | } else if (cpi->buffer_level > 0) { |
2801 | 0 | max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / |
2802 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
2803 | 0 | } else { |
2804 | 0 | max_boost = 0.0; |
2805 | 0 | } |
2806 | |
|
2807 | 0 | if (boost_score > max_boost) boost_score = max_boost; |
2808 | 0 | } |
2809 | | |
2810 | | /* Reset the first pass file position */ |
2811 | 0 | reset_fpf_position(cpi, start_position); |
2812 | | |
2813 | | /* Work out how many bits to allocate for the key frame itself */ |
2814 | 0 | if (1) { |
2815 | 0 | int kf_boost = (int)boost_score; |
2816 | 0 | int allocation_chunks; |
2817 | 0 | int Counter = cpi->twopass.frames_to_key; |
2818 | 0 | int alt_kf_bits; |
2819 | 0 | YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; |
2820 | | /* Min boost based on kf interval */ |
2821 | | #if 0 |
2822 | | |
2823 | | while ((kf_boost < 48) && (Counter > 0)) |
2824 | | { |
2825 | | Counter -= 2; |
2826 | | kf_boost ++; |
2827 | | } |
2828 | | |
2829 | | #endif |
2830 | |
|
2831 | 0 | if (kf_boost < 48) { |
2832 | 0 | kf_boost += ((Counter + 1) >> 1); |
2833 | |
|
2834 | 0 | if (kf_boost > 48) kf_boost = 48; |
2835 | 0 | } |
2836 | | |
2837 | | /* bigger frame sizes need larger kf boosts, smaller frames smaller |
2838 | | * boosts... |
2839 | | */ |
2840 | 0 | if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) { |
2841 | 0 | kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240); |
2842 | 0 | } else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) { |
2843 | 0 | kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height); |
2844 | 0 | } |
2845 | | |
2846 | | /* Min KF boost */ |
2847 | 0 | kf_boost = (int)((double)kf_boost * 100.0) >> 4; /* Scale 16 to 100 */ |
2848 | 0 | if (kf_boost < 250) kf_boost = 250; |
2849 | | |
2850 | | /* |
2851 | | * We do three calculations for kf size. |
2852 | | * The first is based on the error score for the whole kf group. |
2853 | | * The second (optionaly) on the key frames own error if this is |
2854 | | * smaller than the average for the group. |
2855 | | * The final one insures that the frame receives at least the |
2856 | | * allocation it would have received based on its own error score vs |
2857 | | * the error score remaining |
2858 | | * Special case if the sequence appears almost totaly static |
2859 | | * as measured by the decay accumulator. In this case we want to |
2860 | | * spend almost all of the bits on the key frame. |
2861 | | * cpi->twopass.frames_to_key-1 because key frame itself is taken |
2862 | | * care of by kf_boost. |
2863 | | */ |
2864 | 0 | if (decay_accumulator >= 0.99) { |
2865 | 0 | allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; |
2866 | 0 | } else { |
2867 | 0 | allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; |
2868 | 0 | } |
2869 | | |
2870 | | /* Normalize Altboost and allocations chunck down to prevent overflow */ |
2871 | 0 | while (kf_boost > 1000) { |
2872 | 0 | kf_boost /= 2; |
2873 | 0 | allocation_chunks /= 2; |
2874 | 0 | } |
2875 | |
|
2876 | 0 | cpi->twopass.kf_group_bits = |
2877 | 0 | (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; |
2878 | | |
2879 | | /* Calculate the number of bits to be spent on the key frame */ |
2880 | 0 | cpi->twopass.kf_bits = |
2881 | 0 | (int)((double)kf_boost * |
2882 | 0 | ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); |
2883 | | |
2884 | | /* Apply an additional limit for CBR */ |
2885 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
2886 | 0 | if (cpi->twopass.kf_bits > (int)((3 * cpi->buffer_level) >> 2)) { |
2887 | 0 | cpi->twopass.kf_bits = (int)((3 * cpi->buffer_level) >> 2); |
2888 | 0 | } |
2889 | 0 | } |
2890 | | |
2891 | | /* If the key frame is actually easier than the average for the |
2892 | | * kf group (which does sometimes happen... eg a blank intro frame) |
2893 | | * Then use an alternate calculation based on the kf error score |
2894 | | * which should give a smaller key frame. |
2895 | | */ |
2896 | 0 | if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) { |
2897 | 0 | double alt_kf_grp_bits = |
2898 | 0 | ((double)cpi->twopass.bits_left * |
2899 | 0 | (kf_mod_err * (double)cpi->twopass.frames_to_key) / |
2900 | 0 | DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); |
2901 | |
|
2902 | 0 | alt_kf_bits = (int)((double)kf_boost * |
2903 | 0 | (alt_kf_grp_bits / (double)allocation_chunks)); |
2904 | |
|
2905 | 0 | if (cpi->twopass.kf_bits > alt_kf_bits) { |
2906 | 0 | cpi->twopass.kf_bits = alt_kf_bits; |
2907 | 0 | } |
2908 | 0 | } |
2909 | | /* Else if it is much harder than other frames in the group make sure |
2910 | | * it at least receives an allocation in keeping with its relative |
2911 | | * error score |
2912 | | */ |
2913 | 0 | else { |
2914 | 0 | alt_kf_bits = (int)((double)cpi->twopass.bits_left * |
2915 | 0 | (kf_mod_err / DOUBLE_DIVIDE_CHECK( |
2916 | 0 | cpi->twopass.modified_error_left))); |
2917 | |
|
2918 | 0 | if (alt_kf_bits > cpi->twopass.kf_bits) { |
2919 | 0 | cpi->twopass.kf_bits = alt_kf_bits; |
2920 | 0 | } |
2921 | 0 | } |
2922 | |
|
2923 | 0 | cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; |
2924 | | /* Add in the minimum frame allowance */ |
2925 | 0 | cpi->twopass.kf_bits += cpi->min_frame_bandwidth; |
2926 | | |
2927 | | /* Peer frame bit target for this frame */ |
2928 | 0 | cpi->per_frame_bandwidth = cpi->twopass.kf_bits; |
2929 | | |
2930 | | /* Convert to a per second bitrate */ |
2931 | 0 | cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * cpi->output_framerate); |
2932 | 0 | } |
2933 | | |
2934 | | /* Note the total error score of the kf group minus the key frame itself */ |
2935 | 0 | cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); |
2936 | | |
2937 | | /* Adjust the count of total modified error left. The count of bits left |
2938 | | * is adjusted elsewhere based on real coded frame sizes |
2939 | | */ |
2940 | 0 | cpi->twopass.modified_error_left -= kf_group_err; |
2941 | |
|
2942 | 0 | if (cpi->oxcf.allow_spatial_resampling) { |
2943 | 0 | int resample_trigger = 0; |
2944 | 0 | int last_kf_resampled = 0; |
2945 | 0 | int kf_q; |
2946 | 0 | int scale_val = 0; |
2947 | 0 | int hr, hs, vr, vs; |
2948 | 0 | int new_width = cpi->oxcf.Width; |
2949 | 0 | int new_height = cpi->oxcf.Height; |
2950 | |
|
2951 | 0 | int projected_buffer_level; |
2952 | 0 | int tmp_q; |
2953 | |
|
2954 | 0 | double projected_bits_perframe; |
2955 | 0 | double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / |
2956 | 0 | (kf_group_coded_err - first_frame.coded_error); |
2957 | 0 | double err_per_frame = kf_group_err / cpi->twopass.frames_to_key; |
2958 | 0 | double bits_per_frame; |
2959 | 0 | double av_bits_per_frame; |
2960 | 0 | double effective_size_ratio; |
2961 | |
|
2962 | 0 | if ((cpi->common.Width != cpi->oxcf.Width) || |
2963 | 0 | (cpi->common.Height != cpi->oxcf.Height)) { |
2964 | 0 | last_kf_resampled = 1; |
2965 | 0 | } |
2966 | | |
2967 | | /* Set back to unscaled by defaults */ |
2968 | 0 | cpi->common.horiz_scale = VP8E_NORMAL; |
2969 | 0 | cpi->common.vert_scale = VP8E_NORMAL; |
2970 | | |
2971 | | /* Calculate Average bits per frame. */ |
2972 | 0 | av_bits_per_frame = |
2973 | 0 | cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK(cpi->framerate); |
2974 | | |
2975 | | /* CBR... Use the clip average as the target for deciding resample */ |
2976 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
2977 | 0 | bits_per_frame = av_bits_per_frame; |
2978 | 0 | } |
2979 | | |
2980 | | /* In VBR we want to avoid downsampling in easy section unless we |
2981 | | * are under extreme pressure So use the larger of target bitrate |
2982 | | * for this section or average bitrate for sequence |
2983 | | */ |
2984 | 0 | else { |
2985 | | /* This accounts for how hard the section is... */ |
2986 | 0 | bits_per_frame = |
2987 | 0 | (double)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key); |
2988 | | |
2989 | | /* Don't turn to resampling in easy sections just because they |
2990 | | * have been assigned a small number of bits |
2991 | | */ |
2992 | 0 | if (bits_per_frame < av_bits_per_frame) { |
2993 | 0 | bits_per_frame = av_bits_per_frame; |
2994 | 0 | } |
2995 | 0 | } |
2996 | | |
2997 | | /* bits_per_frame should comply with our minimum */ |
2998 | 0 | if (bits_per_frame < (cpi->oxcf.target_bandwidth * |
2999 | 0 | cpi->oxcf.two_pass_vbrmin_section / 100)) { |
3000 | 0 | bits_per_frame = (cpi->oxcf.target_bandwidth * |
3001 | 0 | cpi->oxcf.two_pass_vbrmin_section / 100); |
3002 | 0 | } |
3003 | | |
3004 | | /* Work out if spatial resampling is necessary */ |
3005 | 0 | kf_q = estimate_kf_group_q(cpi, err_per_frame, (int)bits_per_frame, |
3006 | 0 | group_iiratio); |
3007 | | |
3008 | | /* If we project a required Q higher than the maximum allowed Q then |
3009 | | * make a guess at the actual size of frames in this section |
3010 | | */ |
3011 | 0 | projected_bits_perframe = bits_per_frame; |
3012 | 0 | tmp_q = kf_q; |
3013 | |
|
3014 | 0 | while (tmp_q > cpi->worst_quality) { |
3015 | 0 | projected_bits_perframe *= 1.04; |
3016 | 0 | tmp_q--; |
3017 | 0 | } |
3018 | | |
3019 | | /* Guess at buffer level at the end of the section */ |
3020 | 0 | projected_buffer_level = |
3021 | 0 | (int)(cpi->buffer_level - |
3022 | 0 | (int)((projected_bits_perframe - av_bits_per_frame) * |
3023 | 0 | cpi->twopass.frames_to_key)); |
3024 | | |
3025 | | /* The trigger for spatial resampling depends on the various |
3026 | | * parameters such as whether we are streaming (CBR) or VBR. |
3027 | | */ |
3028 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
3029 | | /* Trigger resample if we are projected to fall below down |
3030 | | * sample level or resampled last time and are projected to |
3031 | | * remain below the up sample level |
3032 | | */ |
3033 | 0 | if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * |
3034 | 0 | cpi->oxcf.optimal_buffer_level / 100)) || |
3035 | 0 | (last_kf_resampled && |
3036 | 0 | (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * |
3037 | 0 | cpi->oxcf.optimal_buffer_level / 100)))) { |
3038 | 0 | resample_trigger = 1; |
3039 | 0 | } else { |
3040 | 0 | resample_trigger = 0; |
3041 | 0 | } |
3042 | 0 | } else { |
3043 | 0 | int64_t clip_bits = (int64_t)(cpi->twopass.total_stats.count * |
3044 | 0 | cpi->oxcf.target_bandwidth / |
3045 | 0 | DOUBLE_DIVIDE_CHECK(cpi->framerate)); |
3046 | 0 | int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level; |
3047 | | |
3048 | | /* If triggered last time the threshold for triggering again is |
3049 | | * reduced: |
3050 | | * |
3051 | | * Projected Q higher than allowed and Overspend > 5% of total |
3052 | | * bits |
3053 | | */ |
3054 | 0 | if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || |
3055 | 0 | ((kf_q > cpi->worst_quality) && (over_spend > clip_bits / 20))) { |
3056 | 0 | resample_trigger = 1; |
3057 | 0 | } else { |
3058 | 0 | resample_trigger = 0; |
3059 | 0 | } |
3060 | 0 | } |
3061 | |
|
3062 | 0 | if (resample_trigger) { |
3063 | 0 | while ((kf_q >= cpi->worst_quality) && (scale_val < 6)) { |
3064 | 0 | scale_val++; |
3065 | |
|
3066 | 0 | cpi->common.vert_scale = vscale_lookup[scale_val]; |
3067 | 0 | cpi->common.horiz_scale = hscale_lookup[scale_val]; |
3068 | |
|
3069 | 0 | Scale2Ratio(cpi->common.horiz_scale, &hr, &hs); |
3070 | 0 | Scale2Ratio(cpi->common.vert_scale, &vr, &vs); |
3071 | |
|
3072 | 0 | new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; |
3073 | 0 | new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; |
3074 | | |
3075 | | /* Reducing the area to 1/4 does not reduce the complexity |
3076 | | * (err_per_frame) to 1/4... effective_sizeratio attempts |
3077 | | * to provide a crude correction for this |
3078 | | */ |
3079 | 0 | effective_size_ratio = (double)(new_width * new_height) / |
3080 | 0 | (double)(cpi->oxcf.Width * cpi->oxcf.Height); |
3081 | 0 | effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0; |
3082 | | |
3083 | | /* Now try again and see what Q we get with the smaller |
3084 | | * image size |
3085 | | */ |
3086 | 0 | kf_q = estimate_kf_group_q(cpi, err_per_frame * effective_size_ratio, |
3087 | 0 | (int)bits_per_frame, group_iiratio); |
3088 | 0 | } |
3089 | 0 | } |
3090 | |
|
3091 | 0 | if ((cpi->common.Width != new_width) || |
3092 | 0 | (cpi->common.Height != new_height)) { |
3093 | 0 | cpi->common.Width = new_width; |
3094 | 0 | cpi->common.Height = new_height; |
3095 | 0 | vp8_alloc_compressor_data(cpi); |
3096 | 0 | } |
3097 | 0 | } |
3098 | 0 | } |