Coverage Report

Created: 2024-09-06 07:53

/src/libvpx/vp9/encoder/vp9_ratectrl.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3
 *
4
 *  Use of this source code is governed by a BSD-style license
5
 *  that can be found in the LICENSE file in the root of the source
6
 *  tree. An additional intellectual property rights grant can be found
7
 *  in the file PATENTS.  All contributing project authors may
8
 *  be found in the AUTHORS file in the root of the source tree.
9
 */
10
11
#include <assert.h>
12
#include <limits.h>
13
#include <math.h>
14
#include <stdint.h>
15
#include <stdio.h>
16
#include <stdlib.h>
17
#include <string.h>
18
19
#include "./vpx_dsp_rtcd.h"
20
#include "vpx_dsp/vpx_dsp_common.h"
21
#include "vpx_mem/vpx_mem.h"
22
#include "vpx_ports/mem.h"
23
#include "vpx_ports/system_state.h"
24
25
#include "vp9/common/vp9_alloccommon.h"
26
#include "vp9/common/vp9_blockd.h"
27
#include "vp9/common/vp9_common.h"
28
#include "vp9/common/vp9_entropymode.h"
29
#include "vp9/common/vp9_onyxc_int.h"
30
#include "vp9/common/vp9_quant_common.h"
31
#include "vp9/common/vp9_seg_common.h"
32
33
#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
34
#include "vp9/encoder/vp9_encodemv.h"
35
#include "vp9/encoder/vp9_encoder.h"
36
#include "vp9/encoder/vp9_ext_ratectrl.h"
37
#include "vp9/encoder/vp9_firstpass.h"
38
#include "vp9/encoder/vp9_ratectrl.h"
39
#include "vp9/encoder/vp9_svc_layercontext.h"
40
41
#include "vpx/vpx_codec.h"
42
#include "vpx/vpx_ext_ratectrl.h"
43
#include "vpx/internal/vpx_codec_internal.h"
44
45
// Max rate per frame for 1080P and below encodes if no level requirement given.
46
// For larger formats limit to MAX_MB_RATE bits per MB
47
// 4Mbits is derived from the level requirement for level 4 (1080P 30) which
48
// requires that HW can sustain a rate of 16Mbits over a 4 frame group.
49
// If a lower level requirement is specified then this may over ride this value.
50
#define MAX_MB_RATE 250
51
#define MAXRATE_1080P 4000000
52
53
#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
54
55
142k
#define MIN_BPB_FACTOR 0.005
56
138k
#define MAX_BPB_FACTOR 50
57
58
#if CONFIG_VP9_HIGHBITDEPTH
59
#define ASSIGN_MINQ_TABLE(bit_depth, name)       \
60
56.5k
  do {                                           \
61
56.5k
    switch (bit_depth) {                         \
62
56.5k
      case VPX_BITS_8: name = name##_8; break;   \
63
0
      case VPX_BITS_10: name = name##_10; break; \
64
0
      default:                                   \
65
0
        assert(bit_depth == VPX_BITS_12);        \
66
0
        name = name##_12;                        \
67
0
        break;                                   \
68
56.5k
    }                                            \
69
56.5k
  } while (0)
70
#else
71
#define ASSIGN_MINQ_TABLE(bit_depth, name) \
72
  do {                                     \
73
    (void)bit_depth;                       \
74
    name = name##_8;                       \
75
  } while (0)
76
#endif
77
78
// Tables relating active max Q to active min Q
79
static int kf_low_motion_minq_8[QINDEX_RANGE];
80
static int kf_high_motion_minq_8[QINDEX_RANGE];
81
static int arfgf_low_motion_minq_8[QINDEX_RANGE];
82
static int arfgf_high_motion_minq_8[QINDEX_RANGE];
83
static int inter_minq_8[QINDEX_RANGE];
84
static int rtc_minq_8[QINDEX_RANGE];
85
86
#if CONFIG_VP9_HIGHBITDEPTH
87
static int kf_low_motion_minq_10[QINDEX_RANGE];
88
static int kf_high_motion_minq_10[QINDEX_RANGE];
89
static int arfgf_low_motion_minq_10[QINDEX_RANGE];
90
static int arfgf_high_motion_minq_10[QINDEX_RANGE];
91
static int inter_minq_10[QINDEX_RANGE];
92
static int rtc_minq_10[QINDEX_RANGE];
93
static int kf_low_motion_minq_12[QINDEX_RANGE];
94
static int kf_high_motion_minq_12[QINDEX_RANGE];
95
static int arfgf_low_motion_minq_12[QINDEX_RANGE];
96
static int arfgf_high_motion_minq_12[QINDEX_RANGE];
97
static int inter_minq_12[QINDEX_RANGE];
98
static int rtc_minq_12[QINDEX_RANGE];
99
#endif
100
101
#ifdef AGGRESSIVE_VBR
102
static int gf_high = 2400;
103
static int gf_low = 400;
104
static int kf_high = 4000;
105
static int kf_low = 400;
106
#else
107
static int gf_high = 2000;
108
static int gf_low = 400;
109
static int kf_high = 4800;
110
static int kf_low = 300;
111
#endif
112
113
// Functions to compute the active minq lookup table entries based on a
114
// formulaic approach to facilitate easier adjustment of the Q tables.
115
// The formulae were derived from computing a 3rd order polynomial best
116
// fit to the original data (after plotting real maxq vs minq (not q index))
117
static int get_minq_index(double maxq, double x3, double x2, double x1,
118
4.60k
                          vpx_bit_depth_t bit_depth) {
119
4.60k
  int i;
120
4.60k
  const double minqtarget = VPXMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
121
122
  // Special case handling to deal with the step from q2.0
123
  // down to lossless mode represented by q 1.0.
124
4.60k
  if (minqtarget <= 2.0) return 0;
125
126
371k
  for (i = 0; i < QINDEX_RANGE; i++) {
127
371k
    if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth)) return i;
128
371k
  }
129
130
0
  return QINDEX_RANGE - 1;
131
4.19k
}
132
133
static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
134
                           int *arfgf_high, int *inter, int *rtc,
135
3
                           vpx_bit_depth_t bit_depth) {
136
3
  int i;
137
771
  for (i = 0; i < QINDEX_RANGE; i++) {
138
768
    const double maxq = vp9_convert_qindex_to_q(i, bit_depth);
139
768
    kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
140
768
    kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth);
141
#ifdef AGGRESSIVE_VBR
142
    arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.275, bit_depth);
143
    inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.80, bit_depth);
144
#else
145
768
    arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
146
768
    inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
147
768
#endif
148
768
    arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
149
768
    rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
150
768
  }
151
3
}
152
153
1
void vp9_rc_init_minq_luts(void) {
154
1
  init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
155
1
                 arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
156
1
                 inter_minq_8, rtc_minq_8, VPX_BITS_8);
157
1
#if CONFIG_VP9_HIGHBITDEPTH
158
1
  init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
159
1
                 arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
160
1
                 inter_minq_10, rtc_minq_10, VPX_BITS_10);
161
1
  init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
162
1
                 arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
163
1
                 inter_minq_12, rtc_minq_12, VPX_BITS_12);
164
1
#endif
165
1
}
166
167
// These functions use formulaic calculations to make playing with the
168
// quantizer tables easier. If necessary they can be replaced by lookup
169
// tables if and when things settle down in the experimental bitstream
170
3.32M
double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) {
171
// Convert the index to a real Q value (scaled down to match old Q values)
172
3.32M
#if CONFIG_VP9_HIGHBITDEPTH
173
3.32M
  switch (bit_depth) {
174
3.07M
    case VPX_BITS_8: return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
175
125k
    case VPX_BITS_10: return vp9_ac_quant(qindex, 0, bit_depth) / 16.0;
176
126k
    default:
177
126k
      assert(bit_depth == VPX_BITS_12);
178
126k
      return vp9_ac_quant(qindex, 0, bit_depth) / 64.0;
179
3.32M
  }
180
#else
181
  return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
182
#endif
183
3.32M
}
184
185
0
int vp9_convert_q_to_qindex(double q_val, vpx_bit_depth_t bit_depth) {
186
0
  int i;
187
188
0
  for (i = 0; i < QINDEX_RANGE; ++i)
189
0
    if (vp9_convert_qindex_to_q(i, bit_depth) >= q_val) break;
190
191
0
  if (i == QINDEX_RANGE) i--;
192
193
0
  return i;
194
0
}
195
196
int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
197
1.92M
                       double correction_factor, vpx_bit_depth_t bit_depth) {
198
1.92M
  const double q = vp9_convert_qindex_to_q(qindex, bit_depth);
199
1.92M
  int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
200
201
1.92M
  assert(correction_factor <= MAX_BPB_FACTOR &&
202
1.92M
         correction_factor >= MIN_BPB_FACTOR);
203
204
  // q based adjustment to baseline enumerator
205
1.92M
  enumerator += (int)(enumerator * q) >> 12;
206
1.92M
  return (int)(enumerator * correction_factor / q);
207
1.92M
}
208
209
int vp9_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
210
                           double correction_factor,
211
42.2k
                           vpx_bit_depth_t bit_depth) {
212
42.2k
  const int bpm =
213
42.2k
      (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth));
214
42.2k
  return VPXMAX(FRAME_OVERHEAD_BITS,
215
42.2k
                (int)(((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS));
216
42.2k
}
217
218
35.7k
int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
219
35.7k
  const RATE_CONTROL *rc = &cpi->rc;
220
35.7k
  const VP9EncoderConfig *oxcf = &cpi->oxcf;
221
222
35.7k
  const int min_frame_target =
223
35.7k
      VPXMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
224
35.7k
  if (target < min_frame_target) target = min_frame_target;
225
35.7k
  if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
226
    // If there is an active ARF at this location use the minimum
227
    // bits on this frame even if it is a constructed arf.
228
    // The active maximum quantizer insures that an appropriate
229
    // number of bits will be spent if needed for constructed ARFs.
230
0
    target = min_frame_target;
231
0
  }
232
233
  // Clip the frame target to the maximum allowed value.
234
35.7k
  if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
235
236
35.7k
  if (oxcf->rc_max_inter_bitrate_pct) {
237
0
    const int64_t max_rate =
238
0
        (int64_t)rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
239
    // target is of type int and VPXMIN cannot evaluate to larger than target
240
0
    target = (int)VPXMIN(target, max_rate);
241
0
  }
242
35.7k
  return target;
243
35.7k
}
244
245
7.75k
int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
246
7.75k
  const RATE_CONTROL *rc = &cpi->rc;
247
7.75k
  const VP9EncoderConfig *oxcf = &cpi->oxcf;
248
7.75k
  if (oxcf->rc_max_intra_bitrate_pct) {
249
0
    const int64_t max_rate =
250
0
        (int64_t)rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100;
251
0
    target = (int)VPXMIN(target, max_rate);
252
0
  }
253
7.75k
  if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
254
7.75k
  return target;
255
7.75k
}
256
257
// TODO(marpan/jianj): bits_off_target and buffer_level are used in the same
258
// way for CBR mode, for the buffering updates below. Look into removing one
259
// of these (i.e., bits_off_target).
260
// Update the buffer level before encoding with the per-frame-bandwidth,
261
0
void vp9_update_buffer_level_preencode(VP9_COMP *cpi) {
262
0
  RATE_CONTROL *const rc = &cpi->rc;
263
0
  rc->bits_off_target += rc->avg_frame_bandwidth;
264
  // Clip the buffer level to the maximum specified buffer size.
265
0
  rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
266
0
  rc->buffer_level = rc->bits_off_target;
267
0
}
268
269
// Update the buffer level before encoding with the per-frame-bandwidth
270
// for SVC. The current and all upper temporal layers are updated, needed
271
// for the layered rate control which involves cumulative buffer levels for
272
// the temporal layers. Allow for using the timestamp(pts) delta for the
273
// framerate when the set_ref_frame_config is used.
274
0
void vp9_update_buffer_level_svc_preencode(VP9_COMP *cpi) {
275
0
  SVC *const svc = &cpi->svc;
276
0
  int i;
277
  // Set this to 1 to use timestamp delta for "framerate" under
278
  // ref_frame_config usage.
279
0
  int use_timestamp = 1;
280
0
  const int64_t ts_delta =
281
0
      svc->time_stamp_superframe - svc->time_stamp_prev[svc->spatial_layer_id];
282
0
  for (i = svc->temporal_layer_id; i < svc->number_temporal_layers; ++i) {
283
0
    const int layer =
284
0
        LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers);
285
0
    LAYER_CONTEXT *const lc = &svc->layer_context[layer];
286
0
    RATE_CONTROL *const lrc = &lc->rc;
287
0
    if (use_timestamp && cpi->svc.use_set_ref_frame_config &&
288
0
        svc->number_temporal_layers == 1 && ts_delta > 0 &&
289
0
        svc->current_superframe > 0) {
290
      // TODO(marpan): This may need to be modified for temporal layers.
291
0
      const double framerate_pts = 10000000.0 / ts_delta;
292
0
      lrc->bits_off_target += saturate_cast_double_to_int(
293
0
          round(lc->target_bandwidth / framerate_pts));
294
0
    } else {
295
0
      lrc->bits_off_target += saturate_cast_double_to_int(
296
0
          round(lc->target_bandwidth / lc->framerate));
297
0
    }
298
    // Clip buffer level to maximum buffer size for the layer.
299
0
    lrc->bits_off_target =
300
0
        VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
301
0
    lrc->buffer_level = lrc->bits_off_target;
302
0
    if (i == svc->temporal_layer_id) {
303
0
      cpi->rc.bits_off_target = lrc->bits_off_target;
304
0
      cpi->rc.buffer_level = lrc->buffer_level;
305
0
    }
306
0
  }
307
0
}
308
309
// Update the buffer level for higher temporal layers, given the encoded current
310
// temporal layer.
311
static void update_layer_buffer_level_postencode(SVC *svc,
312
0
                                                 int encoded_frame_size) {
313
0
  int i = 0;
314
0
  const int current_temporal_layer = svc->temporal_layer_id;
315
0
  for (i = current_temporal_layer + 1; i < svc->number_temporal_layers; ++i) {
316
0
    const int layer =
317
0
        LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers);
318
0
    LAYER_CONTEXT *lc = &svc->layer_context[layer];
319
0
    RATE_CONTROL *lrc = &lc->rc;
320
0
    lrc->bits_off_target -= encoded_frame_size;
321
    // Clip buffer level to maximum buffer size for the layer.
322
0
    lrc->bits_off_target =
323
0
        VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
324
0
    lrc->buffer_level = lrc->bits_off_target;
325
0
  }
326
0
}
327
328
// Update the buffer level after encoding with encoded frame size.
329
static void update_buffer_level_postencode(VP9_COMP *cpi,
330
42.2k
                                           int encoded_frame_size) {
331
42.2k
  RATE_CONTROL *const rc = &cpi->rc;
332
42.2k
  rc->bits_off_target -= encoded_frame_size;
333
  // Clip the buffer level to the maximum specified buffer size.
334
42.2k
  rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
335
  // For screen-content mode, and if frame-dropper is off, don't let buffer
336
  // level go below threshold, given here as -rc->maximum_ buffer_size.
337
42.2k
  if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
338
42.2k
      cpi->oxcf.drop_frames_water_mark == 0)
339
0
    rc->bits_off_target = VPXMAX(rc->bits_off_target, -rc->maximum_buffer_size);
340
341
42.2k
  rc->buffer_level = rc->bits_off_target;
342
343
42.2k
  if (is_one_pass_svc(cpi)) {
344
0
    update_layer_buffer_level_postencode(&cpi->svc, encoded_frame_size);
345
0
  }
346
42.2k
}
347
348
int vp9_rc_get_default_min_gf_interval(int width, int height,
349
67.5k
                                       double framerate) {
350
  // Assume we do not need any constraint lower than 4K 20 fps
351
67.5k
  static const double factor_safe = 3840 * 2160 * 20.0;
352
67.5k
  const double factor = width * height * framerate;
353
67.5k
  const int default_interval =
354
67.5k
      clamp((int)round(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
355
356
67.5k
  if (factor <= factor_safe)
357
66.0k
    return default_interval;
358
1.45k
  else
359
1.45k
    return VPXMAX(default_interval,
360
67.5k
                  (int)round(MIN_GF_INTERVAL * factor / factor_safe));
361
  // Note this logic makes:
362
  // 4K24: 5
363
  // 4K30: 6
364
  // 4K60: 12
365
67.5k
}
366
367
67.5k
int vp9_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
368
67.5k
  int interval = VPXMIN(MAX_GF_INTERVAL, (int)round(framerate * 0.75));
369
67.5k
  interval += (interval & 0x01);  // Round to even value
370
67.5k
  return VPXMAX(interval, min_gf_interval);
371
67.5k
}
372
373
2.98k
void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
374
2.98k
  int i;
375
376
2.98k
  if (pass == 0 && oxcf->rc_mode == VPX_CBR) {
377
0
    rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
378
0
    rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
379
2.98k
  } else {
380
2.98k
    rc->avg_frame_qindex[KEY_FRAME] =
381
2.98k
        (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
382
2.98k
    rc->avg_frame_qindex[INTER_FRAME] =
383
2.98k
        (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
384
2.98k
  }
385
386
2.98k
  rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
387
2.98k
  rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
388
389
2.98k
  rc->buffer_level = rc->starting_buffer_level;
390
2.98k
  rc->bits_off_target = rc->starting_buffer_level;
391
392
2.98k
  rc->rolling_target_bits = rc->avg_frame_bandwidth;
393
2.98k
  rc->rolling_actual_bits = rc->avg_frame_bandwidth;
394
2.98k
  rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
395
2.98k
  rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
396
397
2.98k
  rc->total_actual_bits = 0;
398
2.98k
  rc->total_target_bits = 0;
399
2.98k
  rc->total_target_vs_actual = 0;
400
2.98k
  rc->avg_frame_low_motion = 0;
401
2.98k
  rc->count_last_scene_change = 0;
402
2.98k
  rc->af_ratio_onepass_vbr = 10;
403
2.98k
  rc->prev_avg_source_sad_lag = 0;
404
2.98k
  rc->high_source_sad = 0;
405
2.98k
  rc->reset_high_source_sad = 0;
406
2.98k
  rc->high_source_sad_lagindex = -1;
407
2.98k
  rc->high_num_blocks_with_motion = 0;
408
2.98k
  rc->hybrid_intra_scene_change = 0;
409
2.98k
  rc->re_encode_maxq_scene_change = 0;
410
2.98k
  rc->alt_ref_gf_group = 0;
411
2.98k
  rc->last_frame_is_src_altref = 0;
412
2.98k
  rc->fac_active_worst_inter = 150;
413
2.98k
  rc->fac_active_worst_gf = 100;
414
2.98k
  rc->force_qpmin = 0;
415
77.5k
  for (i = 0; i < MAX_LAG_BUFFERS; ++i) rc->avg_source_sad[i] = 0;
416
2.98k
  rc->frames_to_key = 0;
417
2.98k
  rc->frames_since_key = 8;  // Sensible default for first frame.
418
2.98k
  rc->this_key_frame_forced = 0;
419
2.98k
  rc->next_key_frame_forced = 0;
420
2.98k
  rc->source_alt_ref_pending = 0;
421
2.98k
  rc->source_alt_ref_active = 0;
422
423
2.98k
  rc->frames_till_gf_update_due = 0;
424
2.98k
  rc->constrain_gf_key_freq_onepass_vbr = 1;
425
2.98k
  rc->ni_av_qi = oxcf->worst_allowed_q;
426
2.98k
  rc->ni_tot_qi = 0;
427
2.98k
  rc->ni_frames = 0;
428
429
2.98k
  rc->tot_q = 0.0;
430
2.98k
  rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
431
432
17.8k
  for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
433
14.9k
    rc->rate_correction_factors[i] = 1.0;
434
14.9k
    rc->damped_adjustment[i] = 0;
435
14.9k
  }
436
437
2.98k
  rc->min_gf_interval = oxcf->min_gf_interval;
438
2.98k
  rc->max_gf_interval = oxcf->max_gf_interval;
439
2.98k
  if (rc->min_gf_interval == 0)
440
2.98k
    rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
441
2.98k
        oxcf->width, oxcf->height, oxcf->init_framerate);
442
2.98k
  if (rc->max_gf_interval == 0)
443
2.98k
    rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
444
2.98k
        oxcf->init_framerate, rc->min_gf_interval);
445
2.98k
  rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
446
2.98k
  if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) {
447
96
    rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
448
2.88k
  } else {
449
2.88k
    rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH;
450
2.88k
  }
451
452
2.98k
  rc->force_max_q = 0;
453
2.98k
  rc->last_post_encode_dropped_scene_change = 0;
454
2.98k
  rc->use_post_encode_drop = 0;
455
2.98k
  rc->ext_use_post_encode_drop = 0;
456
2.98k
  rc->disable_overshoot_maxq_cbr = 0;
457
2.98k
  rc->arf_active_best_quality_adjustment_factor = 1.0;
458
2.98k
  rc->arf_increase_active_best_quality = 0;
459
2.98k
  rc->preserve_arf_as_gld = 0;
460
2.98k
  rc->preserve_next_arf_as_gld = 0;
461
2.98k
  rc->show_arf_as_gld = 0;
462
2.98k
}
463
464
0
static int check_buffer_above_thresh(VP9_COMP *cpi, int drop_mark) {
465
0
  SVC *svc = &cpi->svc;
466
0
  if (!cpi->use_svc || cpi->svc.framedrop_mode != FULL_SUPERFRAME_DROP) {
467
0
    RATE_CONTROL *const rc = &cpi->rc;
468
0
    return (rc->buffer_level > drop_mark);
469
0
  } else {
470
0
    int i;
471
    // For SVC in the FULL_SUPERFRAME_DROP): the condition on
472
    // buffer (if its above threshold, so no drop) is checked on current and
473
    // upper spatial layers. If any spatial layer is not above threshold then
474
    // we return 0.
475
0
    for (i = svc->spatial_layer_id; i < svc->number_spatial_layers; ++i) {
476
0
      const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
477
0
                                         svc->number_temporal_layers);
478
0
      LAYER_CONTEXT *lc = &svc->layer_context[layer];
479
0
      RATE_CONTROL *lrc = &lc->rc;
480
      // Exclude check for layer whose bitrate is 0.
481
0
      if (lc->target_bandwidth > 0) {
482
0
        const int drop_mark_layer = (int)(cpi->svc.framedrop_thresh[i] *
483
0
                                          lrc->optimal_buffer_level / 100);
484
0
        if (!(lrc->buffer_level > drop_mark_layer)) return 0;
485
0
      }
486
0
    }
487
0
    return 1;
488
0
  }
489
0
}
490
491
0
static int check_buffer_below_thresh(VP9_COMP *cpi, int drop_mark) {
492
0
  SVC *svc = &cpi->svc;
493
0
  if (!cpi->use_svc || cpi->svc.framedrop_mode == LAYER_DROP) {
494
0
    RATE_CONTROL *const rc = &cpi->rc;
495
0
    return (rc->buffer_level <= drop_mark);
496
0
  } else {
497
0
    int i;
498
    // For SVC in the constrained framedrop mode (svc->framedrop_mode =
499
    // CONSTRAINED_LAYER_DROP or FULL_SUPERFRAME_DROP): the condition on
500
    // buffer (if its below threshold, so drop frame) is checked on current
501
    // and upper spatial layers. For FULL_SUPERFRAME_DROP mode if any
502
    // spatial layer is <= threshold, then we return 1 (drop).
503
0
    for (i = svc->spatial_layer_id; i < svc->number_spatial_layers; ++i) {
504
0
      const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
505
0
                                         svc->number_temporal_layers);
506
0
      LAYER_CONTEXT *lc = &svc->layer_context[layer];
507
0
      RATE_CONTROL *lrc = &lc->rc;
508
      // Exclude check for layer whose bitrate is 0.
509
0
      if (lc->target_bandwidth > 0) {
510
0
        const int drop_mark_layer = (int)(cpi->svc.framedrop_thresh[i] *
511
0
                                          lrc->optimal_buffer_level / 100);
512
0
        if (cpi->svc.framedrop_mode == FULL_SUPERFRAME_DROP) {
513
0
          if (lrc->buffer_level <= drop_mark_layer) return 1;
514
0
        } else {
515
0
          if (!(lrc->buffer_level <= drop_mark_layer)) return 0;
516
0
        }
517
0
      }
518
0
    }
519
0
    if (cpi->svc.framedrop_mode == FULL_SUPERFRAME_DROP)
520
0
      return 0;
521
0
    else
522
0
      return 1;
523
0
  }
524
0
}
525
526
0
int vp9_test_drop(VP9_COMP *cpi) {
527
0
  const VP9EncoderConfig *oxcf = &cpi->oxcf;
528
0
  RATE_CONTROL *const rc = &cpi->rc;
529
0
  SVC *svc = &cpi->svc;
530
0
  int drop_frames_water_mark = oxcf->drop_frames_water_mark;
531
0
  if (cpi->use_svc) {
532
    // If we have dropped max_consec_drop frames, then we don't
533
    // drop this spatial layer, and reset counter to 0.
534
0
    if (svc->drop_count[svc->spatial_layer_id] == svc->max_consec_drop) {
535
0
      svc->drop_count[svc->spatial_layer_id] = 0;
536
0
      return 0;
537
0
    } else {
538
0
      drop_frames_water_mark = svc->framedrop_thresh[svc->spatial_layer_id];
539
0
    }
540
0
  }
541
0
  if (!drop_frames_water_mark ||
542
0
      (svc->spatial_layer_id > 0 &&
543
0
       svc->framedrop_mode == FULL_SUPERFRAME_DROP)) {
544
0
    return 0;
545
0
  } else {
546
0
    if ((rc->buffer_level < 0 && svc->framedrop_mode != FULL_SUPERFRAME_DROP) ||
547
0
        (check_buffer_below_thresh(cpi, -1) &&
548
0
         svc->framedrop_mode == FULL_SUPERFRAME_DROP)) {
549
      // Always drop if buffer is below 0.
550
0
      return 1;
551
0
    } else {
552
      // If buffer is below drop_mark, for now just drop every other frame
553
      // (starting with the next frame) until it increases back over drop_mark.
554
0
      int drop_mark =
555
0
          (int)(drop_frames_water_mark * rc->optimal_buffer_level / 100);
556
0
      if (check_buffer_above_thresh(cpi, drop_mark) &&
557
0
          (rc->decimation_factor > 0)) {
558
0
        --rc->decimation_factor;
559
0
      } else if (check_buffer_below_thresh(cpi, drop_mark) &&
560
0
                 rc->decimation_factor == 0) {
561
0
        rc->decimation_factor = 1;
562
0
      }
563
0
      if (rc->decimation_factor > 0) {
564
0
        if (rc->decimation_count > 0) {
565
0
          --rc->decimation_count;
566
0
          return 1;
567
0
        } else {
568
0
          rc->decimation_count = rc->decimation_factor;
569
0
          return 0;
570
0
        }
571
0
      } else {
572
0
        rc->decimation_count = 0;
573
0
        return 0;
574
0
      }
575
0
    }
576
0
  }
577
0
}
578
579
0
int post_encode_drop_cbr(VP9_COMP *cpi, size_t *size) {
580
0
  size_t frame_size = *size << 3;
581
0
  int64_t new_buffer_level =
582
0
      cpi->rc.buffer_level + cpi->rc.avg_frame_bandwidth - (int64_t)frame_size;
583
584
  // For now we drop if new buffer level (given the encoded frame size) goes
585
  // below 0.
586
0
  if (new_buffer_level < 0) {
587
0
    *size = 0;
588
0
    vp9_rc_postencode_update_drop_frame(cpi);
589
    // Update flag to use for next frame.
590
0
    if (cpi->rc.high_source_sad ||
591
0
        (cpi->use_svc && cpi->svc.high_source_sad_superframe))
592
0
      cpi->rc.last_post_encode_dropped_scene_change = 1;
593
    // Force max_q on next fame.
594
0
    cpi->rc.force_max_q = 1;
595
0
    cpi->rc.avg_frame_qindex[INTER_FRAME] = cpi->rc.worst_quality;
596
0
    cpi->last_frame_dropped = 1;
597
0
    cpi->ext_refresh_frame_flags_pending = 0;
598
0
    if (cpi->use_svc) {
599
0
      SVC *svc = &cpi->svc;
600
0
      int sl = 0;
601
0
      int tl = 0;
602
0
      svc->last_layer_dropped[svc->spatial_layer_id] = 1;
603
0
      svc->drop_spatial_layer[svc->spatial_layer_id] = 1;
604
0
      svc->drop_count[svc->spatial_layer_id]++;
605
0
      svc->skip_enhancement_layer = 1;
606
      // Postencode drop is only checked on base spatial layer,
607
      // for now if max-q is set on base we force it on all layers.
608
0
      for (sl = 0; sl < svc->number_spatial_layers; ++sl) {
609
0
        for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
610
0
          const int layer =
611
0
              LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
612
0
          LAYER_CONTEXT *lc = &svc->layer_context[layer];
613
0
          RATE_CONTROL *lrc = &lc->rc;
614
0
          lrc->force_max_q = 1;
615
0
          lrc->avg_frame_qindex[INTER_FRAME] = cpi->rc.worst_quality;
616
0
        }
617
0
      }
618
0
    }
619
0
    return 1;
620
0
  }
621
622
0
  cpi->rc.force_max_q = 0;
623
0
  cpi->rc.last_post_encode_dropped_scene_change = 0;
624
0
  return 0;
625
0
}
626
627
0
int vp9_rc_drop_frame(VP9_COMP *cpi) {
628
0
  SVC *svc = &cpi->svc;
629
0
  int svc_prev_layer_dropped = 0;
630
  // In the constrained or full_superframe framedrop mode for svc
631
  // (framedrop_mode != (LAYER_DROP && CONSTRAINED_FROM_ABOVE)),
632
  // if the previous spatial layer was dropped, drop the current spatial layer.
633
0
  if (cpi->use_svc && svc->spatial_layer_id > 0 &&
634
0
      svc->drop_spatial_layer[svc->spatial_layer_id - 1])
635
0
    svc_prev_layer_dropped = 1;
636
0
  if ((svc_prev_layer_dropped && svc->framedrop_mode != LAYER_DROP &&
637
0
       svc->framedrop_mode != CONSTRAINED_FROM_ABOVE_DROP) ||
638
0
      svc->force_drop_constrained_from_above[svc->spatial_layer_id] ||
639
0
      vp9_test_drop(cpi)) {
640
0
    vp9_rc_postencode_update_drop_frame(cpi);
641
0
    cpi->ext_refresh_frame_flags_pending = 0;
642
0
    cpi->last_frame_dropped = 1;
643
0
    if (cpi->use_svc) {
644
0
      svc->last_layer_dropped[svc->spatial_layer_id] = 1;
645
0
      svc->drop_spatial_layer[svc->spatial_layer_id] = 1;
646
0
      svc->drop_count[svc->spatial_layer_id]++;
647
0
      svc->skip_enhancement_layer = 1;
648
0
      if (svc->framedrop_mode == LAYER_DROP ||
649
0
          (svc->framedrop_mode == CONSTRAINED_FROM_ABOVE_DROP &&
650
0
           svc->force_drop_constrained_from_above[svc->number_spatial_layers -
651
0
                                                  1] == 0) ||
652
0
          svc->drop_spatial_layer[0] == 0) {
653
        // For the case of constrained drop mode where full superframe is
654
        // dropped, we don't increment the svc frame counters.
655
        // In particular temporal layer counter (which is incremented in
656
        // vp9_inc_frame_in_layer()) won't be incremented, so on a dropped
657
        // frame we try the same temporal_layer_id on next incoming frame.
658
        // This is to avoid an issue with temporal alignment with full
659
        // superframe dropping.
660
0
        vp9_inc_frame_in_layer(cpi);
661
0
      }
662
0
      if (svc->spatial_layer_id == svc->number_spatial_layers - 1) {
663
0
        int i;
664
0
        int all_layers_drop = 1;
665
0
        for (i = 0; i < svc->spatial_layer_id; i++) {
666
0
          if (svc->drop_spatial_layer[i] == 0) {
667
0
            all_layers_drop = 0;
668
0
            break;
669
0
          }
670
0
        }
671
0
        if (all_layers_drop == 1) svc->skip_enhancement_layer = 0;
672
0
      }
673
0
    }
674
0
    return 1;
675
0
  }
676
0
  return 0;
677
0
}
678
679
0
static int adjust_q_cbr(const VP9_COMP *cpi, int q) {
680
  // This makes sure q is between oscillating Qs to prevent resonance.
681
0
  if (!cpi->rc.reset_high_source_sad &&
682
0
      (!cpi->oxcf.gf_cbr_boost_pct ||
683
0
       !(cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)) &&
684
0
      (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
685
0
      cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
686
0
    int qclamp = clamp(q, VPXMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
687
0
                       VPXMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
688
    // If the previous frame had overshoot and the current q needs to increase
689
    // above the clamped value, reduce the clamp for faster reaction to
690
    // overshoot.
691
0
    if (cpi->rc.rc_1_frame == -1 && q > qclamp)
692
0
      q = (q + qclamp) >> 1;
693
0
    else
694
0
      q = qclamp;
695
0
  }
696
0
  if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
697
0
      cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
698
0
    vp9_cyclic_refresh_limit_q(cpi, &q);
699
0
  return VPXMAX(VPXMIN(q, cpi->rc.worst_quality), cpi->rc.best_quality);
700
0
}
701
702
81.0k
static double get_rate_correction_factor(const VP9_COMP *cpi) {
703
81.0k
  const RATE_CONTROL *const rc = &cpi->rc;
704
81.0k
  const VP9_COMMON *const cm = &cpi->common;
705
81.0k
  double rcf;
706
707
81.0k
  if (frame_is_intra_only(cm)) {
708
12.4k
    rcf = rc->rate_correction_factors[KF_STD];
709
68.5k
  } else if (cpi->oxcf.pass == 2) {
710
0
    RATE_FACTOR_LEVEL rf_lvl =
711
0
        cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
712
0
    rcf = rc->rate_correction_factors[rf_lvl];
713
68.5k
  } else {
714
68.5k
    if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
715
68.5k
        !rc->is_src_frame_alt_ref && !cpi->use_svc &&
716
68.5k
        (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 100))
717
4.74k
      rcf = rc->rate_correction_factors[GF_ARF_STD];
718
63.8k
    else
719
63.8k
      rcf = rc->rate_correction_factors[INTER_NORMAL];
720
68.5k
  }
721
81.0k
  rcf *= rcf_mult[rc->frame_size_selector];
722
81.0k
  return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
723
81.0k
}
724
725
42.2k
static void set_rate_correction_factor(VP9_COMP *cpi, double factor) {
726
42.2k
  RATE_CONTROL *const rc = &cpi->rc;
727
42.2k
  const VP9_COMMON *const cm = &cpi->common;
728
729
  // Normalize RCF to account for the size-dependent scaling factor.
730
42.2k
  factor /= rcf_mult[cpi->rc.frame_size_selector];
731
732
42.2k
  factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
733
734
42.2k
  if (frame_is_intra_only(cm)) {
735
7.70k
    rc->rate_correction_factors[KF_STD] = factor;
736
34.4k
  } else if (cpi->oxcf.pass == 2) {
737
0
    RATE_FACTOR_LEVEL rf_lvl =
738
0
        cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
739
0
    rc->rate_correction_factors[rf_lvl] = factor;
740
34.4k
  } else {
741
34.4k
    if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
742
34.4k
        !rc->is_src_frame_alt_ref && !cpi->use_svc &&
743
34.4k
        (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 100))
744
2.38k
      rc->rate_correction_factors[GF_ARF_STD] = factor;
745
32.1k
    else
746
32.1k
      rc->rate_correction_factors[INTER_NORMAL] = factor;
747
34.4k
  }
748
42.2k
}
749
750
42.2k
void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi) {
751
42.2k
  const VP9_COMMON *const cm = &cpi->common;
752
42.2k
  int correction_factor = 100;
753
42.2k
  double rate_correction_factor = get_rate_correction_factor(cpi);
754
42.2k
  double adjustment_limit;
755
42.2k
  RATE_FACTOR_LEVEL rf_lvl =
756
42.2k
      cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
757
758
42.2k
  int projected_size_based_on_q = 0;
759
760
  // Do not update the rate factors for arf overlay frames.
761
42.2k
  if (cpi->rc.is_src_frame_alt_ref) return;
762
763
  // Clear down mmx registers to allow floating point in what follows
764
42.2k
  vpx_clear_system_state();
765
766
  // Work out how big we would have expected the frame to be at this Q given
767
  // the current correction factor.
768
  // Stay in double to avoid int overflow when values are large
769
42.2k
  if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
770
0
    projected_size_based_on_q =
771
0
        vp9_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
772
42.2k
  } else {
773
42.2k
    FRAME_TYPE frame_type = cm->intra_only ? KEY_FRAME : cm->frame_type;
774
42.2k
    projected_size_based_on_q =
775
42.2k
        vp9_estimate_bits_at_q(frame_type, cm->base_qindex, cm->MBs,
776
42.2k
                               rate_correction_factor, cm->bit_depth);
777
42.2k
  }
778
  // Work out a size correction factor.
779
42.2k
  if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
780
36.1k
    correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
781
36.1k
                              projected_size_based_on_q);
782
783
  // Do not use damped adjustment for the first frame of each frame type
784
42.2k
  if (!cpi->rc.damped_adjustment[rf_lvl]) {
785
2.87k
    adjustment_limit = 1.0;
786
2.87k
    cpi->rc.damped_adjustment[rf_lvl] = 1;
787
39.3k
  } else {
788
    // More heavily damped adjustment used if we have been oscillating either
789
    // side of target.
790
39.3k
    adjustment_limit =
791
39.3k
        0.25 + 0.5 * VPXMIN(1, fabs(log10(0.01 * correction_factor)));
792
39.3k
  }
793
794
42.2k
  cpi->rc.q_2_frame = cpi->rc.q_1_frame;
795
42.2k
  cpi->rc.q_1_frame = cm->base_qindex;
796
42.2k
  cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
797
42.2k
  if (correction_factor > 110)
798
11.9k
    cpi->rc.rc_1_frame = -1;
799
30.2k
  else if (correction_factor < 90)
800
15.1k
    cpi->rc.rc_1_frame = 1;
801
15.0k
  else
802
15.0k
    cpi->rc.rc_1_frame = 0;
803
804
  // Turn off oscilation detection in the case of massive overshoot.
805
42.2k
  if (cpi->rc.rc_1_frame == -1 && cpi->rc.rc_2_frame == 1 &&
806
42.2k
      correction_factor > 1000) {
807
223
    cpi->rc.rc_2_frame = 0;
808
223
  }
809
810
42.2k
  if (correction_factor > 102) {
811
    // We are not already at the worst allowable quality
812
14.9k
    correction_factor =
813
14.9k
        (int)(100 + ((correction_factor - 100) * adjustment_limit));
814
14.9k
    rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
815
    // Keep rate_correction_factor within limits
816
14.9k
    if (rate_correction_factor > MAX_BPB_FACTOR)
817
0
      rate_correction_factor = MAX_BPB_FACTOR;
818
27.2k
  } else if (correction_factor < 99) {
819
    // We are not already at the best allowable quality
820
19.1k
    correction_factor =
821
19.1k
        (int)(100 - ((100 - correction_factor) * adjustment_limit));
822
19.1k
    rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
823
824
    // Keep rate_correction_factor within limits
825
19.1k
    if (rate_correction_factor < MIN_BPB_FACTOR)
826
350
      rate_correction_factor = MIN_BPB_FACTOR;
827
19.1k
  }
828
829
42.2k
  set_rate_correction_factor(cpi, rate_correction_factor);
830
42.2k
}
831
832
int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
833
38.8k
                      int active_best_quality, int active_worst_quality) {
834
38.8k
  const VP9_COMMON *const cm = &cpi->common;
835
38.8k
  CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
836
38.8k
  int q = active_worst_quality;
837
38.8k
  int last_error = INT_MAX;
838
38.8k
  int i, target_bits_per_mb, bits_per_mb_at_this_q;
839
38.8k
  const double correction_factor = get_rate_correction_factor(cpi);
840
841
  // Calculate required scaling factor based on target frame size and size of
842
  // frame produced using previous Q.
843
38.8k
  target_bits_per_mb =
844
38.8k
      (int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs);
845
846
38.8k
  i = active_best_quality;
847
848
757k
  do {
849
757k
    if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cr->apply_cyclic_refresh &&
850
757k
        (!cpi->oxcf.gf_cbr_boost_pct || !cpi->refresh_golden_frame)) {
851
0
      bits_per_mb_at_this_q =
852
0
          (int)vp9_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor);
853
757k
    } else {
854
757k
      FRAME_TYPE frame_type = cm->intra_only ? KEY_FRAME : cm->frame_type;
855
757k
      bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(
856
757k
          frame_type, i, correction_factor, cm->bit_depth);
857
757k
    }
858
859
757k
    if (bits_per_mb_at_this_q <= target_bits_per_mb) {
860
30.2k
      if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
861
28.3k
        q = i;
862
1.89k
      else
863
1.89k
        q = i - 1;
864
865
30.2k
      break;
866
726k
    } else {
867
726k
      last_error = bits_per_mb_at_this_q - target_bits_per_mb;
868
726k
    }
869
757k
  } while (++i <= active_worst_quality);
870
871
  // Adjustment to q for CBR mode.
872
38.8k
  if (cpi->oxcf.rc_mode == VPX_CBR) return adjust_q_cbr(cpi, q);
873
874
38.8k
  return q;
875
38.8k
}
876
877
static int get_active_quality(int q, int gfu_boost, int low, int high,
878
7.14k
                              int *low_motion_minq, int *high_motion_minq) {
879
7.14k
  if (gfu_boost > high) {
880
0
    return low_motion_minq[q];
881
7.14k
  } else if (gfu_boost < low) {
882
0
    return high_motion_minq[q];
883
7.14k
  } else {
884
7.14k
    const int gap = high - low;
885
7.14k
    const int offset = high - gfu_boost;
886
7.14k
    const int qdiff = high_motion_minq[q] - low_motion_minq[q];
887
7.14k
    const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
888
7.14k
    return low_motion_minq[q] + adjustment;
889
7.14k
  }
890
7.14k
}
891
892
static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
893
4.78k
                                 vpx_bit_depth_t bit_depth) {
894
4.78k
  int *kf_low_motion_minq;
895
4.78k
  int *kf_high_motion_minq;
896
4.78k
  ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
897
4.78k
  ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
898
4.78k
  return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
899
4.78k
                            kf_low_motion_minq, kf_high_motion_minq);
900
4.78k
}
901
902
static int get_gf_active_quality(const VP9_COMP *const cpi, int q,
903
2.35k
                                 vpx_bit_depth_t bit_depth) {
904
2.35k
  const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
905
2.35k
  const RATE_CONTROL *const rc = &cpi->rc;
906
907
2.35k
  int *arfgf_low_motion_minq;
908
2.35k
  int *arfgf_high_motion_minq;
909
2.35k
  const int gfu_boost = cpi->multi_layer_arf
910
2.35k
                            ? gf_group->gfu_boost[gf_group->index]
911
2.35k
                            : rc->gfu_boost;
912
2.35k
  ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
913
2.35k
  ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
914
2.35k
  return get_active_quality(q, gfu_boost, gf_low, gf_high,
915
2.35k
                            arfgf_low_motion_minq, arfgf_high_motion_minq);
916
2.35k
}
917
918
42.2k
static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
919
42.2k
  const RATE_CONTROL *const rc = &cpi->rc;
920
42.2k
  const unsigned int curr_frame = cpi->common.current_video_frame;
921
42.2k
  int active_worst_quality;
922
923
42.2k
  if (cpi->common.frame_type == KEY_FRAME) {
924
7.75k
    active_worst_quality =
925
7.75k
        curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] << 1;
926
34.5k
  } else {
927
34.5k
    if (!rc->is_src_frame_alt_ref && !cpi->use_svc &&
928
34.5k
        (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
929
2.39k
      active_worst_quality =
930
2.39k
          curr_frame == 1
931
2.39k
              ? rc->last_q[KEY_FRAME] * 5 >> 2
932
2.39k
              : rc->last_q[INTER_FRAME] * rc->fac_active_worst_gf / 100;
933
32.1k
    } else {
934
32.1k
      active_worst_quality = curr_frame == 1
935
32.1k
                                 ? rc->last_q[KEY_FRAME] << 1
936
32.1k
                                 : rc->avg_frame_qindex[INTER_FRAME] *
937
30.3k
                                       rc->fac_active_worst_inter / 100;
938
32.1k
    }
939
34.5k
  }
940
42.2k
  return VPXMIN(active_worst_quality, rc->worst_quality);
941
42.2k
}
942
943
// Adjust active_worst_quality level based on buffer level.
944
0
static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
945
  // Adjust active_worst_quality: If buffer is above the optimal/target level,
946
  // bring active_worst_quality down depending on fullness of buffer.
947
  // If buffer is below the optimal level, let the active_worst_quality go from
948
  // ambient Q (at buffer = optimal level) to worst_quality level
949
  // (at buffer = critical level).
950
0
  const VP9_COMMON *const cm = &cpi->common;
951
0
  const RATE_CONTROL *rc = &cpi->rc;
952
  // Buffer level below which we push active_worst to worst_quality.
953
0
  int64_t critical_level = rc->optimal_buffer_level >> 3;
954
0
  int64_t buff_lvl_step = 0;
955
0
  int adjustment = 0;
956
0
  int active_worst_quality;
957
0
  int ambient_qp;
958
0
  unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers;
959
0
  if (frame_is_intra_only(cm) || rc->reset_high_source_sad || rc->force_max_q)
960
0
    return rc->worst_quality;
961
  // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
962
  // for the first few frames following key frame. These are both initialized
963
  // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
964
  // So for first few frames following key, the qp of that key frame is weighted
965
  // into the active_worst_quality setting.
966
0
  ambient_qp = (cm->current_video_frame < num_frames_weight_key)
967
0
                   ? VPXMIN(rc->avg_frame_qindex[INTER_FRAME],
968
0
                            rc->avg_frame_qindex[KEY_FRAME])
969
0
                   : rc->avg_frame_qindex[INTER_FRAME];
970
0
  active_worst_quality = VPXMIN(rc->worst_quality, (ambient_qp * 5) >> 2);
971
  // For SVC if the current base spatial layer was key frame, use the QP from
972
  // that base layer for ambient_qp.
973
0
  if (cpi->use_svc && cpi->svc.spatial_layer_id > 0) {
974
0
    int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id,
975
0
                                 cpi->svc.number_temporal_layers);
976
0
    const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
977
0
    if (lc->is_key_frame) {
978
0
      const RATE_CONTROL *lrc = &lc->rc;
979
0
      ambient_qp = VPXMIN(ambient_qp, lrc->last_q[KEY_FRAME]);
980
0
      active_worst_quality = VPXMIN(rc->worst_quality, (ambient_qp * 9) >> 3);
981
0
    }
982
0
  }
983
0
  if (rc->buffer_level > rc->optimal_buffer_level) {
984
    // Adjust down.
985
    // Maximum limit for down adjustment ~30%; make it lower for screen content.
986
0
    int max_adjustment_down = active_worst_quality / 3;
987
0
    if (cpi->oxcf.content == VP9E_CONTENT_SCREEN)
988
0
      max_adjustment_down = active_worst_quality >> 3;
989
0
    if (max_adjustment_down) {
990
0
      buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) /
991
0
                       max_adjustment_down);
992
0
      if (buff_lvl_step)
993
0
        adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
994
0
                           buff_lvl_step);
995
0
      active_worst_quality -= adjustment;
996
0
    }
997
0
  } else if (rc->buffer_level > critical_level) {
998
    // Adjust up from ambient Q.
999
0
    if (critical_level) {
1000
0
      buff_lvl_step = (rc->optimal_buffer_level - critical_level);
1001
0
      if (buff_lvl_step) {
1002
0
        adjustment = (int)((rc->worst_quality - ambient_qp) *
1003
0
                           (rc->optimal_buffer_level - rc->buffer_level) /
1004
0
                           buff_lvl_step);
1005
0
      }
1006
0
      active_worst_quality = ambient_qp + adjustment;
1007
0
    }
1008
0
  } else {
1009
    // Set to worst_quality if buffer is below critical level.
1010
0
    active_worst_quality = rc->worst_quality;
1011
0
  }
1012
0
  return active_worst_quality;
1013
0
}
1014
1015
static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi,
1016
                                             int *bottom_index,
1017
0
                                             int *top_index) {
1018
0
  const VP9_COMMON *const cm = &cpi->common;
1019
0
  const RATE_CONTROL *const rc = &cpi->rc;
1020
0
  int active_best_quality;
1021
0
  int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
1022
0
  int q;
1023
0
  int *rtc_minq;
1024
0
  ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq);
1025
1026
0
  if (frame_is_intra_only(cm)) {
1027
0
    active_best_quality = rc->best_quality;
1028
    // Handle the special case for key frames forced when we have reached
1029
    // the maximum key frame interval. Here force the Q to a range
1030
    // based on the ambient Q to reduce the risk of popping.
1031
0
    if (rc->this_key_frame_forced) {
1032
0
      int qindex = rc->last_boosted_qindex;
1033
0
      double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1034
0
      int delta_qindex = vp9_compute_qdelta(
1035
0
          rc, last_boosted_q, (last_boosted_q * 0.75), cm->bit_depth);
1036
0
      active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1037
0
    } else if (cm->current_video_frame > 0) {
1038
      // not first frame of one pass and kf_boost is set
1039
0
      double q_adj_factor = 1.0;
1040
0
      double q_val;
1041
1042
0
      active_best_quality = get_kf_active_quality(
1043
0
          rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
1044
1045
      // Allow somewhat lower kf minq with small image formats.
1046
0
      if ((cm->width * cm->height) <= (352 * 288)) {
1047
0
        q_adj_factor -= 0.25;
1048
0
      }
1049
1050
      // Convert the adjustment factor to a qindex delta
1051
      // on active_best_quality.
1052
0
      q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
1053
0
      active_best_quality +=
1054
0
          vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
1055
0
    }
1056
0
  } else if (!rc->is_src_frame_alt_ref && !cpi->use_svc &&
1057
0
             cpi->oxcf.gf_cbr_boost_pct &&
1058
0
             (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
1059
    // Use the lower of active_worst_quality and recent
1060
    // average Q as basis for GF/ARF best Q limit unless last frame was
1061
    // a key frame.
1062
0
    if (rc->frames_since_key > 1 &&
1063
0
        rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
1064
0
      q = rc->avg_frame_qindex[INTER_FRAME];
1065
0
    } else {
1066
0
      q = active_worst_quality;
1067
0
    }
1068
0
    active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1069
0
  } else {
1070
    // Use the lower of active_worst_quality and recent/average Q.
1071
0
    if (cm->current_video_frame > 1) {
1072
0
      if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
1073
0
        active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
1074
0
      else
1075
0
        active_best_quality = rtc_minq[active_worst_quality];
1076
0
    } else {
1077
0
      if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
1078
0
        active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
1079
0
      else
1080
0
        active_best_quality = rtc_minq[active_worst_quality];
1081
0
    }
1082
0
  }
1083
1084
  // Clip the active best and worst quality values to limits
1085
0
  active_best_quality =
1086
0
      clamp(active_best_quality, rc->best_quality, rc->worst_quality);
1087
0
  active_worst_quality =
1088
0
      clamp(active_worst_quality, active_best_quality, rc->worst_quality);
1089
1090
0
  *top_index = active_worst_quality;
1091
0
  *bottom_index = active_best_quality;
1092
1093
  // Special case code to try and match quality with forced key frames
1094
0
  if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
1095
0
    q = rc->last_boosted_qindex;
1096
0
  } else {
1097
0
    q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
1098
0
                          active_worst_quality);
1099
0
    if (q > *top_index) {
1100
      // Special case when we are targeting the max allowed rate
1101
0
      if (rc->this_frame_target >= rc->max_frame_bandwidth)
1102
0
        *top_index = q;
1103
0
      else
1104
0
        q = *top_index;
1105
0
    }
1106
0
  }
1107
1108
0
  assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
1109
0
  assert(*bottom_index <= rc->worst_quality &&
1110
0
         *bottom_index >= rc->best_quality);
1111
0
  assert(q <= rc->worst_quality && q >= rc->best_quality);
1112
0
  return q;
1113
0
}
1114
1115
static int get_active_cq_level_one_pass(const RATE_CONTROL *rc,
1116
42.2k
                                        const VP9EncoderConfig *const oxcf) {
1117
42.2k
  static const double cq_adjust_threshold = 0.1;
1118
42.2k
  int active_cq_level = oxcf->cq_level;
1119
42.2k
  if (oxcf->rc_mode == VPX_CQ && rc->total_target_bits > 0) {
1120
0
    const double x = (double)rc->total_actual_bits / rc->total_target_bits;
1121
0
    if (x < cq_adjust_threshold) {
1122
0
      active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
1123
0
    }
1124
0
  }
1125
42.2k
  return active_cq_level;
1126
42.2k
}
1127
1128
0
#define SMOOTH_PCT_MIN 0.1
1129
0
#define SMOOTH_PCT_DIV 0.05
1130
static int get_active_cq_level_two_pass(const TWO_PASS *twopass,
1131
                                        const RATE_CONTROL *rc,
1132
0
                                        const VP9EncoderConfig *const oxcf) {
1133
0
  static const double cq_adjust_threshold = 0.1;
1134
0
  int active_cq_level = oxcf->cq_level;
1135
0
  if (oxcf->rc_mode == VPX_CQ) {
1136
0
    if (twopass->mb_smooth_pct > SMOOTH_PCT_MIN) {
1137
0
      active_cq_level -=
1138
0
          (int)((twopass->mb_smooth_pct - SMOOTH_PCT_MIN) / SMOOTH_PCT_DIV);
1139
0
      active_cq_level = VPXMAX(active_cq_level, 0);
1140
0
    }
1141
0
    if (rc->total_target_bits > 0) {
1142
0
      const double x = (double)rc->total_actual_bits / rc->total_target_bits;
1143
0
      if (x < cq_adjust_threshold) {
1144
0
        active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
1145
0
      }
1146
0
    }
1147
0
  }
1148
0
  return active_cq_level;
1149
0
}
1150
1151
static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
1152
                                             int *bottom_index,
1153
42.2k
                                             int *top_index) {
1154
42.2k
  const VP9_COMMON *const cm = &cpi->common;
1155
42.2k
  const RATE_CONTROL *const rc = &cpi->rc;
1156
42.2k
  const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1157
42.2k
  const int cq_level = get_active_cq_level_one_pass(rc, oxcf);
1158
42.2k
  int active_best_quality;
1159
42.2k
  int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
1160
42.2k
  int q;
1161
42.2k
  int *inter_minq;
1162
42.2k
  ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
1163
1164
42.2k
  if (frame_is_intra_only(cm)) {
1165
7.75k
    if (oxcf->rc_mode == VPX_Q) {
1166
1.79k
      int qindex = cq_level;
1167
1.79k
      double qstart = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1168
1.79k
      int delta_qindex =
1169
1.79k
          vp9_compute_qdelta(rc, qstart, qstart * 0.25, cm->bit_depth);
1170
1.79k
      active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1171
5.95k
    } else if (rc->this_key_frame_forced) {
1172
      // Handle the special case for key frames forced when we have reached
1173
      // the maximum key frame interval. Here force the Q to a range
1174
      // based on the ambient Q to reduce the risk of popping.
1175
1.16k
      int qindex = rc->last_boosted_qindex;
1176
1.16k
      double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1177
1.16k
      int delta_qindex = vp9_compute_qdelta(
1178
1.16k
          rc, last_boosted_q, last_boosted_q * 0.75, cm->bit_depth);
1179
1.16k
      active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1180
4.78k
    } else {
1181
      // not first frame of one pass and kf_boost is set
1182
4.78k
      double q_adj_factor = 1.0;
1183
4.78k
      double q_val;
1184
1185
4.78k
      active_best_quality = get_kf_active_quality(
1186
4.78k
          rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
1187
1188
      // Allow somewhat lower kf minq with small image formats.
1189
4.78k
      if ((cm->width * cm->height) <= (352 * 288)) {
1190
4.66k
        q_adj_factor -= 0.25;
1191
4.66k
      }
1192
1193
      // Convert the adjustment factor to a qindex delta
1194
      // on active_best_quality.
1195
4.78k
      q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
1196
4.78k
      active_best_quality +=
1197
4.78k
          vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
1198
4.78k
    }
1199
34.5k
  } else if (!rc->is_src_frame_alt_ref &&
1200
34.5k
             (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
1201
    // Use the lower of active_worst_quality and recent
1202
    // average Q as basis for GF/ARF best Q limit unless last frame was
1203
    // a key frame.
1204
2.39k
    if (rc->frames_since_key > 1) {
1205
2.39k
      if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
1206
519
        q = rc->avg_frame_qindex[INTER_FRAME];
1207
1.87k
      } else {
1208
1.87k
        q = active_worst_quality;
1209
1.87k
      }
1210
2.39k
    } else {
1211
0
      q = rc->avg_frame_qindex[KEY_FRAME];
1212
0
    }
1213
    // For constrained quality don't allow Q less than the cq level
1214
2.39k
    if (oxcf->rc_mode == VPX_CQ) {
1215
0
      if (q < cq_level) q = cq_level;
1216
1217
0
      active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1218
1219
      // Constrained quality use slightly lower active best.
1220
0
      active_best_quality = active_best_quality * 15 / 16;
1221
1222
2.39k
    } else if (oxcf->rc_mode == VPX_Q) {
1223
33
      int qindex = cq_level;
1224
33
      double qstart = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1225
33
      int delta_qindex;
1226
33
      if (cpi->refresh_alt_ref_frame)
1227
0
        delta_qindex =
1228
0
            vp9_compute_qdelta(rc, qstart, qstart * 0.40, cm->bit_depth);
1229
33
      else
1230
33
        delta_qindex =
1231
33
            vp9_compute_qdelta(rc, qstart, qstart * 0.50, cm->bit_depth);
1232
33
      active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1233
2.35k
    } else {
1234
2.35k
      active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1235
2.35k
    }
1236
32.1k
  } else {
1237
32.1k
    if (oxcf->rc_mode == VPX_Q) {
1238
410
      int qindex = cq_level;
1239
410
      double qstart = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1240
410
      double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0,
1241
410
                                               0.70, 1.0, 0.85, 1.0 };
1242
410
      int delta_qindex = vp9_compute_qdelta(
1243
410
          rc, qstart,
1244
410
          qstart * delta_rate[cm->current_video_frame % FIXED_GF_INTERVAL],
1245
410
          cm->bit_depth);
1246
410
      active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1247
31.7k
    } else {
1248
      // Use the min of the average Q and active_worst_quality as basis for
1249
      // active_best.
1250
31.7k
      if (cm->current_video_frame > 1) {
1251
29.9k
        q = VPXMIN(rc->avg_frame_qindex[INTER_FRAME], active_worst_quality);
1252
29.9k
        active_best_quality = inter_minq[q];
1253
29.9k
      } else {
1254
1.78k
        active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
1255
1.78k
      }
1256
      // For the constrained quality mode we don't want
1257
      // q to fall below the cq level.
1258
31.7k
      if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) {
1259
0
        active_best_quality = cq_level;
1260
0
      }
1261
31.7k
    }
1262
32.1k
  }
1263
1264
  // Clip the active best and worst quality values to limits
1265
42.2k
  active_best_quality =
1266
42.2k
      clamp(active_best_quality, rc->best_quality, rc->worst_quality);
1267
42.2k
  active_worst_quality =
1268
42.2k
      clamp(active_worst_quality, active_best_quality, rc->worst_quality);
1269
1270
42.2k
  *top_index = active_worst_quality;
1271
42.2k
  *bottom_index = active_best_quality;
1272
1273
42.2k
#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
1274
42.2k
  {
1275
42.2k
    int qdelta = 0;
1276
42.2k
    vpx_clear_system_state();
1277
1278
    // Limit Q range for the adaptive loop.
1279
42.2k
    if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
1280
42.2k
        !(cm->current_video_frame == 0)) {
1281
3.70k
      qdelta = vp9_compute_qdelta_by_rate(
1282
3.70k
          &cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth);
1283
38.5k
    } else if (!rc->is_src_frame_alt_ref &&
1284
38.5k
               (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
1285
6.43k
      qdelta = vp9_compute_qdelta_by_rate(
1286
6.43k
          &cpi->rc, cm->frame_type, active_worst_quality, 1.75, cm->bit_depth);
1287
6.43k
    }
1288
42.2k
    if (rc->high_source_sad && cpi->sf.use_altref_onepass) qdelta = 0;
1289
42.2k
    *top_index = active_worst_quality + qdelta;
1290
42.2k
    *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
1291
42.2k
  }
1292
42.2k
#endif
1293
1294
42.2k
  if (oxcf->rc_mode == VPX_Q) {
1295
2.24k
    q = active_best_quality;
1296
    // Special case code to try and match quality with forced key frames
1297
40.0k
  } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
1298
1.16k
    q = rc->last_boosted_qindex;
1299
38.8k
  } else {
1300
38.8k
    q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
1301
38.8k
                          active_worst_quality);
1302
38.8k
    if (q > *top_index) {
1303
      // Special case when we are targeting the max allowed rate
1304
1.91k
      if (rc->this_frame_target >= rc->max_frame_bandwidth)
1305
217
        *top_index = q;
1306
1.70k
      else
1307
1.70k
        q = *top_index;
1308
1.91k
    }
1309
38.8k
  }
1310
1311
42.2k
  assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
1312
42.2k
  assert(*bottom_index <= rc->worst_quality &&
1313
42.2k
         *bottom_index >= rc->best_quality);
1314
42.2k
  assert(q <= rc->worst_quality && q >= rc->best_quality);
1315
42.2k
  return q;
1316
42.2k
}
1317
1318
0
int vp9_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) {
1319
0
  static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
1320
0
    1.00,  // INTER_NORMAL
1321
0
    1.00,  // INTER_HIGH
1322
0
    1.50,  // GF_ARF_LOW
1323
0
    1.75,  // GF_ARF_STD
1324
0
    2.00,  // KF_STD
1325
0
  };
1326
0
  const VP9_COMMON *const cm = &cpi->common;
1327
1328
0
  int qdelta = vp9_compute_qdelta_by_rate(
1329
0
      &cpi->rc, cm->frame_type, q, rate_factor_deltas[rf_level], cm->bit_depth);
1330
0
  return qdelta;
1331
0
}
1332
1333
0
#define STATIC_MOTION_THRESH 95
1334
1335
static void pick_kf_q_bound_two_pass(const VP9_COMP *cpi, int *bottom_index,
1336
0
                                     int *top_index) {
1337
0
  const VP9_COMMON *const cm = &cpi->common;
1338
0
  const RATE_CONTROL *const rc = &cpi->rc;
1339
0
  int active_best_quality;
1340
0
  int active_worst_quality = cpi->twopass.active_worst_quality;
1341
1342
0
  if (rc->this_key_frame_forced) {
1343
    // Handle the special case for key frames forced when we have reached
1344
    // the maximum key frame interval. Here force the Q to a range
1345
    // based on the ambient Q to reduce the risk of popping.
1346
0
    double last_boosted_q;
1347
0
    int delta_qindex;
1348
0
    int qindex;
1349
1350
0
    if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1351
0
      qindex = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1352
0
      active_best_quality = qindex;
1353
0
      last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1354
0
      delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
1355
0
                                        last_boosted_q * 1.25, cm->bit_depth);
1356
0
      active_worst_quality =
1357
0
          VPXMIN(qindex + delta_qindex, active_worst_quality);
1358
0
    } else {
1359
0
      qindex = rc->last_boosted_qindex;
1360
0
      last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1361
0
      delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
1362
0
                                        last_boosted_q * 0.75, cm->bit_depth);
1363
0
      active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1364
0
    }
1365
0
  } else {
1366
    // Not forced keyframe.
1367
0
    double q_adj_factor = 1.0;
1368
0
    double q_val;
1369
    // Baseline value derived from cpi->active_worst_quality and kf boost.
1370
0
    active_best_quality =
1371
0
        get_kf_active_quality(rc, active_worst_quality, cm->bit_depth);
1372
0
    if (cpi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) {
1373
0
      active_best_quality /= 4;
1374
0
    }
1375
1376
    // Don't allow the active min to be lossless (q0) unlesss the max q
1377
    // already indicates lossless.
1378
0
    active_best_quality =
1379
0
        VPXMIN(active_worst_quality, VPXMAX(1, active_best_quality));
1380
1381
    // Allow somewhat lower kf minq with small image formats.
1382
0
    if ((cm->width * cm->height) <= (352 * 288)) {
1383
0
      q_adj_factor -= 0.25;
1384
0
    }
1385
1386
    // Make a further adjustment based on the kf zero motion measure.
1387
0
    q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
1388
1389
    // Convert the adjustment factor to a qindex delta
1390
    // on active_best_quality.
1391
0
    q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
1392
0
    active_best_quality +=
1393
0
        vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
1394
0
  }
1395
0
  *top_index = active_worst_quality;
1396
0
  *bottom_index = active_best_quality;
1397
0
}
1398
1399
static int rc_constant_q(const VP9_COMP *cpi, int *bottom_index, int *top_index,
1400
0
                         int gf_group_index) {
1401
0
  const VP9_COMMON *const cm = &cpi->common;
1402
0
  const RATE_CONTROL *const rc = &cpi->rc;
1403
0
  const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1404
0
  const GF_GROUP *gf_group = &cpi->twopass.gf_group;
1405
0
  const int is_intra_frame = frame_is_intra_only(cm);
1406
1407
0
  const int cq_level = get_active_cq_level_two_pass(&cpi->twopass, rc, oxcf);
1408
1409
0
  int q = cq_level;
1410
0
  int active_best_quality = cq_level;
1411
0
  int active_worst_quality = cq_level;
1412
1413
  // Key frame qp decision
1414
0
  if (is_intra_frame && rc->frames_to_key > 1)
1415
0
    pick_kf_q_bound_two_pass(cpi, &active_best_quality, &active_worst_quality);
1416
1417
  // ARF / GF qp decision
1418
0
  if (!is_intra_frame && !rc->is_src_frame_alt_ref &&
1419
0
      cpi->refresh_alt_ref_frame) {
1420
0
    active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1421
1422
    // Modify best quality for second level arfs. For mode VPX_Q this
1423
    // becomes the baseline frame q.
1424
0
    if (gf_group->rf_level[gf_group_index] == GF_ARF_LOW) {
1425
0
      const int layer_depth = gf_group->layer_depth[gf_group_index];
1426
      // linearly fit the frame q depending on the layer depth index from
1427
      // the base layer ARF.
1428
0
      active_best_quality = ((layer_depth - 1) * cq_level +
1429
0
                             active_best_quality + layer_depth / 2) /
1430
0
                            layer_depth;
1431
0
    }
1432
0
  }
1433
1434
0
  q = active_best_quality;
1435
0
  *top_index = active_worst_quality;
1436
0
  *bottom_index = active_best_quality;
1437
0
  return q;
1438
0
}
1439
1440
int vp9_rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi, int *bottom_index,
1441
0
                                      int *top_index, int gf_group_index) {
1442
0
  const VP9_COMMON *const cm = &cpi->common;
1443
0
  const RATE_CONTROL *const rc = &cpi->rc;
1444
0
  const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1445
0
  const GF_GROUP *gf_group = &cpi->twopass.gf_group;
1446
0
  const int cq_level = get_active_cq_level_two_pass(&cpi->twopass, rc, oxcf);
1447
0
  int active_best_quality;
1448
0
  int active_worst_quality = cpi->twopass.active_worst_quality;
1449
0
  int q;
1450
0
  int *inter_minq;
1451
0
  int arf_active_best_quality_hl;
1452
0
  int *arfgf_high_motion_minq, *arfgf_low_motion_minq;
1453
0
  const int boost_frame =
1454
0
      !rc->is_src_frame_alt_ref &&
1455
0
      (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame);
1456
1457
0
  ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
1458
1459
0
  if (oxcf->rc_mode == VPX_Q)
1460
0
    return rc_constant_q(cpi, bottom_index, top_index, gf_group_index);
1461
1462
0
  if (frame_is_intra_only(cm)) {
1463
0
    pick_kf_q_bound_two_pass(cpi, &active_best_quality, &active_worst_quality);
1464
0
  } else if (boost_frame) {
1465
    // Use the lower of active_worst_quality and recent
1466
    // average Q as basis for GF/ARF best Q limit unless last frame was
1467
    // a key frame.
1468
0
    if (rc->frames_since_key > 1 &&
1469
0
        rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
1470
0
      q = rc->avg_frame_qindex[INTER_FRAME];
1471
0
    } else {
1472
0
      q = active_worst_quality;
1473
0
    }
1474
    // For constrained quality don't allow Q less than the cq level
1475
0
    if (oxcf->rc_mode == VPX_CQ) {
1476
0
      if (q < cq_level) q = cq_level;
1477
0
    }
1478
0
    active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1479
0
    arf_active_best_quality_hl = active_best_quality;
1480
1481
0
    if (rc->arf_increase_active_best_quality == 1) {
1482
0
      ASSIGN_MINQ_TABLE(cm->bit_depth, arfgf_high_motion_minq);
1483
0
      arf_active_best_quality_hl = arfgf_high_motion_minq[q];
1484
0
    } else if (rc->arf_increase_active_best_quality == -1) {
1485
0
      ASSIGN_MINQ_TABLE(cm->bit_depth, arfgf_low_motion_minq);
1486
0
      arf_active_best_quality_hl = arfgf_low_motion_minq[q];
1487
0
    }
1488
0
    active_best_quality =
1489
0
        (int)((double)active_best_quality *
1490
0
                  rc->arf_active_best_quality_adjustment_factor +
1491
0
              (double)arf_active_best_quality_hl *
1492
0
                  (1.0 - rc->arf_active_best_quality_adjustment_factor));
1493
1494
    // Modify best quality for second level arfs. For mode VPX_Q this
1495
    // becomes the baseline frame q.
1496
0
    if (gf_group->rf_level[gf_group_index] == GF_ARF_LOW) {
1497
0
      const int layer_depth = gf_group->layer_depth[gf_group_index];
1498
      // linearly fit the frame q depending on the layer depth index from
1499
      // the base layer ARF.
1500
0
      active_best_quality =
1501
0
          ((layer_depth - 1) * q + active_best_quality + layer_depth / 2) /
1502
0
          layer_depth;
1503
0
    }
1504
0
  } else {
1505
0
    active_best_quality = inter_minq[active_worst_quality];
1506
1507
    // For the constrained quality mode we don't want
1508
    // q to fall below the cq level.
1509
0
    if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) {
1510
0
      active_best_quality = cq_level;
1511
0
    }
1512
0
  }
1513
1514
  // Extension to max or min Q if undershoot or overshoot is outside
1515
  // the permitted range.
1516
0
  if (frame_is_intra_only(cm) || boost_frame) {
1517
0
    const int layer_depth = gf_group->layer_depth[gf_group_index];
1518
0
    active_best_quality -=
1519
0
        (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
1520
0
    active_worst_quality += (cpi->twopass.extend_maxq / 2);
1521
1522
0
    if (gf_group->rf_level[gf_group_index] == GF_ARF_LOW) {
1523
0
      assert(layer_depth > 1);
1524
0
      active_best_quality =
1525
0
          VPXMAX(active_best_quality,
1526
0
                 cpi->twopass.last_qindex_of_arf_layer[layer_depth - 1]);
1527
0
    }
1528
0
  } else {
1529
0
    const int max_layer_depth = gf_group->max_layer_depth;
1530
0
    assert(max_layer_depth > 0);
1531
1532
0
    active_best_quality -=
1533
0
        (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
1534
0
    active_worst_quality += cpi->twopass.extend_maxq;
1535
1536
    // For normal frames do not allow an active minq lower than the q used for
1537
    // the last boosted frame.
1538
0
    active_best_quality =
1539
0
        VPXMAX(active_best_quality,
1540
0
               cpi->twopass.last_qindex_of_arf_layer[max_layer_depth - 1]);
1541
0
  }
1542
1543
0
#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
1544
0
  vpx_clear_system_state();
1545
  // Static forced key frames Q restrictions dealt with elsewhere.
1546
0
  if (!frame_is_intra_only(cm) || !rc->this_key_frame_forced ||
1547
0
      cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH) {
1548
0
    int qdelta = vp9_frame_type_qdelta(cpi, gf_group->rf_level[gf_group_index],
1549
0
                                       active_worst_quality);
1550
0
    active_worst_quality =
1551
0
        VPXMAX(active_worst_quality + qdelta, active_best_quality);
1552
0
  }
1553
0
#endif
1554
1555
  // Modify active_best_quality for downscaled normal frames.
1556
0
  if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) {
1557
0
    int qdelta = vp9_compute_qdelta_by_rate(
1558
0
        rc, cm->frame_type, active_best_quality, 2.0, cm->bit_depth);
1559
0
    active_best_quality =
1560
0
        VPXMAX(active_best_quality + qdelta, rc->best_quality);
1561
0
  }
1562
1563
0
  active_best_quality =
1564
0
      clamp(active_best_quality, rc->best_quality, rc->worst_quality);
1565
0
  active_worst_quality =
1566
0
      clamp(active_worst_quality, active_best_quality, rc->worst_quality);
1567
1568
0
  if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
1569
    // If static since last kf use better of last boosted and last kf q.
1570
0
    if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1571
0
      q = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1572
0
    } else {
1573
0
      q = rc->last_boosted_qindex;
1574
0
    }
1575
0
  } else if (frame_is_intra_only(cm) && !rc->this_key_frame_forced) {
1576
0
    q = active_best_quality;
1577
0
  } else {
1578
0
    q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
1579
0
                          active_worst_quality);
1580
0
    if (q > active_worst_quality) {
1581
      // Special case when we are targeting the max allowed rate.
1582
0
      if (rc->this_frame_target >= rc->max_frame_bandwidth)
1583
0
        active_worst_quality = q;
1584
0
      else
1585
0
        q = active_worst_quality;
1586
0
    }
1587
0
  }
1588
1589
0
  *top_index = active_worst_quality;
1590
0
  *bottom_index = active_best_quality;
1591
1592
0
  assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
1593
0
  assert(*bottom_index <= rc->worst_quality &&
1594
0
         *bottom_index >= rc->best_quality);
1595
0
  assert(q <= rc->worst_quality && q >= rc->best_quality);
1596
0
  return q;
1597
0
}
1598
1599
int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi, int *bottom_index,
1600
42.2k
                             int *top_index) {
1601
42.2k
  int q;
1602
42.2k
  const int gf_group_index = cpi->twopass.gf_group.index;
1603
42.2k
  if (cpi->oxcf.pass == 0) {
1604
42.2k
    if (cpi->oxcf.rc_mode == VPX_CBR)
1605
0
      q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
1606
42.2k
    else
1607
42.2k
      q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
1608
42.2k
  } else {
1609
0
    q = vp9_rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index,
1610
0
                                          gf_group_index);
1611
0
  }
1612
42.2k
  if (cpi->sf.use_nonrd_pick_mode) {
1613
0
    if (cpi->sf.force_frame_boost == 1) q -= cpi->sf.max_delta_qindex;
1614
1615
0
    if (q < *bottom_index)
1616
0
      *bottom_index = q;
1617
0
    else if (q > *top_index)
1618
0
      *top_index = q;
1619
0
  }
1620
42.2k
  return q;
1621
42.2k
}
1622
1623
0
void vp9_configure_buffer_updates(VP9_COMP *cpi, int gf_group_index) {
1624
0
  VP9_COMMON *cm = &cpi->common;
1625
0
  TWO_PASS *const twopass = &cpi->twopass;
1626
1627
0
  cpi->rc.is_src_frame_alt_ref = 0;
1628
0
  cm->show_existing_frame = 0;
1629
0
  cpi->rc.show_arf_as_gld = 0;
1630
0
  switch (twopass->gf_group.update_type[gf_group_index]) {
1631
0
    case KF_UPDATE:
1632
0
      cpi->refresh_last_frame = 1;
1633
0
      cpi->refresh_golden_frame = 1;
1634
0
      cpi->refresh_alt_ref_frame = 1;
1635
0
      break;
1636
0
    case LF_UPDATE:
1637
0
      cpi->refresh_last_frame = 1;
1638
0
      cpi->refresh_golden_frame = 0;
1639
0
      cpi->refresh_alt_ref_frame = 0;
1640
0
      break;
1641
0
    case GF_UPDATE:
1642
0
      cpi->refresh_last_frame = 1;
1643
0
      cpi->refresh_golden_frame = 1;
1644
0
      cpi->refresh_alt_ref_frame = 0;
1645
0
      break;
1646
0
    case OVERLAY_UPDATE:
1647
0
      cpi->refresh_last_frame = 0;
1648
0
      cpi->refresh_golden_frame = 1;
1649
0
      cpi->refresh_alt_ref_frame = 0;
1650
0
      cpi->rc.is_src_frame_alt_ref = 1;
1651
0
      if (cpi->rc.preserve_arf_as_gld) {
1652
0
        cpi->rc.show_arf_as_gld = 1;
1653
0
        cpi->refresh_golden_frame = 0;
1654
0
        cm->show_existing_frame = 1;
1655
0
        cm->refresh_frame_context = 0;
1656
0
      }
1657
0
      break;
1658
0
    case MID_OVERLAY_UPDATE:
1659
0
      cpi->refresh_last_frame = 1;
1660
0
      cpi->refresh_golden_frame = 0;
1661
0
      cpi->refresh_alt_ref_frame = 0;
1662
0
      cpi->rc.is_src_frame_alt_ref = 1;
1663
0
      break;
1664
0
    case USE_BUF_FRAME:
1665
0
      cpi->refresh_last_frame = 0;
1666
0
      cpi->refresh_golden_frame = 0;
1667
0
      cpi->refresh_alt_ref_frame = 0;
1668
0
      cpi->rc.is_src_frame_alt_ref = 1;
1669
0
      cm->show_existing_frame = 1;
1670
0
      cm->refresh_frame_context = 0;
1671
0
      break;
1672
0
    default:
1673
0
      assert(twopass->gf_group.update_type[gf_group_index] == ARF_UPDATE);
1674
0
      cpi->refresh_last_frame = 0;
1675
0
      cpi->refresh_golden_frame = 0;
1676
0
      cpi->refresh_alt_ref_frame = 1;
1677
0
      break;
1678
0
  }
1679
0
}
1680
1681
void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi, int frame_target,
1682
                                      int *frame_under_shoot_limit,
1683
0
                                      int *frame_over_shoot_limit) {
1684
0
  if (cpi->oxcf.rc_mode == VPX_Q) {
1685
0
    *frame_under_shoot_limit = 0;
1686
0
    *frame_over_shoot_limit = INT_MAX;
1687
0
  } else {
1688
    // For very small rate targets where the fractional adjustment
1689
    // may be tiny make sure there is at least a minimum range.
1690
0
    const int tol_low =
1691
0
        (int)(((int64_t)cpi->sf.recode_tolerance_low * frame_target) / 100);
1692
0
    const int tol_high =
1693
0
        (int)(((int64_t)cpi->sf.recode_tolerance_high * frame_target) / 100);
1694
0
    *frame_under_shoot_limit = VPXMAX(frame_target - tol_low - 100, 0);
1695
0
    *frame_over_shoot_limit =
1696
0
        VPXMIN(frame_target + tol_high + 100, cpi->rc.max_frame_bandwidth);
1697
0
  }
1698
0
}
1699
1700
43.5k
void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
1701
43.5k
  const VP9_COMMON *const cm = &cpi->common;
1702
43.5k
  RATE_CONTROL *const rc = &cpi->rc;
1703
1704
43.5k
  rc->this_frame_target = target;
1705
1706
  // Modify frame size target when down-scaling.
1707
43.5k
  if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
1708
43.5k
      rc->frame_size_selector != UNSCALED) {
1709
0
    rc->this_frame_target = (int)(rc->this_frame_target *
1710
0
                                  rate_thresh_mult[rc->frame_size_selector]);
1711
0
  }
1712
1713
#if CONFIG_RATE_CTRL
1714
  if (cpi->oxcf.use_simple_encode_api) {
1715
    if (cpi->encode_command.use_external_target_frame_bits) {
1716
      rc->this_frame_target = cpi->encode_command.target_frame_bits;
1717
    }
1718
  }
1719
#endif  // CONFIG_RATE_CTRL
1720
1721
  // Target rate per SB64 (including partial SB64s.
1722
43.5k
  const int64_t sb64_target_rate =
1723
43.5k
      ((int64_t)rc->this_frame_target * 64 * 64) / (cm->width * cm->height);
1724
43.5k
  rc->sb64_target_rate = (int)VPXMIN(sb64_target_rate, INT_MAX);
1725
43.5k
}
1726
1727
0
static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
1728
  // this frame refreshes means next frames don't unless specified by user
1729
0
  RATE_CONTROL *const rc = &cpi->rc;
1730
0
  rc->frames_since_golden = 0;
1731
1732
  // Mark the alt ref as done (setting to 0 means no further alt refs pending).
1733
0
  rc->source_alt_ref_pending = 0;
1734
1735
  // Set the alternate reference frame active flag
1736
0
  rc->source_alt_ref_active = 1;
1737
0
}
1738
1739
42.2k
static void update_golden_frame_stats(VP9_COMP *cpi) {
1740
42.2k
  RATE_CONTROL *const rc = &cpi->rc;
1741
1742
  // Update the Golden frame usage counts.
1743
42.2k
  if (cpi->refresh_golden_frame) {
1744
    // this frame refreshes means next frames don't unless specified by user
1745
10.0k
    rc->frames_since_golden = 0;
1746
1747
    // If we are not using alt ref in the up and coming group clear the arf
1748
    // active flag. In multi arf group case, if the index is not 0 then
1749
    // we are overlaying a mid group arf so should not reset the flag.
1750
10.0k
    if (cpi->oxcf.pass == 2) {
1751
0
      if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
1752
0
        rc->source_alt_ref_active = 0;
1753
10.0k
    } else if (!rc->source_alt_ref_pending) {
1754
10.0k
      rc->source_alt_ref_active = 0;
1755
10.0k
    }
1756
1757
    // Decrement count down till next gf
1758
10.0k
    if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
1759
1760
32.1k
  } else if (!cpi->refresh_alt_ref_frame) {
1761
    // Decrement count down till next gf
1762
32.1k
    if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
1763
1764
32.1k
    rc->frames_since_golden++;
1765
1766
32.1k
    if (rc->show_arf_as_gld) {
1767
0
      rc->frames_since_golden = 0;
1768
      // If we are not using alt ref in the up and coming group clear the arf
1769
      // active flag. In multi arf group case, if the index is not 0 then
1770
      // we are overlaying a mid group arf so should not reset the flag.
1771
0
      if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
1772
0
        rc->source_alt_ref_active = 0;
1773
0
    }
1774
32.1k
  }
1775
42.2k
}
1776
1777
0
static void update_altref_usage(VP9_COMP *const cpi) {
1778
0
  VP9_COMMON *const cm = &cpi->common;
1779
0
  int sum_ref_frame_usage = 0;
1780
0
  int arf_frame_usage = 0;
1781
0
  int mi_row, mi_col;
1782
0
  if (cpi->rc.alt_ref_gf_group && !cpi->rc.is_src_frame_alt_ref &&
1783
0
      !cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame)
1784
0
    for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8) {
1785
0
      for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 8) {
1786
0
        int sboffset = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
1787
0
        sum_ref_frame_usage += cpi->count_arf_frame_usage[sboffset] +
1788
0
                               cpi->count_lastgolden_frame_usage[sboffset];
1789
0
        arf_frame_usage += cpi->count_arf_frame_usage[sboffset];
1790
0
      }
1791
0
    }
1792
0
  if (sum_ref_frame_usage > 0) {
1793
0
    double altref_count = 100.0 * arf_frame_usage / sum_ref_frame_usage;
1794
0
    cpi->rc.perc_arf_usage =
1795
0
        0.75 * cpi->rc.perc_arf_usage + 0.25 * altref_count;
1796
0
  }
1797
0
}
1798
1799
34.4k
void vp9_compute_frame_low_motion(VP9_COMP *const cpi) {
1800
34.4k
  VP9_COMMON *const cm = &cpi->common;
1801
34.4k
  SVC *const svc = &cpi->svc;
1802
34.4k
  int mi_row, mi_col;
1803
34.4k
  MODE_INFO **mi = cm->mi_grid_visible;
1804
34.4k
  RATE_CONTROL *const rc = &cpi->rc;
1805
34.4k
  const int rows = cm->mi_rows, cols = cm->mi_cols;
1806
34.4k
  int cnt_zeromv = 0;
1807
281k
  for (mi_row = 0; mi_row < rows; mi_row++) {
1808
2.35M
    for (mi_col = 0; mi_col < cols; mi_col++) {
1809
2.11M
      if (mi[0]->ref_frame[0] == LAST_FRAME &&
1810
2.11M
          abs(mi[0]->mv[0].as_mv.row) < 16 && abs(mi[0]->mv[0].as_mv.col) < 16)
1811
115k
        cnt_zeromv++;
1812
2.11M
      mi++;
1813
2.11M
    }
1814
247k
    mi += 8;
1815
247k
  }
1816
34.4k
  cnt_zeromv = 100 * cnt_zeromv / (rows * cols);
1817
34.4k
  rc->avg_frame_low_motion = (3 * rc->avg_frame_low_motion + cnt_zeromv) >> 2;
1818
1819
  // For SVC: set avg_frame_low_motion (only computed on top spatial layer)
1820
  // to all lower spatial layers.
1821
34.4k
  if (cpi->use_svc && svc->spatial_layer_id == svc->number_spatial_layers - 1) {
1822
0
    int i;
1823
0
    for (i = 0; i < svc->number_spatial_layers - 1; ++i) {
1824
0
      const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
1825
0
                                         svc->number_temporal_layers);
1826
0
      LAYER_CONTEXT *const lc = &svc->layer_context[layer];
1827
0
      RATE_CONTROL *const lrc = &lc->rc;
1828
0
      lrc->avg_frame_low_motion = rc->avg_frame_low_motion;
1829
0
    }
1830
0
  }
1831
34.4k
}
1832
1833
42.2k
void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
1834
42.2k
  const VP9_COMMON *const cm = &cpi->common;
1835
42.2k
  const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1836
42.2k
  RATE_CONTROL *const rc = &cpi->rc;
1837
42.2k
  SVC *const svc = &cpi->svc;
1838
42.2k
  const int qindex = cm->base_qindex;
1839
42.2k
  const GF_GROUP *gf_group = &cpi->twopass.gf_group;
1840
42.2k
  const int gf_group_index = cpi->twopass.gf_group.index;
1841
42.2k
  const int layer_depth = gf_group->layer_depth[gf_group_index];
1842
1843
  // Update rate control heuristics
1844
42.2k
  rc->projected_frame_size = (int)(bytes_used << 3);
1845
1846
  // Post encode loop adjustment of Q prediction.
1847
42.2k
  vp9_rc_update_rate_correction_factors(cpi);
1848
1849
  // Keep a record of last Q and ambient average Q.
1850
42.2k
  if (frame_is_intra_only(cm)) {
1851
7.70k
    rc->last_q[KEY_FRAME] = qindex;
1852
7.70k
    rc->avg_frame_qindex[KEY_FRAME] =
1853
7.70k
        ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
1854
7.70k
    if (cpi->use_svc) {
1855
0
      int i;
1856
0
      for (i = 0; i < svc->number_temporal_layers; ++i) {
1857
0
        const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
1858
0
                                           svc->number_temporal_layers);
1859
0
        LAYER_CONTEXT *lc = &svc->layer_context[layer];
1860
0
        RATE_CONTROL *lrc = &lc->rc;
1861
0
        lrc->last_q[KEY_FRAME] = rc->last_q[KEY_FRAME];
1862
0
        lrc->avg_frame_qindex[KEY_FRAME] = rc->avg_frame_qindex[KEY_FRAME];
1863
0
      }
1864
0
    }
1865
34.4k
  } else {
1866
34.4k
    if ((cpi->use_svc) ||
1867
34.4k
        (!rc->is_src_frame_alt_ref &&
1868
34.4k
         !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
1869
32.1k
      rc->last_q[INTER_FRAME] = qindex;
1870
32.1k
      rc->avg_frame_qindex[INTER_FRAME] =
1871
32.1k
          ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
1872
32.1k
      rc->ni_frames++;
1873
32.1k
      rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1874
32.1k
      rc->avg_q = rc->tot_q / rc->ni_frames;
1875
      // Calculate the average Q for normal inter frames (not key or GFU
1876
      // frames).
1877
32.1k
      rc->ni_tot_qi += qindex;
1878
32.1k
      rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
1879
32.1k
    }
1880
34.4k
  }
1881
1882
42.2k
  if (cpi->use_svc) vp9_svc_adjust_avg_frame_qindex(cpi);
1883
1884
  // Keep record of last boosted (KF/KF/ARF) Q value.
1885
  // If the current frame is coded at a lower Q then we also update it.
1886
  // If all mbs in this group are skipped only update if the Q value is
1887
  // better than that already stored.
1888
  // This is used to help set quality in forced key frames to reduce popping
1889
42.2k
  if ((qindex < rc->last_boosted_qindex) || (cm->frame_type == KEY_FRAME) ||
1890
42.2k
      (!rc->constrained_gf_group &&
1891
33.1k
       (cpi->refresh_alt_ref_frame ||
1892
30.5k
        (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
1893
10.6k
    rc->last_boosted_qindex = qindex;
1894
10.6k
  }
1895
1896
42.2k
  if ((qindex < cpi->twopass.last_qindex_of_arf_layer[layer_depth]) ||
1897
42.2k
      (cm->frame_type == KEY_FRAME) ||
1898
42.2k
      (!rc->constrained_gf_group &&
1899
33.1k
       (cpi->refresh_alt_ref_frame ||
1900
30.5k
        (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
1901
10.6k
    cpi->twopass.last_qindex_of_arf_layer[layer_depth] = qindex;
1902
10.6k
  }
1903
1904
42.2k
  if (frame_is_intra_only(cm)) rc->last_kf_qindex = qindex;
1905
1906
42.2k
  update_buffer_level_postencode(cpi, rc->projected_frame_size);
1907
1908
  // Rolling monitors of whether we are over or underspending used to help
1909
  // regulate min and Max Q in two pass.
1910
42.2k
  if (!frame_is_intra_only(cm)) {
1911
34.4k
    rc->rolling_target_bits = (int)ROUND64_POWER_OF_TWO(
1912
34.4k
        (int64_t)rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
1913
34.4k
    rc->rolling_actual_bits = (int)ROUND64_POWER_OF_TWO(
1914
34.4k
        (int64_t)rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
1915
34.4k
    rc->long_rolling_target_bits = (int)ROUND64_POWER_OF_TWO(
1916
34.4k
        (int64_t)rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
1917
34.4k
    rc->long_rolling_actual_bits = (int)ROUND64_POWER_OF_TWO(
1918
34.4k
        (int64_t)rc->long_rolling_actual_bits * 31 + rc->projected_frame_size,
1919
34.4k
        5);
1920
34.4k
  }
1921
1922
  // Actual bits spent
1923
42.2k
  rc->total_actual_bits += rc->projected_frame_size;
1924
42.2k
  rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
1925
1926
42.2k
  rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
1927
1928
42.2k
  if (!cpi->use_svc) {
1929
42.2k
    if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
1930
42.2k
        (!frame_is_intra_only(cm)))
1931
      // Update the alternate reference frame stats as appropriate.
1932
0
      update_alt_ref_frame_stats(cpi);
1933
42.2k
    else
1934
      // Update the Golden frame stats as appropriate.
1935
42.2k
      update_golden_frame_stats(cpi);
1936
42.2k
  }
1937
1938
  // If second (long term) temporal reference is used for SVC,
1939
  // update the golden frame counter, only for base temporal layer.
1940
42.2k
  if (cpi->use_svc && svc->use_gf_temporal_ref_current_layer &&
1941
42.2k
      svc->temporal_layer_id == 0) {
1942
0
    int i = 0;
1943
0
    if (cpi->refresh_golden_frame)
1944
0
      rc->frames_since_golden = 0;
1945
0
    else
1946
0
      rc->frames_since_golden++;
1947
    // Decrement count down till next gf
1948
0
    if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
1949
    // Update the frames_since_golden for all upper temporal layers.
1950
0
    for (i = 1; i < svc->number_temporal_layers; ++i) {
1951
0
      const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
1952
0
                                         svc->number_temporal_layers);
1953
0
      LAYER_CONTEXT *const lc = &svc->layer_context[layer];
1954
0
      RATE_CONTROL *const lrc = &lc->rc;
1955
0
      lrc->frames_since_golden = rc->frames_since_golden;
1956
0
    }
1957
0
  }
1958
1959
42.2k
  if (frame_is_intra_only(cm)) rc->frames_since_key = 0;
1960
42.2k
  if (cm->show_frame) {
1961
42.2k
    rc->frames_since_key++;
1962
42.2k
    rc->frames_to_key--;
1963
42.2k
  }
1964
1965
  // Trigger the resizing of the next frame if it is scaled.
1966
42.2k
  if (oxcf->pass != 0) {
1967
0
    cpi->resize_pending =
1968
0
        rc->next_frame_size_selector != rc->frame_size_selector;
1969
0
    rc->frame_size_selector = rc->next_frame_size_selector;
1970
0
  }
1971
1972
42.2k
  if (oxcf->pass == 0) {
1973
42.2k
    if (!frame_is_intra_only(cm))
1974
34.4k
      if (cpi->sf.use_altref_onepass) update_altref_usage(cpi);
1975
42.2k
    cpi->rc.last_frame_is_src_altref = cpi->rc.is_src_frame_alt_ref;
1976
42.2k
  }
1977
1978
42.2k
  if (!frame_is_intra_only(cm)) rc->reset_high_source_sad = 0;
1979
1980
42.2k
  rc->last_avg_frame_bandwidth = rc->avg_frame_bandwidth;
1981
42.2k
  if (cpi->use_svc && svc->spatial_layer_id < svc->number_spatial_layers - 1)
1982
0
    svc->lower_layer_qindex = cm->base_qindex;
1983
42.2k
  cpi->deadline_mode_previous_frame = cpi->oxcf.mode;
1984
42.2k
}
1985
1986
0
void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
1987
0
  cpi->common.current_video_frame++;
1988
0
  cpi->rc.frames_since_key++;
1989
0
  cpi->rc.frames_to_key--;
1990
0
  cpi->rc.rc_2_frame = 0;
1991
0
  cpi->rc.rc_1_frame = 0;
1992
0
  cpi->rc.last_avg_frame_bandwidth = cpi->rc.avg_frame_bandwidth;
1993
0
  cpi->rc.last_q[INTER_FRAME] = cpi->common.base_qindex;
1994
  // For SVC on dropped frame when framedrop_mode != LAYER_DROP:
1995
  // in this mode the whole superframe may be dropped if only a single layer
1996
  // has buffer underflow (below threshold). Since this can then lead to
1997
  // increasing buffer levels/overflow for certain layers even though whole
1998
  // superframe is dropped, we cap buffer level if its already stable.
1999
0
  if (cpi->use_svc && cpi->svc.framedrop_mode != LAYER_DROP &&
2000
0
      cpi->rc.buffer_level > cpi->rc.optimal_buffer_level) {
2001
0
    cpi->rc.buffer_level = cpi->rc.optimal_buffer_level;
2002
0
    cpi->rc.bits_off_target = cpi->rc.optimal_buffer_level;
2003
0
  }
2004
0
  cpi->deadline_mode_previous_frame = cpi->oxcf.mode;
2005
0
}
2006
2007
35.7k
int vp9_calc_pframe_target_size_one_pass_vbr(const VP9_COMP *cpi) {
2008
35.7k
  const RATE_CONTROL *const rc = &cpi->rc;
2009
35.7k
  const int af_ratio = rc->af_ratio_onepass_vbr;
2010
35.7k
  int64_t target =
2011
35.7k
      (!rc->is_src_frame_alt_ref &&
2012
35.7k
       (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))
2013
35.7k
          ? ((int64_t)rc->avg_frame_bandwidth * rc->baseline_gf_interval *
2014
3.63k
             af_ratio) /
2015
3.63k
                (rc->baseline_gf_interval + af_ratio - 1)
2016
35.7k
          : ((int64_t)rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
2017
32.1k
                (rc->baseline_gf_interval + af_ratio - 1);
2018
  // For SVC: refresh flags are used to define the pattern, so we can't
2019
  // use that for boosting the target size here.
2020
  // TODO(marpan): Consider adding internal boost on TL0 for VBR-SVC.
2021
  // For now just use the CBR logic for setting target size.
2022
35.7k
  if (cpi->use_svc) target = vp9_calc_pframe_target_size_one_pass_cbr(cpi);
2023
35.7k
  if (target > INT_MAX) target = INT_MAX;
2024
35.7k
  return vp9_rc_clamp_pframe_target_size(cpi, (int)target);
2025
35.7k
}
2026
2027
7.75k
int vp9_calc_iframe_target_size_one_pass_vbr(const VP9_COMP *cpi) {
2028
7.75k
  static const int kf_ratio = 25;
2029
7.75k
  const RATE_CONTROL *rc = &cpi->rc;
2030
7.75k
  int target = rc->avg_frame_bandwidth;
2031
7.75k
  if (target > INT_MAX / kf_ratio)
2032
19
    target = INT_MAX;
2033
7.73k
  else
2034
7.73k
    target = rc->avg_frame_bandwidth * kf_ratio;
2035
7.75k
  return vp9_rc_clamp_iframe_target_size(cpi, target);
2036
7.75k
}
2037
2038
11.3k
static void adjust_gfint_frame_constraint(VP9_COMP *cpi, int frame_constraint) {
2039
11.3k
  RATE_CONTROL *const rc = &cpi->rc;
2040
11.3k
  rc->constrained_gf_group = 0;
2041
  // Reset gf interval to make more equal spacing for frame_constraint.
2042
11.3k
  if ((frame_constraint <= 7 * rc->baseline_gf_interval >> 2) &&
2043
11.3k
      (frame_constraint > rc->baseline_gf_interval)) {
2044
108
    rc->baseline_gf_interval = frame_constraint >> 1;
2045
108
    if (rc->baseline_gf_interval < 5)
2046
46
      rc->baseline_gf_interval = frame_constraint;
2047
108
    rc->constrained_gf_group = 1;
2048
11.2k
  } else {
2049
    // Reset to keep gf_interval <= frame_constraint.
2050
11.2k
    if (rc->baseline_gf_interval > frame_constraint) {
2051
5.55k
      rc->baseline_gf_interval = frame_constraint;
2052
5.55k
      rc->constrained_gf_group = 1;
2053
5.55k
    }
2054
11.2k
  }
2055
11.3k
}
2056
2057
42.2k
void vp9_set_gf_update_one_pass_vbr(VP9_COMP *const cpi) {
2058
42.2k
  RATE_CONTROL *const rc = &cpi->rc;
2059
42.2k
  VP9_COMMON *const cm = &cpi->common;
2060
42.2k
  if (rc->frames_till_gf_update_due == 0) {
2061
10.1k
    double rate_err = 1.0;
2062
10.1k
    rc->gfu_boost = DEFAULT_GF_BOOST;
2063
10.1k
    if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0) {
2064
0
      vp9_cyclic_refresh_set_golden_update(cpi);
2065
10.1k
    } else {
2066
10.1k
      rc->baseline_gf_interval = VPXMIN(
2067
10.1k
          20, VPXMAX(10, (rc->min_gf_interval + rc->max_gf_interval) / 2));
2068
10.1k
    }
2069
10.1k
    rc->af_ratio_onepass_vbr = 10;
2070
10.1k
    if (rc->rolling_target_bits > 0)
2071
8.89k
      rate_err =
2072
8.89k
          (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
2073
10.1k
    if (cm->current_video_frame > 30) {
2074
2.88k
      if (rc->avg_frame_qindex[INTER_FRAME] > (7 * rc->worst_quality) >> 3 &&
2075
2.88k
          rate_err > 3.5) {
2076
81
        rc->baseline_gf_interval =
2077
81
            VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1);
2078
2.79k
      } else if (rc->avg_frame_low_motion > 0 &&
2079
2.79k
                 rc->avg_frame_low_motion < 20) {
2080
        // Decrease gf interval for high motion case.
2081
421
        rc->baseline_gf_interval = VPXMAX(6, rc->baseline_gf_interval >> 1);
2082
421
      }
2083
      // Adjust boost and af_ratio based on avg_frame_low_motion, which
2084
      // varies between 0 and 100 (stationary, 100% zero/small motion).
2085
2.88k
      if (rc->avg_frame_low_motion > 0)
2086
722
        rc->gfu_boost =
2087
722
            VPXMAX(500, DEFAULT_GF_BOOST * (rc->avg_frame_low_motion << 1) /
2088
2.88k
                            (rc->avg_frame_low_motion + 100));
2089
2.15k
      else if (rc->avg_frame_low_motion == 0 && rate_err > 1.0)
2090
220
        rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
2091
2.88k
      rc->af_ratio_onepass_vbr = VPXMIN(15, VPXMAX(5, 3 * rc->gfu_boost / 400));
2092
2.88k
    }
2093
10.1k
    if (rc->constrain_gf_key_freq_onepass_vbr)
2094
10.1k
      adjust_gfint_frame_constraint(cpi, rc->frames_to_key);
2095
10.1k
    rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2096
10.1k
    cpi->refresh_golden_frame = 1;
2097
10.1k
    rc->source_alt_ref_pending = 0;
2098
10.1k
    rc->alt_ref_gf_group = 0;
2099
10.1k
    if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf) {
2100
0
      rc->source_alt_ref_pending = 1;
2101
0
      rc->alt_ref_gf_group = 1;
2102
0
    }
2103
10.1k
  }
2104
42.2k
}
2105
2106
42.2k
void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
2107
42.2k
  VP9_COMMON *const cm = &cpi->common;
2108
42.2k
  RATE_CONTROL *const rc = &cpi->rc;
2109
42.2k
  int target;
2110
42.2k
  if (!cpi->refresh_alt_ref_frame &&
2111
42.2k
      (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
2112
42.2k
       rc->frames_to_key == 0 ||
2113
42.2k
       (cpi->oxcf.mode != cpi->deadline_mode_previous_frame))) {
2114
7.75k
    cm->frame_type = KEY_FRAME;
2115
7.75k
    rc->this_key_frame_forced =
2116
7.75k
        cm->current_video_frame != 0 && rc->frames_to_key == 0;
2117
7.75k
    rc->frames_to_key = cpi->oxcf.key_freq;
2118
7.75k
    rc->kf_boost = DEFAULT_KF_BOOST;
2119
7.75k
    rc->source_alt_ref_active = 0;
2120
34.5k
  } else {
2121
34.5k
    cm->frame_type = INTER_FRAME;
2122
34.5k
  }
2123
42.2k
  vp9_set_gf_update_one_pass_vbr(cpi);
2124
42.2k
  if (cm->frame_type == KEY_FRAME)
2125
7.75k
    target = vp9_calc_iframe_target_size_one_pass_vbr(cpi);
2126
34.5k
  else
2127
34.5k
    target = vp9_calc_pframe_target_size_one_pass_vbr(cpi);
2128
42.2k
  vp9_rc_set_frame_target(cpi, target);
2129
42.2k
  if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0)
2130
0
    vp9_cyclic_refresh_update_parameters(cpi);
2131
42.2k
}
2132
2133
0
int vp9_calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
2134
0
  const VP9EncoderConfig *oxcf = &cpi->oxcf;
2135
0
  const RATE_CONTROL *rc = &cpi->rc;
2136
0
  const SVC *const svc = &cpi->svc;
2137
0
  const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
2138
0
  const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
2139
0
  int min_frame_target =
2140
0
      VPXMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
2141
0
  int target;
2142
2143
0
  if (oxcf->gf_cbr_boost_pct) {
2144
0
    const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
2145
0
    target = cpi->refresh_golden_frame
2146
0
                 ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval *
2147
0
                    af_ratio_pct) /
2148
0
                       (rc->baseline_gf_interval * 100 + af_ratio_pct - 100)
2149
0
                 : (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
2150
0
                       (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
2151
0
  } else {
2152
0
    target = rc->avg_frame_bandwidth;
2153
0
  }
2154
0
  if (is_one_pass_svc(cpi)) {
2155
    // Note that for layers, avg_frame_bandwidth is the cumulative
2156
    // per-frame-bandwidth. For the target size of this frame, use the
2157
    // layer average frame size (i.e., non-cumulative per-frame-bw).
2158
0
    int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
2159
0
                                 svc->number_temporal_layers);
2160
0
    const LAYER_CONTEXT *lc = &svc->layer_context[layer];
2161
0
    target = lc->avg_frame_size;
2162
0
    min_frame_target = VPXMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
2163
0
  }
2164
0
  if (diff > 0) {
2165
    // Lower the target bandwidth for this frame.
2166
0
    const int pct_low = (int)VPXMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
2167
0
    target -= (int)(((int64_t)target * pct_low) / 200);
2168
0
  } else if (diff < 0) {
2169
    // Increase the target bandwidth for this frame.
2170
0
    const int pct_high =
2171
0
        (int)VPXMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
2172
0
    target += (int)(((int64_t)target * pct_high) / 200);
2173
0
  }
2174
0
  if (oxcf->rc_max_inter_bitrate_pct) {
2175
0
    const int max_rate =
2176
0
        rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
2177
0
    target = VPXMIN(target, max_rate);
2178
0
  }
2179
0
  return VPXMAX(min_frame_target, target);
2180
0
}
2181
2182
0
int vp9_calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
2183
0
  const RATE_CONTROL *rc = &cpi->rc;
2184
0
  const VP9EncoderConfig *oxcf = &cpi->oxcf;
2185
0
  const SVC *const svc = &cpi->svc;
2186
0
  int64_t target;
2187
0
  if (cpi->common.current_video_frame == 0) {
2188
0
    target = rc->starting_buffer_level / 2;
2189
0
  } else {
2190
0
    int kf_boost = 32;
2191
0
    double framerate = cpi->framerate;
2192
0
    if (svc->number_temporal_layers > 1 && oxcf->rc_mode == VPX_CBR) {
2193
      // Use the layer framerate for temporal layers CBR mode.
2194
0
      const int layer =
2195
0
          LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
2196
0
                           svc->number_temporal_layers);
2197
0
      const LAYER_CONTEXT *lc = &svc->layer_context[layer];
2198
0
      framerate = lc->framerate;
2199
0
    }
2200
0
    kf_boost = VPXMAX(kf_boost, (int)round(2 * framerate - 16));
2201
0
    if (rc->frames_since_key < framerate / 2) {
2202
0
      kf_boost = (int)round(kf_boost * rc->frames_since_key / (framerate / 2));
2203
0
    }
2204
2205
0
    target = ((int64_t)(16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
2206
0
  }
2207
0
  target = VPXMIN(INT_MAX, target);
2208
0
  return vp9_rc_clamp_iframe_target_size(cpi, (int)target);
2209
0
}
2210
2211
0
static void set_intra_only_frame(VP9_COMP *cpi) {
2212
0
  VP9_COMMON *const cm = &cpi->common;
2213
0
  SVC *const svc = &cpi->svc;
2214
  // Don't allow intra_only frame for bypass/flexible SVC mode, or if number
2215
  // of spatial layers is 1 or if number of spatial or temporal layers > 3.
2216
  // Also if intra-only is inserted on very first frame, don't allow if
2217
  // if number of temporal layers > 1. This is because on intra-only frame
2218
  // only 3 reference buffers can be updated, but for temporal layers > 1
2219
  // we generally need to use buffer slots 4 and 5.
2220
0
  if ((cm->current_video_frame == 0 && svc->number_temporal_layers > 1) ||
2221
0
      svc->number_spatial_layers > 3 || svc->number_temporal_layers > 3 ||
2222
0
      svc->number_spatial_layers == 1)
2223
0
    return;
2224
0
  cm->show_frame = 0;
2225
0
  cm->intra_only = 1;
2226
0
  cm->frame_type = INTER_FRAME;
2227
0
  cpi->ext_refresh_frame_flags_pending = 1;
2228
0
  cpi->ext_refresh_last_frame = 1;
2229
0
  cpi->ext_refresh_golden_frame = 1;
2230
0
  cpi->ext_refresh_alt_ref_frame = 1;
2231
0
  if (cm->current_video_frame == 0) {
2232
0
    cpi->lst_fb_idx = 0;
2233
0
    cpi->gld_fb_idx = 1;
2234
0
    cpi->alt_fb_idx = 2;
2235
0
  } else {
2236
0
    int i;
2237
0
    int count = 0;
2238
0
    cpi->lst_fb_idx = -1;
2239
0
    cpi->gld_fb_idx = -1;
2240
0
    cpi->alt_fb_idx = -1;
2241
0
    svc->update_buffer_slot[0] = 0;
2242
    // For intra-only frame we need to refresh all slots that were
2243
    // being used for the base layer (fb_idx_base[i] == 1).
2244
    // Start with assigning last first, then golden and then alt.
2245
0
    for (i = 0; i < REF_FRAMES; ++i) {
2246
0
      if (svc->fb_idx_base[i] == 1) {
2247
0
        svc->update_buffer_slot[0] |= 1 << i;
2248
0
        count++;
2249
0
      }
2250
0
      if (count == 1 && cpi->lst_fb_idx == -1) cpi->lst_fb_idx = i;
2251
0
      if (count == 2 && cpi->gld_fb_idx == -1) cpi->gld_fb_idx = i;
2252
0
      if (count == 3 && cpi->alt_fb_idx == -1) cpi->alt_fb_idx = i;
2253
0
    }
2254
    // If golden or alt is not being used for base layer, then set them
2255
    // to the lst_fb_idx.
2256
0
    if (cpi->gld_fb_idx == -1) cpi->gld_fb_idx = cpi->lst_fb_idx;
2257
0
    if (cpi->alt_fb_idx == -1) cpi->alt_fb_idx = cpi->lst_fb_idx;
2258
0
    if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) {
2259
0
      cpi->ext_refresh_last_frame = 0;
2260
0
      cpi->ext_refresh_golden_frame = 0;
2261
0
      cpi->ext_refresh_alt_ref_frame = 0;
2262
0
      cpi->ref_frame_flags = 0;
2263
0
    }
2264
0
  }
2265
0
}
2266
2267
0
void vp9_rc_get_svc_params(VP9_COMP *cpi) {
2268
0
  VP9_COMMON *const cm = &cpi->common;
2269
0
  RATE_CONTROL *const rc = &cpi->rc;
2270
0
  SVC *const svc = &cpi->svc;
2271
0
  int target = rc->avg_frame_bandwidth;
2272
0
  int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
2273
0
                               svc->number_temporal_layers);
2274
0
  if (svc->first_spatial_layer_to_encode)
2275
0
    svc->layer_context[svc->temporal_layer_id].is_key_frame = 0;
2276
  // Periodic key frames is based on the super-frame counter
2277
  // (svc.current_superframe), also only base spatial layer is key frame.
2278
  // Key frame is set for any of the following: very first frame, frame flags
2279
  // indicates key, superframe counter hits key frequency,(non-intra) sync
2280
  // flag is set for spatial layer 0, or deadline mode changes.
2281
0
  if ((cm->current_video_frame == 0 && !svc->previous_frame_is_intra_only) ||
2282
0
      (cpi->frame_flags & FRAMEFLAGS_KEY) ||
2283
0
      (cpi->oxcf.auto_key &&
2284
0
       (svc->current_superframe % cpi->oxcf.key_freq == 0) &&
2285
0
       !svc->previous_frame_is_intra_only && svc->spatial_layer_id == 0) ||
2286
0
      (svc->spatial_layer_sync[0] == 1 && svc->spatial_layer_id == 0) ||
2287
0
      (cpi->oxcf.mode != cpi->deadline_mode_previous_frame)) {
2288
0
    cm->frame_type = KEY_FRAME;
2289
0
    rc->source_alt_ref_active = 0;
2290
0
    if (is_one_pass_svc(cpi)) {
2291
0
      if (cm->current_video_frame > 0) vp9_svc_reset_temporal_layers(cpi, 1);
2292
0
      layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
2293
0
                               svc->number_temporal_layers);
2294
0
      svc->layer_context[layer].is_key_frame = 1;
2295
0
      cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
2296
      // Assumption here is that LAST_FRAME is being updated for a keyframe.
2297
      // Thus no change in update flags.
2298
0
      if (cpi->oxcf.rc_mode == VPX_CBR)
2299
0
        target = vp9_calc_iframe_target_size_one_pass_cbr(cpi);
2300
0
      else
2301
0
        target = vp9_calc_iframe_target_size_one_pass_vbr(cpi);
2302
0
    }
2303
0
  } else {
2304
0
    cm->frame_type = INTER_FRAME;
2305
0
    if (is_one_pass_svc(cpi)) {
2306
0
      LAYER_CONTEXT *lc = &svc->layer_context[layer];
2307
      // Add condition current_video_frame > 0 for the case where first frame
2308
      // is intra only followed by overlay/copy frame. In this case we don't
2309
      // want to reset is_key_frame to 0 on overlay/copy frame.
2310
0
      lc->is_key_frame =
2311
0
          (svc->spatial_layer_id == 0 && cm->current_video_frame > 0)
2312
0
              ? 0
2313
0
              : svc->layer_context[svc->temporal_layer_id].is_key_frame;
2314
0
      if (cpi->oxcf.rc_mode == VPX_CBR) {
2315
0
        target = vp9_calc_pframe_target_size_one_pass_cbr(cpi);
2316
0
      } else {
2317
0
        double rate_err = 0.0;
2318
0
        rc->fac_active_worst_inter = 140;
2319
0
        rc->fac_active_worst_gf = 100;
2320
0
        if (rc->rolling_target_bits > 0) {
2321
0
          rate_err =
2322
0
              (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
2323
0
          if (rate_err < 1.0)
2324
0
            rc->fac_active_worst_inter = 120;
2325
0
          else if (rate_err > 2.0)
2326
            // Increase active_worst faster if rate fluctuation is high.
2327
0
            rc->fac_active_worst_inter = 160;
2328
0
        }
2329
0
        target = vp9_calc_pframe_target_size_one_pass_vbr(cpi);
2330
0
      }
2331
0
    }
2332
0
  }
2333
2334
0
  if (svc->simulcast_mode) {
2335
0
    if (svc->spatial_layer_id > 0 &&
2336
0
        svc->layer_context[layer].is_key_frame == 1) {
2337
0
      cm->frame_type = KEY_FRAME;
2338
0
      cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
2339
0
      if (cpi->oxcf.rc_mode == VPX_CBR)
2340
0
        target = vp9_calc_iframe_target_size_one_pass_cbr(cpi);
2341
0
      else
2342
0
        target = vp9_calc_iframe_target_size_one_pass_vbr(cpi);
2343
0
    }
2344
    // Set the buffer idx and refresh flags for key frames in simulcast mode.
2345
    // Note the buffer slot for long-term reference is set below (line 2255),
2346
    // and alt_ref is used for that on key frame. So use last and golden for
2347
    // the other two normal slots.
2348
0
    if (cm->frame_type == KEY_FRAME) {
2349
0
      if (svc->number_spatial_layers == 2) {
2350
0
        if (svc->spatial_layer_id == 0) {
2351
0
          cpi->lst_fb_idx = 0;
2352
0
          cpi->gld_fb_idx = 2;
2353
0
          cpi->alt_fb_idx = 6;
2354
0
        } else if (svc->spatial_layer_id == 1) {
2355
0
          cpi->lst_fb_idx = 1;
2356
0
          cpi->gld_fb_idx = 3;
2357
0
          cpi->alt_fb_idx = 6;
2358
0
        }
2359
0
      } else if (svc->number_spatial_layers == 3) {
2360
0
        if (svc->spatial_layer_id == 0) {
2361
0
          cpi->lst_fb_idx = 0;
2362
0
          cpi->gld_fb_idx = 3;
2363
0
          cpi->alt_fb_idx = 6;
2364
0
        } else if (svc->spatial_layer_id == 1) {
2365
0
          cpi->lst_fb_idx = 1;
2366
0
          cpi->gld_fb_idx = 4;
2367
0
          cpi->alt_fb_idx = 6;
2368
0
        } else if (svc->spatial_layer_id == 2) {
2369
0
          cpi->lst_fb_idx = 2;
2370
0
          cpi->gld_fb_idx = 5;
2371
0
          cpi->alt_fb_idx = 7;
2372
0
        }
2373
0
      }
2374
0
      cpi->ext_refresh_last_frame = 1;
2375
0
      cpi->ext_refresh_golden_frame = 1;
2376
0
      cpi->ext_refresh_alt_ref_frame = 1;
2377
0
    }
2378
0
  }
2379
2380
  // Check if superframe contains a sync layer request.
2381
0
  vp9_svc_check_spatial_layer_sync(cpi);
2382
2383
  // If long term termporal feature is enabled, set the period of the update.
2384
  // The update/refresh of this reference frame is always on base temporal
2385
  // layer frame.
2386
0
  if (svc->use_gf_temporal_ref_current_layer) {
2387
    // Only use gf long-term prediction on non-key superframes.
2388
0
    if (!svc->layer_context[svc->temporal_layer_id].is_key_frame) {
2389
      // Use golden for this reference, which will be used for prediction.
2390
0
      int index = svc->spatial_layer_id;
2391
0
      if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
2392
0
      assert(index >= 0);
2393
0
      cpi->gld_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
2394
      // Enable prediction off LAST (last reference) and golden (which will
2395
      // generally be further behind/long-term reference).
2396
0
      cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
2397
0
    }
2398
    // Check for update/refresh of reference: only refresh on base temporal
2399
    // layer.
2400
0
    if (svc->temporal_layer_id == 0) {
2401
0
      if (svc->layer_context[svc->temporal_layer_id].is_key_frame) {
2402
        // On key frame we update the buffer index used for long term reference.
2403
        // Use the alt_ref since it is not used or updated on key frames.
2404
0
        int index = svc->spatial_layer_id;
2405
0
        if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
2406
0
        assert(index >= 0);
2407
0
        cpi->alt_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
2408
0
        cpi->ext_refresh_alt_ref_frame = 1;
2409
0
      } else if (rc->frames_till_gf_update_due == 0) {
2410
        // Set perdiod of next update. Make it a multiple of 10, as the cyclic
2411
        // refresh is typically ~10%, and we'd like the update to happen after
2412
        // a few cylces of the refresh (so it better quality frame). Note the
2413
        // cyclic refresh for SVC only operates on base temporal layer frames.
2414
        // Choose 20 as perdiod for now (2 cycles).
2415
0
        rc->baseline_gf_interval = 20;
2416
0
        rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2417
0
        cpi->ext_refresh_golden_frame = 1;
2418
0
        rc->gfu_boost = DEFAULT_GF_BOOST;
2419
0
      }
2420
0
    }
2421
0
  } else if (!svc->use_gf_temporal_ref) {
2422
0
    rc->frames_till_gf_update_due = INT_MAX;
2423
0
    rc->baseline_gf_interval = INT_MAX;
2424
0
  }
2425
0
  if (svc->set_intra_only_frame) {
2426
0
    set_intra_only_frame(cpi);
2427
0
    if (cpi->oxcf.rc_mode == VPX_CBR)
2428
0
      target = vp9_calc_iframe_target_size_one_pass_cbr(cpi);
2429
0
    else
2430
0
      target = vp9_calc_iframe_target_size_one_pass_vbr(cpi);
2431
0
  }
2432
  // Overlay frame predicts from LAST (intra-only)
2433
0
  if (svc->previous_frame_is_intra_only) cpi->ref_frame_flags |= VP9_LAST_FLAG;
2434
2435
  // Any update/change of global cyclic refresh parameters (amount/delta-qp)
2436
  // should be done here, before the frame qp is selected.
2437
0
  if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
2438
0
    vp9_cyclic_refresh_update_parameters(cpi);
2439
2440
0
  vp9_rc_set_frame_target(cpi, target);
2441
0
  if (cm->show_frame) vp9_update_buffer_level_svc_preencode(cpi);
2442
2443
0
  if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC && svc->single_layer_svc == 1 &&
2444
0
      svc->spatial_layer_id == svc->first_spatial_layer_to_encode &&
2445
0
      svc->temporal_layer_id == 0) {
2446
0
    LAYER_CONTEXT *lc = NULL;
2447
0
    cpi->resize_pending = vp9_resize_one_pass_cbr(cpi);
2448
0
    if (cpi->resize_pending) {
2449
0
      int tl, width, height;
2450
      // Apply the same scale to all temporal layers.
2451
0
      for (tl = 0; tl < svc->number_temporal_layers; tl++) {
2452
0
        lc = &svc->layer_context[svc->spatial_layer_id *
2453
0
                                     svc->number_temporal_layers +
2454
0
                                 tl];
2455
0
        lc->scaling_factor_num_resize =
2456
0
            cpi->resize_scale_num * lc->scaling_factor_num;
2457
0
        lc->scaling_factor_den_resize =
2458
0
            cpi->resize_scale_den * lc->scaling_factor_den;
2459
        // Reset rate control for all temporal layers.
2460
0
        lc->rc.buffer_level = lc->rc.optimal_buffer_level;
2461
0
        lc->rc.bits_off_target = lc->rc.optimal_buffer_level;
2462
0
        lc->rc.rate_correction_factors[INTER_FRAME] =
2463
0
            rc->rate_correction_factors[INTER_FRAME];
2464
0
      }
2465
      // Set the size for this current temporal layer.
2466
0
      lc = &svc->layer_context[svc->spatial_layer_id *
2467
0
                                   svc->number_temporal_layers +
2468
0
                               svc->temporal_layer_id];
2469
0
      get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height,
2470
0
                           lc->scaling_factor_num_resize,
2471
0
                           lc->scaling_factor_den_resize, &width, &height);
2472
0
      vp9_set_size_literal(cpi, width, height);
2473
0
      svc->resize_set = 1;
2474
0
    }
2475
0
  } else {
2476
0
    cpi->resize_pending = 0;
2477
0
    svc->resize_set = 0;
2478
0
  }
2479
0
}
2480
2481
0
void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
2482
0
  VP9_COMMON *const cm = &cpi->common;
2483
0
  RATE_CONTROL *const rc = &cpi->rc;
2484
0
  int target;
2485
0
  if ((cm->current_video_frame == 0) || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
2486
0
      (cpi->oxcf.auto_key && rc->frames_to_key == 0) ||
2487
0
      (cpi->oxcf.mode != cpi->deadline_mode_previous_frame)) {
2488
0
    cm->frame_type = KEY_FRAME;
2489
0
    rc->frames_to_key = cpi->oxcf.key_freq;
2490
0
    rc->kf_boost = DEFAULT_KF_BOOST;
2491
0
    rc->source_alt_ref_active = 0;
2492
0
  } else {
2493
0
    cm->frame_type = INTER_FRAME;
2494
0
  }
2495
0
  if (rc->frames_till_gf_update_due == 0) {
2496
0
    if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
2497
0
      vp9_cyclic_refresh_set_golden_update(cpi);
2498
0
    else
2499
0
      rc->baseline_gf_interval =
2500
0
          (rc->min_gf_interval + rc->max_gf_interval) / 2;
2501
0
    rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2502
    // NOTE: frames_till_gf_update_due must be <= frames_to_key.
2503
0
    if (rc->frames_till_gf_update_due > rc->frames_to_key)
2504
0
      rc->frames_till_gf_update_due = rc->frames_to_key;
2505
0
    cpi->refresh_golden_frame = 1;
2506
0
    rc->gfu_boost = DEFAULT_GF_BOOST;
2507
0
  }
2508
2509
  // Any update/change of global cyclic refresh parameters (amount/delta-qp)
2510
  // should be done here, before the frame qp is selected.
2511
0
  if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
2512
0
    vp9_cyclic_refresh_update_parameters(cpi);
2513
2514
0
  if (frame_is_intra_only(cm))
2515
0
    target = vp9_calc_iframe_target_size_one_pass_cbr(cpi);
2516
0
  else
2517
0
    target = vp9_calc_pframe_target_size_one_pass_cbr(cpi);
2518
2519
0
  vp9_rc_set_frame_target(cpi, target);
2520
2521
0
  if (cm->show_frame) vp9_update_buffer_level_preencode(cpi);
2522
2523
0
  if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC)
2524
0
    cpi->resize_pending = vp9_resize_one_pass_cbr(cpi);
2525
0
  else
2526
0
    cpi->resize_pending = 0;
2527
0
}
2528
2529
int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
2530
8.19k
                       vpx_bit_depth_t bit_depth) {
2531
8.19k
  int start_index = rc->worst_quality;
2532
8.19k
  int target_index = rc->worst_quality;
2533
8.19k
  int i;
2534
2535
  // Convert the average q value to an index.
2536
605k
  for (i = rc->best_quality; i < rc->worst_quality; ++i) {
2537
605k
    start_index = i;
2538
605k
    if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart) break;
2539
605k
  }
2540
2541
  // Convert the q target to an index
2542
370k
  for (i = rc->best_quality; i < rc->worst_quality; ++i) {
2543
370k
    target_index = i;
2544
370k
    if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget) break;
2545
370k
  }
2546
2547
8.19k
  return target_index - start_index;
2548
8.19k
}
2549
2550
int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
2551
                               int qindex, double rate_target_ratio,
2552
10.1k
                               vpx_bit_depth_t bit_depth) {
2553
10.1k
  int target_index = rc->worst_quality;
2554
10.1k
  int i;
2555
2556
  // Look up the current projected bits per block for the base index
2557
10.1k
  const int base_bits_per_mb =
2558
10.1k
      vp9_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth);
2559
2560
  // Find the target bits per mb based on the base value and given ratio.
2561
10.1k
  const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
2562
2563
  // Convert the q target to an index
2564
1.11M
  for (i = rc->best_quality; i < rc->worst_quality; ++i) {
2565
1.11M
    if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <=
2566
1.11M
        target_bits_per_mb) {
2567
10.1k
      target_index = i;
2568
10.1k
      break;
2569
10.1k
    }
2570
1.11M
  }
2571
10.1k
  return target_index - qindex;
2572
10.1k
}
2573
2574
void vp9_rc_set_gf_interval_range(const VP9_COMP *const cpi,
2575
67.6k
                                  RATE_CONTROL *const rc) {
2576
67.6k
  const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2577
2578
  // Special case code for 1 pass fixed Q mode tests
2579
67.6k
  if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) {
2580
3.17k
    rc->max_gf_interval = FIXED_GF_INTERVAL;
2581
3.17k
    rc->min_gf_interval = FIXED_GF_INTERVAL;
2582
3.17k
    rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
2583
64.5k
  } else {
2584
64.5k
    double framerate = cpi->framerate;
2585
    // Set Maximum gf/arf interval
2586
64.5k
    rc->max_gf_interval = oxcf->max_gf_interval;
2587
64.5k
    rc->min_gf_interval = oxcf->min_gf_interval;
2588
#if CONFIG_RATE_CTRL
2589
    if (oxcf->use_simple_encode_api) {
2590
      // In this experiment, we avoid framerate being changed dynamically during
2591
      // encoding.
2592
      framerate = oxcf->init_framerate;
2593
    }
2594
#endif  // CONFIG_RATE_CTRL
2595
64.5k
    if (rc->min_gf_interval == 0) {
2596
64.5k
      rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
2597
64.5k
          oxcf->width, oxcf->height, framerate);
2598
64.5k
    }
2599
64.5k
    if (rc->max_gf_interval == 0) {
2600
64.5k
      rc->max_gf_interval =
2601
64.5k
          vp9_rc_get_default_max_gf_interval(framerate, rc->min_gf_interval);
2602
64.5k
    }
2603
2604
    // Extended max interval for genuinely static scenes like slide shows.
2605
64.5k
    rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH;
2606
2607
64.5k
    if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
2608
90
      rc->max_gf_interval = rc->static_scene_max_gf_interval;
2609
2610
    // Clamp min to max
2611
64.5k
    rc->min_gf_interval = VPXMIN(rc->min_gf_interval, rc->max_gf_interval);
2612
2613
64.5k
    if (oxcf->target_level == LEVEL_AUTO) {
2614
0
      const uint32_t pic_size = cpi->common.width * cpi->common.height;
2615
0
      const uint32_t pic_breadth =
2616
0
          VPXMAX(cpi->common.width, cpi->common.height);
2617
0
      int i;
2618
0
      for (i = 0; i < VP9_LEVELS; ++i) {
2619
0
        if (vp9_level_defs[i].max_luma_picture_size >= pic_size &&
2620
0
            vp9_level_defs[i].max_luma_picture_breadth >= pic_breadth) {
2621
0
          if (rc->min_gf_interval <=
2622
0
              (int)vp9_level_defs[i].min_altref_distance) {
2623
0
            rc->min_gf_interval = (int)vp9_level_defs[i].min_altref_distance;
2624
0
            rc->max_gf_interval =
2625
0
                VPXMAX(rc->max_gf_interval, rc->min_gf_interval);
2626
0
          }
2627
0
          break;
2628
0
        }
2629
0
      }
2630
0
    }
2631
64.5k
  }
2632
67.6k
}
2633
2634
67.6k
void vp9_rc_update_framerate(VP9_COMP *cpi) {
2635
67.6k
  const VP9_COMMON *const cm = &cpi->common;
2636
67.6k
  const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2637
67.6k
  RATE_CONTROL *const rc = &cpi->rc;
2638
2639
67.6k
  rc->avg_frame_bandwidth = saturate_cast_double_to_int(
2640
67.6k
      round(oxcf->target_bandwidth / cpi->framerate));
2641
2642
67.6k
  int64_t vbr_min_bits =
2643
67.6k
      (int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100;
2644
67.6k
  vbr_min_bits = VPXMIN(vbr_min_bits, INT_MAX);
2645
2646
67.6k
  rc->min_frame_bandwidth = VPXMAX((int)vbr_min_bits, FRAME_OVERHEAD_BITS);
2647
2648
  // A maximum bitrate for a frame is defined.
2649
  // However this limit is extended if a very high rate is given on the command
2650
  // line or the rate can not be achieved because of a user specified max q
2651
  // (e.g. when the user specifies lossless encode).
2652
  //
2653
  // If a level is specified that requires a lower maximum rate then the level
2654
  // value take precedence.
2655
67.6k
  int64_t vbr_max_bits =
2656
67.6k
      (int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section / 100;
2657
67.6k
  vbr_max_bits = VPXMIN(vbr_max_bits, INT_MAX);
2658
2659
67.6k
  rc->max_frame_bandwidth =
2660
67.6k
      VPXMAX(VPXMAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), (int)vbr_max_bits);
2661
2662
67.6k
  vp9_rc_set_gf_interval_range(cpi, rc);
2663
67.6k
}
2664
2665
#define VBR_PCT_ADJUSTMENT_LIMIT 50
2666
// For VBR...adjustment to the frame target based on error from previous frames
2667
0
static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) {
2668
0
  RATE_CONTROL *const rc = &cpi->rc;
2669
0
  int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
2670
0
  int64_t frame_target = *this_frame_target;
2671
0
  int frame_window = (int)VPXMIN(
2672
0
      16, cpi->twopass.total_stats.count - cpi->common.current_video_frame);
2673
2674
  // Calcluate the adjustment to rate for this frame.
2675
0
  if (frame_window > 0) {
2676
0
    int64_t max_delta = (vbr_bits_off_target > 0)
2677
0
                            ? (vbr_bits_off_target / frame_window)
2678
0
                            : (-vbr_bits_off_target / frame_window);
2679
2680
0
    max_delta =
2681
0
        VPXMIN(max_delta, ((frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
2682
2683
    // vbr_bits_off_target > 0 means we have extra bits to spend
2684
0
    if (vbr_bits_off_target > 0) {
2685
0
      frame_target += VPXMIN(vbr_bits_off_target, max_delta);
2686
0
    } else {
2687
0
      frame_target -= VPXMIN(-vbr_bits_off_target, max_delta);
2688
0
    }
2689
0
  }
2690
2691
  // Fast redistribution of bits arising from massive local undershoot.
2692
  // Don't do it for kf,arf,gf or overlay frames.
2693
0
  if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
2694
0
      rc->vbr_bits_off_target_fast) {
2695
0
    int64_t one_frame_bits = VPXMAX(rc->avg_frame_bandwidth, frame_target);
2696
0
    int64_t fast_extra_bits =
2697
0
        VPXMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
2698
0
    fast_extra_bits =
2699
0
        VPXMIN(fast_extra_bits,
2700
0
               VPXMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
2701
0
    frame_target += fast_extra_bits;
2702
0
    rc->vbr_bits_off_target_fast -= fast_extra_bits;
2703
0
  }
2704
2705
  // Clamp the target for the frame to the maximum allowed for one frame.
2706
0
  *this_frame_target = (int)VPXMIN(frame_target, INT_MAX);
2707
0
}
2708
2709
0
void vp9_set_target_rate(VP9_COMP *cpi) {
2710
0
  RATE_CONTROL *const rc = &cpi->rc;
2711
0
  int target_rate = rc->base_frame_target;
2712
2713
0
  if (cpi->common.frame_type == KEY_FRAME)
2714
0
    target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate);
2715
0
  else
2716
0
    target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
2717
2718
0
  if (!cpi->oxcf.vbr_corpus_complexity) {
2719
    // Correction to rate target based on prior over or under shoot.
2720
0
    if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ)
2721
0
      vbr_rate_correction(cpi, &target_rate);
2722
0
  }
2723
0
  vp9_rc_set_frame_target(cpi, target_rate);
2724
0
}
2725
2726
// Check if we should resize, based on average QP from past x frames.
2727
// Only allow for resize at most one scale down for now, scaling factor is 2.
2728
0
int vp9_resize_one_pass_cbr(VP9_COMP *cpi) {
2729
0
  const VP9_COMMON *const cm = &cpi->common;
2730
0
  RATE_CONTROL *const rc = &cpi->rc;
2731
0
  RESIZE_ACTION resize_action = NO_RESIZE;
2732
0
  int avg_qp_thr1 = 70;
2733
0
  int avg_qp_thr2 = 50;
2734
  // Don't allow for resized frame to go below 320x180, resize in steps of 3/4.
2735
0
  int min_width = (320 * 4) / 3;
2736
0
  int min_height = (180 * 4) / 3;
2737
0
  int down_size_on = 1;
2738
0
  int force_downsize_rate = 0;
2739
0
  cpi->resize_scale_num = 1;
2740
0
  cpi->resize_scale_den = 1;
2741
  // Don't resize on key frame; reset the counters on key frame.
2742
0
  if (cm->frame_type == KEY_FRAME) {
2743
0
    cpi->resize_avg_qp = 0;
2744
0
    cpi->resize_count = 0;
2745
0
    return 0;
2746
0
  }
2747
2748
  // No resizing down if frame size is below some limit.
2749
0
  if ((cm->width * cm->height) < min_width * min_height) down_size_on = 0;
2750
2751
#if CONFIG_VP9_TEMPORAL_DENOISING
2752
  // If denoiser is on, apply a smaller qp threshold.
2753
  if (cpi->oxcf.noise_sensitivity > 0) {
2754
    avg_qp_thr1 = 60;
2755
    avg_qp_thr2 = 40;
2756
  }
2757
#endif
2758
2759
  // Force downsize based on per-frame-bandwidth, for extreme case,
2760
  // for HD input.
2761
0
  if (cpi->resize_state == ORIG && cm->width * cm->height >= 1280 * 720) {
2762
0
    if (rc->avg_frame_bandwidth < 300000 / 30) {
2763
0
      resize_action = DOWN_ONEHALF;
2764
0
      cpi->resize_state = ONE_HALF;
2765
0
      force_downsize_rate = 1;
2766
0
    } else if (rc->avg_frame_bandwidth < 400000 / 30) {
2767
0
      resize_action = ONEHALFONLY_RESIZE ? DOWN_ONEHALF : DOWN_THREEFOUR;
2768
0
      cpi->resize_state = ONEHALFONLY_RESIZE ? ONE_HALF : THREE_QUARTER;
2769
0
      force_downsize_rate = 1;
2770
0
    }
2771
0
  } else if (cpi->resize_state == THREE_QUARTER &&
2772
0
             cm->width * cm->height >= 960 * 540) {
2773
0
    if (rc->avg_frame_bandwidth < 300000 / 30) {
2774
0
      resize_action = DOWN_ONEHALF;
2775
0
      cpi->resize_state = ONE_HALF;
2776
0
      force_downsize_rate = 1;
2777
0
    }
2778
0
  }
2779
2780
  // Resize based on average buffer underflow and QP over some window.
2781
  // Ignore samples close to key frame, since QP is usually high after key.
2782
0
  if (!force_downsize_rate && cpi->rc.frames_since_key > cpi->framerate) {
2783
0
    const int window = VPXMIN(30, (int)round(2 * cpi->framerate));
2784
0
    cpi->resize_avg_qp += rc->last_q[INTER_FRAME];
2785
0
    if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100))
2786
0
      ++cpi->resize_buffer_underflow;
2787
0
    ++cpi->resize_count;
2788
    // Check for resize action every "window" frames.
2789
0
    if (cpi->resize_count >= window) {
2790
0
      int avg_qp = cpi->resize_avg_qp / cpi->resize_count;
2791
      // Resize down if buffer level has underflowed sufficient amount in past
2792
      // window, and we are at original or 3/4 of original resolution.
2793
      // Resize back up if average QP is low, and we are currently in a resized
2794
      // down state, i.e. 1/2 or 3/4 of original resolution.
2795
      // Currently, use a flag to turn 3/4 resizing feature on/off.
2796
0
      if (cpi->resize_buffer_underflow > (cpi->resize_count >> 2) &&
2797
0
          down_size_on) {
2798
0
        if (cpi->resize_state == THREE_QUARTER) {
2799
0
          resize_action = DOWN_ONEHALF;
2800
0
          cpi->resize_state = ONE_HALF;
2801
0
        } else if (cpi->resize_state == ORIG) {
2802
0
          resize_action = ONEHALFONLY_RESIZE ? DOWN_ONEHALF : DOWN_THREEFOUR;
2803
0
          cpi->resize_state = ONEHALFONLY_RESIZE ? ONE_HALF : THREE_QUARTER;
2804
0
        }
2805
0
      } else if (cpi->resize_state != ORIG &&
2806
0
                 avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) {
2807
0
        if (cpi->resize_state == THREE_QUARTER ||
2808
0
            avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100 ||
2809
0
            ONEHALFONLY_RESIZE) {
2810
0
          resize_action = UP_ORIG;
2811
0
          cpi->resize_state = ORIG;
2812
0
        } else if (cpi->resize_state == ONE_HALF) {
2813
0
          resize_action = UP_THREEFOUR;
2814
0
          cpi->resize_state = THREE_QUARTER;
2815
0
        }
2816
0
      }
2817
      // Reset for next window measurement.
2818
0
      cpi->resize_avg_qp = 0;
2819
0
      cpi->resize_count = 0;
2820
0
      cpi->resize_buffer_underflow = 0;
2821
0
    }
2822
0
  }
2823
  // If decision is to resize, reset some quantities, and check is we should
2824
  // reduce rate correction factor,
2825
0
  if (resize_action != NO_RESIZE) {
2826
0
    int target_bits_per_frame;
2827
0
    int active_worst_quality;
2828
0
    int qindex;
2829
0
    int tot_scale_change;
2830
0
    if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) {
2831
0
      cpi->resize_scale_num = 3;
2832
0
      cpi->resize_scale_den = 4;
2833
0
    } else if (resize_action == DOWN_ONEHALF) {
2834
0
      cpi->resize_scale_num = 1;
2835
0
      cpi->resize_scale_den = 2;
2836
0
    } else {  // UP_ORIG or anything else
2837
0
      cpi->resize_scale_num = 1;
2838
0
      cpi->resize_scale_den = 1;
2839
0
    }
2840
0
    tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) /
2841
0
                       (cpi->resize_scale_num * cpi->resize_scale_num);
2842
    // Reset buffer level to optimal, update target size.
2843
0
    rc->buffer_level = rc->optimal_buffer_level;
2844
0
    rc->bits_off_target = rc->optimal_buffer_level;
2845
0
    rc->this_frame_target = vp9_calc_pframe_target_size_one_pass_cbr(cpi);
2846
    // Get the projected qindex, based on the scaled target frame size (scaled
2847
    // so target_bits_per_mb in vp9_rc_regulate_q will be correct target).
2848
0
    target_bits_per_frame = (resize_action >= 0)
2849
0
                                ? rc->this_frame_target * tot_scale_change
2850
0
                                : rc->this_frame_target / tot_scale_change;
2851
0
    active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
2852
0
    qindex = vp9_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality,
2853
0
                               active_worst_quality);
2854
    // If resize is down, check if projected q index is close to worst_quality,
2855
    // and if so, reduce the rate correction factor (since likely can afford
2856
    // lower q for resized frame).
2857
0
    if (resize_action > 0 && qindex > 90 * cpi->rc.worst_quality / 100) {
2858
0
      rc->rate_correction_factors[INTER_NORMAL] *= 0.85;
2859
0
    }
2860
    // If resize is back up, check if projected q index is too much above the
2861
    // current base_qindex, and if so, reduce the rate correction factor
2862
    // (since prefer to keep q for resized frame at least close to previous q).
2863
0
    if (resize_action < 0 && qindex > 130 * cm->base_qindex / 100) {
2864
0
      rc->rate_correction_factors[INTER_NORMAL] *= 0.9;
2865
0
    }
2866
0
  }
2867
0
  return resize_action;
2868
0
}
2869
2870
static void adjust_gf_boost_lag_one_pass_vbr(VP9_COMP *cpi,
2871
19.0k
                                             uint64_t avg_sad_current) {
2872
19.0k
  VP9_COMMON *const cm = &cpi->common;
2873
19.0k
  RATE_CONTROL *const rc = &cpi->rc;
2874
19.0k
  int target;
2875
19.0k
  int found = 0;
2876
19.0k
  int found2 = 0;
2877
19.0k
  int frame;
2878
19.0k
  int i;
2879
19.0k
  uint64_t avg_source_sad_lag = avg_sad_current;
2880
19.0k
  int high_source_sad_lagindex = -1;
2881
19.0k
  int steady_sad_lagindex = -1;
2882
19.0k
  uint32_t sad_thresh1 = 70000;
2883
19.0k
  uint32_t sad_thresh2 = 120000;
2884
19.0k
  int low_content = 0;
2885
19.0k
  int high_content = 0;
2886
19.0k
  double rate_err = 1.0;
2887
  // Get measure of complexity over the future frames, and get the first
2888
  // future frame with high_source_sad/scene-change.
2889
19.0k
  int tot_frames = (int)vp9_lookahead_depth(cpi->lookahead) - 1;
2890
305k
  for (frame = tot_frames; frame >= 1; --frame) {
2891
286k
    const int lagframe_idx = tot_frames - frame + 1;
2892
286k
    uint64_t reference_sad = rc->avg_source_sad[0];
2893
3.09M
    for (i = 1; i < lagframe_idx; ++i) {
2894
2.80M
      if (rc->avg_source_sad[i] > 0)
2895
424
        reference_sad = (3 * reference_sad + rc->avg_source_sad[i]) >> 2;
2896
2.80M
    }
2897
    // Detect up-coming scene change.
2898
286k
    if (!found &&
2899
286k
        (rc->avg_source_sad[lagframe_idx] >
2900
286k
             VPXMAX(sad_thresh1, (unsigned int)(reference_sad << 1)) ||
2901
286k
         rc->avg_source_sad[lagframe_idx] >
2902
285k
             VPXMAX(3 * sad_thresh1 >> 2,
2903
286k
                    (unsigned int)(reference_sad << 2)))) {
2904
84
      high_source_sad_lagindex = lagframe_idx;
2905
84
      found = 1;
2906
84
    }
2907
    // Detect change from motion to steady.
2908
286k
    if (!found2 && lagframe_idx > 1 && lagframe_idx < tot_frames &&
2909
286k
        rc->avg_source_sad[lagframe_idx - 1] > (sad_thresh1 >> 2)) {
2910
104
      found2 = 1;
2911
211
      for (i = lagframe_idx; i < tot_frames; ++i) {
2912
107
        if (!(rc->avg_source_sad[i] > 0 &&
2913
107
              rc->avg_source_sad[i] < (sad_thresh1 >> 2) &&
2914
107
              rc->avg_source_sad[i] <
2915
101
                  (rc->avg_source_sad[lagframe_idx - 1] >> 1))) {
2916
101
          found2 = 0;
2917
101
          i = tot_frames;
2918
101
        }
2919
107
      }
2920
104
      if (found2) steady_sad_lagindex = lagframe_idx;
2921
104
    }
2922
286k
    avg_source_sad_lag += rc->avg_source_sad[lagframe_idx];
2923
286k
  }
2924
19.0k
  if (tot_frames > 0) avg_source_sad_lag = avg_source_sad_lag / tot_frames;
2925
  // Constrain distance between detected scene cuts.
2926
19.0k
  if (high_source_sad_lagindex != -1 &&
2927
19.0k
      high_source_sad_lagindex != rc->high_source_sad_lagindex - 1 &&
2928
19.0k
      abs(high_source_sad_lagindex - rc->high_source_sad_lagindex) < 4)
2929
22
    rc->high_source_sad_lagindex = -1;
2930
19.0k
  else
2931
19.0k
    rc->high_source_sad_lagindex = high_source_sad_lagindex;
2932
  // Adjust some factors for the next GF group, ignore initial key frame,
2933
  // and only for lag_in_frames not too small.
2934
19.0k
  if (cpi->refresh_golden_frame == 1 && cm->current_video_frame > 30 &&
2935
19.0k
      cpi->oxcf.lag_in_frames > 8) {
2936
1.24k
    int frame_constraint;
2937
1.24k
    if (rc->rolling_target_bits > 0)
2938
1.10k
      rate_err =
2939
1.10k
          (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
2940
1.24k
    high_content = high_source_sad_lagindex != -1 ||
2941
1.24k
                   avg_source_sad_lag > (rc->prev_avg_source_sad_lag << 1) ||
2942
1.24k
                   avg_source_sad_lag > sad_thresh2;
2943
1.24k
    low_content = high_source_sad_lagindex == -1 &&
2944
1.24k
                  ((avg_source_sad_lag < (rc->prev_avg_source_sad_lag >> 1)) ||
2945
1.24k
                   (avg_source_sad_lag < sad_thresh1));
2946
1.24k
    if (low_content) {
2947
1.24k
      rc->gfu_boost = DEFAULT_GF_BOOST;
2948
1.24k
      rc->baseline_gf_interval =
2949
1.24k
          VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1);
2950
1.24k
    } else if (high_content) {
2951
0
      rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
2952
0
      rc->baseline_gf_interval = (rate_err > 3.0)
2953
0
                                     ? VPXMAX(10, rc->baseline_gf_interval >> 1)
2954
0
                                     : VPXMAX(6, rc->baseline_gf_interval >> 1);
2955
0
    }
2956
1.24k
    if (rc->baseline_gf_interval > cpi->oxcf.lag_in_frames - 1)
2957
0
      rc->baseline_gf_interval = cpi->oxcf.lag_in_frames - 1;
2958
    // Check for constraining gf_interval for up-coming scene/content changes,
2959
    // or for up-coming key frame, whichever is closer.
2960
1.24k
    frame_constraint = rc->frames_to_key;
2961
1.24k
    if (rc->high_source_sad_lagindex > 0 &&
2962
1.24k
        frame_constraint > rc->high_source_sad_lagindex)
2963
0
      frame_constraint = rc->high_source_sad_lagindex;
2964
1.24k
    if (steady_sad_lagindex > 3 && frame_constraint > steady_sad_lagindex)
2965
0
      frame_constraint = steady_sad_lagindex;
2966
1.24k
    adjust_gfint_frame_constraint(cpi, frame_constraint);
2967
1.24k
    rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2968
    // Adjust factors for active_worst setting & af_ratio for next gf interval.
2969
1.24k
    rc->fac_active_worst_inter = 150;  // corresponds to 3/2 (= 150 /100).
2970
1.24k
    rc->fac_active_worst_gf = 100;
2971
1.24k
    if (rate_err < 2.0 && !high_content) {
2972
1.11k
      rc->fac_active_worst_inter = 120;
2973
1.11k
      rc->fac_active_worst_gf = 90;
2974
1.11k
    } else if (rate_err > 8.0 && rc->avg_frame_qindex[INTER_FRAME] < 16) {
2975
      // Increase active_worst faster at low Q if rate fluctuation is high.
2976
0
      rc->fac_active_worst_inter = 200;
2977
0
      if (rc->avg_frame_qindex[INTER_FRAME] < 8)
2978
0
        rc->fac_active_worst_inter = 400;
2979
0
    }
2980
1.24k
    if (low_content && rc->avg_frame_low_motion > 80) {
2981
95
      rc->af_ratio_onepass_vbr = 15;
2982
1.14k
    } else if (high_content || rc->avg_frame_low_motion < 30) {
2983
1.03k
      rc->af_ratio_onepass_vbr = 5;
2984
1.03k
      rc->gfu_boost = DEFAULT_GF_BOOST >> 2;
2985
1.03k
    }
2986
1.24k
    if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf) {
2987
      // Flag to disable usage of ARF based on past usage, only allow this
2988
      // disabling if current frame/group does not start with key frame or
2989
      // scene cut. Note perc_arf_usage is only computed for speed >= 5.
2990
0
      int arf_usage_low =
2991
0
          (cm->frame_type != KEY_FRAME && !rc->high_source_sad &&
2992
0
           cpi->rc.perc_arf_usage < 15 && cpi->oxcf.speed >= 5);
2993
      // Don't use alt-ref for this group under certain conditions.
2994
0
      if (arf_usage_low ||
2995
0
          (rc->high_source_sad_lagindex > 0 &&
2996
0
           rc->high_source_sad_lagindex <= rc->frames_till_gf_update_due) ||
2997
0
          (avg_source_sad_lag > 3 * sad_thresh1 >> 3)) {
2998
0
        rc->source_alt_ref_pending = 0;
2999
0
        rc->alt_ref_gf_group = 0;
3000
0
      } else {
3001
0
        rc->source_alt_ref_pending = 1;
3002
0
        rc->alt_ref_gf_group = 1;
3003
        // If alt-ref is used for this gf group, limit the interval.
3004
0
        if (rc->baseline_gf_interval > 12) {
3005
0
          rc->baseline_gf_interval = 12;
3006
0
          rc->frames_till_gf_update_due = rc->baseline_gf_interval;
3007
0
        }
3008
0
      }
3009
0
    }
3010
1.24k
    target = vp9_calc_pframe_target_size_one_pass_vbr(cpi);
3011
1.24k
    vp9_rc_set_frame_target(cpi, target);
3012
1.24k
  }
3013
19.0k
  rc->prev_avg_source_sad_lag = avg_source_sad_lag;
3014
19.0k
}
3015
3016
// Compute average source sad (temporal sad: between current source and
3017
// previous source) over a subset of superblocks. Use this is detect big changes
3018
// in content and allow rate control to react.
3019
// This function also handles special case of lag_in_frames, to measure content
3020
// level in #future frames set by the lag_in_frames.
3021
20.6k
void vp9_scene_detection_onepass(VP9_COMP *cpi) {
3022
20.6k
  VP9_COMMON *const cm = &cpi->common;
3023
20.6k
  RATE_CONTROL *const rc = &cpi->rc;
3024
20.6k
  YV12_BUFFER_CONFIG const *unscaled_src = cpi->un_scaled_source;
3025
20.6k
  YV12_BUFFER_CONFIG const *unscaled_last_src = cpi->unscaled_last_source;
3026
20.6k
  uint8_t *src_y;
3027
20.6k
  int src_ystride;
3028
20.6k
  int src_width;
3029
20.6k
  int src_height;
3030
20.6k
  uint8_t *last_src_y;
3031
20.6k
  int last_src_ystride;
3032
20.6k
  int last_src_width;
3033
20.6k
  int last_src_height;
3034
20.6k
  if (cpi->un_scaled_source == NULL || cpi->unscaled_last_source == NULL ||
3035
20.6k
      (cpi->use_svc && cpi->svc.current_superframe == 0))
3036
1.63k
    return;
3037
19.0k
  src_y = unscaled_src->y_buffer;
3038
19.0k
  src_ystride = unscaled_src->y_stride;
3039
19.0k
  src_width = unscaled_src->y_width;
3040
19.0k
  src_height = unscaled_src->y_height;
3041
19.0k
  last_src_y = unscaled_last_src->y_buffer;
3042
19.0k
  last_src_ystride = unscaled_last_src->y_stride;
3043
19.0k
  last_src_width = unscaled_last_src->y_width;
3044
19.0k
  last_src_height = unscaled_last_src->y_height;
3045
19.0k
#if CONFIG_VP9_HIGHBITDEPTH
3046
19.0k
  if (cm->use_highbitdepth) return;
3047
19.0k
#endif
3048
19.0k
  rc->high_source_sad = 0;
3049
19.0k
  rc->high_num_blocks_with_motion = 0;
3050
  // For SVC: scene detection is only checked on first spatial layer of
3051
  // the superframe using the original/unscaled resolutions.
3052
19.0k
  if (cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode &&
3053
19.0k
      src_width == last_src_width && src_height == last_src_height) {
3054
19.0k
    YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL };
3055
19.0k
    int num_mi_cols = cm->mi_cols;
3056
19.0k
    int num_mi_rows = cm->mi_rows;
3057
19.0k
    int start_frame = 0;
3058
19.0k
    int frames_to_buffer = 1;
3059
19.0k
    int frame = 0;
3060
19.0k
    int scene_cut_force_key_frame = 0;
3061
19.0k
    int num_zero_temp_sad = 0;
3062
19.0k
    uint64_t avg_sad_current = 0;
3063
19.0k
    uint32_t min_thresh = 20000;  // ~5 * 64 * 64
3064
19.0k
    float thresh = 8.0f;
3065
19.0k
    uint32_t thresh_key = 140000;
3066
19.0k
    if (cpi->oxcf.speed <= 5) thresh_key = 240000;
3067
19.0k
    if (cpi->oxcf.content != VP9E_CONTENT_SCREEN) min_thresh = 65000;
3068
19.0k
    if (cpi->oxcf.rc_mode == VPX_VBR) thresh = 2.1f;
3069
19.0k
    if (cpi->use_svc && cpi->svc.number_spatial_layers > 1) {
3070
0
      const int aligned_width = ALIGN_POWER_OF_TWO(src_width, MI_SIZE_LOG2);
3071
0
      const int aligned_height = ALIGN_POWER_OF_TWO(src_height, MI_SIZE_LOG2);
3072
0
      num_mi_cols = aligned_width >> MI_SIZE_LOG2;
3073
0
      num_mi_rows = aligned_height >> MI_SIZE_LOG2;
3074
0
    }
3075
19.0k
    if (cpi->oxcf.lag_in_frames > 0) {
3076
19.0k
      frames_to_buffer = (cm->current_video_frame == 1)
3077
19.0k
                             ? (int)vp9_lookahead_depth(cpi->lookahead) - 1
3078
19.0k
                             : 2;
3079
19.0k
      start_frame = (int)vp9_lookahead_depth(cpi->lookahead) - 1;
3080
63.0k
      for (frame = 0; frame < frames_to_buffer; ++frame) {
3081
44.0k
        const int lagframe_idx = start_frame - frame;
3082
44.0k
        if (lagframe_idx >= 0) {
3083
41.6k
          struct lookahead_entry *buf =
3084
41.6k
              vp9_lookahead_peek(cpi->lookahead, lagframe_idx);
3085
41.6k
          frames[frame] = &buf->img;
3086
41.6k
        }
3087
44.0k
      }
3088
      // The avg_sad for this current frame is the value of frame#1
3089
      // (first future frame) from previous frame.
3090
19.0k
      avg_sad_current = rc->avg_source_sad[1];
3091
19.0k
      if (avg_sad_current >
3092
19.0k
              VPXMAX(min_thresh,
3093
19.0k
                     (unsigned int)(rc->avg_source_sad[0] * thresh)) &&
3094
19.0k
          cm->current_video_frame > (unsigned int)cpi->oxcf.lag_in_frames)
3095
0
        rc->high_source_sad = 1;
3096
19.0k
      else
3097
19.0k
        rc->high_source_sad = 0;
3098
19.0k
      if (rc->high_source_sad && avg_sad_current > thresh_key)
3099
0
        scene_cut_force_key_frame = 1;
3100
      // Update recursive average for current frame.
3101
19.0k
      if (avg_sad_current > 0)
3102
84
        rc->avg_source_sad[0] =
3103
84
            (3 * rc->avg_source_sad[0] + avg_sad_current) >> 2;
3104
      // Shift back data, starting at frame#1.
3105
456k
      for (frame = 1; frame < cpi->oxcf.lag_in_frames - 1; ++frame)
3106
437k
        rc->avg_source_sad[frame] = rc->avg_source_sad[frame + 1];
3107
19.0k
    }
3108
63.0k
    for (frame = 0; frame < frames_to_buffer; ++frame) {
3109
44.0k
      if (cpi->oxcf.lag_in_frames == 0 ||
3110
44.0k
          (frames[frame] != NULL && frames[frame + 1] != NULL &&
3111
44.0k
           frames[frame]->y_width == frames[frame + 1]->y_width &&
3112
44.0k
           frames[frame]->y_height == frames[frame + 1]->y_height)) {
3113
23.8k
        int sbi_row, sbi_col;
3114
23.8k
        const int lagframe_idx =
3115
23.8k
            (cpi->oxcf.lag_in_frames == 0) ? 0 : start_frame - frame + 1;
3116
23.8k
        const BLOCK_SIZE bsize = BLOCK_64X64;
3117
        // Loop over sub-sample of frame, compute average sad over 64x64 blocks.
3118
23.8k
        uint64_t avg_sad = 0;
3119
23.8k
        uint64_t tmp_sad = 0;
3120
23.8k
        int num_samples = 0;
3121
23.8k
        int sb_cols = (num_mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
3122
23.8k
        int sb_rows = (num_mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
3123
23.8k
        if (cpi->oxcf.lag_in_frames > 0) {
3124
23.8k
          src_y = frames[frame]->y_buffer;
3125
23.8k
          src_ystride = frames[frame]->y_stride;
3126
23.8k
          last_src_y = frames[frame + 1]->y_buffer;
3127
23.8k
          last_src_ystride = frames[frame + 1]->y_stride;
3128
23.8k
        }
3129
23.8k
        num_zero_temp_sad = 0;
3130
48.8k
        for (sbi_row = 0; sbi_row < sb_rows; ++sbi_row) {
3131
56.6k
          for (sbi_col = 0; sbi_col < sb_cols; ++sbi_col) {
3132
            // Checker-board pattern, ignore boundary.
3133
31.5k
            if (((sbi_row > 0 && sbi_col > 0) &&
3134
31.5k
                 (sbi_row < sb_rows - 1 && sbi_col < sb_cols - 1) &&
3135
31.5k
                 ((sbi_row % 2 == 0 && sbi_col % 2 == 0) ||
3136
770
                  (sbi_row % 2 != 0 && sbi_col % 2 != 0)))) {
3137
406
              tmp_sad = cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
3138
406
                                               last_src_ystride);
3139
406
              avg_sad += tmp_sad;
3140
406
              num_samples++;
3141
406
              if (tmp_sad == 0) num_zero_temp_sad++;
3142
406
            }
3143
31.5k
            src_y += 64;
3144
31.5k
            last_src_y += 64;
3145
31.5k
          }
3146
25.0k
          src_y += (src_ystride << 6) - (sb_cols << 6);
3147
25.0k
          last_src_y += (last_src_ystride << 6) - (sb_cols << 6);
3148
25.0k
        }
3149
23.8k
        if (num_samples > 0) avg_sad = avg_sad / num_samples;
3150
        // Set high_source_sad flag if we detect very high increase in avg_sad
3151
        // between current and previous frame value(s). Use minimum threshold
3152
        // for cases where there is small change from content that is completely
3153
        // static.
3154
23.8k
        if (lagframe_idx == 0) {
3155
0
          if (avg_sad >
3156
0
                  VPXMAX(min_thresh,
3157
0
                         (unsigned int)(rc->avg_source_sad[0] * thresh)) &&
3158
0
              rc->frames_since_key > 1 + cpi->svc.number_spatial_layers &&
3159
0
              num_zero_temp_sad < 3 * (num_samples >> 2))
3160
0
            rc->high_source_sad = 1;
3161
0
          else
3162
0
            rc->high_source_sad = 0;
3163
0
          if (rc->high_source_sad && avg_sad > thresh_key)
3164
0
            scene_cut_force_key_frame = 1;
3165
0
          if (avg_sad > 0 || cpi->oxcf.rc_mode == VPX_CBR)
3166
0
            rc->avg_source_sad[0] = (3 * rc->avg_source_sad[0] + avg_sad) >> 2;
3167
23.8k
        } else {
3168
23.8k
          rc->avg_source_sad[lagframe_idx] = avg_sad;
3169
23.8k
        }
3170
23.8k
        if (num_zero_temp_sad < (3 * num_samples >> 2))
3171
72
          rc->high_num_blocks_with_motion = 1;
3172
23.8k
      }
3173
44.0k
    }
3174
    // For CBR non-screen content mode, check if we should reset the rate
3175
    // control. Reset is done if high_source_sad is detected and the rate
3176
    // control is at very low QP with rate correction factor at min level.
3177
19.0k
    if (cpi->oxcf.rc_mode == VPX_CBR &&
3178
19.0k
        cpi->oxcf.content != VP9E_CONTENT_SCREEN && !cpi->use_svc) {
3179
0
      if (rc->high_source_sad && rc->last_q[INTER_FRAME] == rc->best_quality &&
3180
0
          rc->avg_frame_qindex[INTER_FRAME] < (rc->best_quality << 1) &&
3181
0
          rc->rate_correction_factors[INTER_NORMAL] == MIN_BPB_FACTOR) {
3182
0
        rc->rate_correction_factors[INTER_NORMAL] = 0.5;
3183
0
        rc->avg_frame_qindex[INTER_FRAME] = rc->worst_quality;
3184
0
        rc->buffer_level = rc->optimal_buffer_level;
3185
0
        rc->bits_off_target = rc->optimal_buffer_level;
3186
0
        rc->reset_high_source_sad = 1;
3187
0
      }
3188
0
      if (cm->frame_type != KEY_FRAME && rc->reset_high_source_sad)
3189
0
        rc->this_frame_target = rc->avg_frame_bandwidth;
3190
0
    }
3191
    // For SVC the new (updated) avg_source_sad[0] for the current superframe
3192
    // updates the setting for all layers.
3193
19.0k
    if (cpi->use_svc) {
3194
0
      int sl, tl;
3195
0
      SVC *const svc = &cpi->svc;
3196
0
      for (sl = 0; sl < svc->number_spatial_layers; ++sl)
3197
0
        for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
3198
0
          int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
3199
0
          LAYER_CONTEXT *const lc = &svc->layer_context[layer];
3200
0
          RATE_CONTROL *const lrc = &lc->rc;
3201
0
          lrc->avg_source_sad[0] = rc->avg_source_sad[0];
3202
0
        }
3203
0
    }
3204
    // For VBR, under scene change/high content change, force golden refresh.
3205
19.0k
    if (cpi->oxcf.rc_mode == VPX_VBR && cm->frame_type != KEY_FRAME &&
3206
19.0k
        rc->high_source_sad && rc->frames_to_key > 3 &&
3207
19.0k
        rc->count_last_scene_change > 4 &&
3208
19.0k
        cpi->ext_refresh_frame_flags_pending == 0) {
3209
0
      int target;
3210
0
      cpi->refresh_golden_frame = 1;
3211
0
      if (scene_cut_force_key_frame) cm->frame_type = KEY_FRAME;
3212
0
      rc->source_alt_ref_pending = 0;
3213
0
      if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf)
3214
0
        rc->source_alt_ref_pending = 1;
3215
0
      rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
3216
0
      rc->baseline_gf_interval =
3217
0
          VPXMIN(20, VPXMAX(10, rc->baseline_gf_interval));
3218
0
      adjust_gfint_frame_constraint(cpi, rc->frames_to_key);
3219
0
      rc->frames_till_gf_update_due = rc->baseline_gf_interval;
3220
0
      target = vp9_calc_pframe_target_size_one_pass_vbr(cpi);
3221
0
      vp9_rc_set_frame_target(cpi, target);
3222
0
      rc->count_last_scene_change = 0;
3223
19.0k
    } else {
3224
19.0k
      rc->count_last_scene_change++;
3225
19.0k
    }
3226
    // If lag_in_frame is used, set the gf boost and interval.
3227
19.0k
    if (cpi->oxcf.lag_in_frames > 0)
3228
19.0k
      adjust_gf_boost_lag_one_pass_vbr(cpi, avg_sad_current);
3229
19.0k
  }
3230
19.0k
}
3231
3232
// Test if encoded frame will significantly overshoot the target bitrate, and
3233
// if so, set the QP, reset/adjust some rate control parameters, and return 1.
3234
// frame_size = -1 means frame has not been encoded.
3235
0
int vp9_encodedframe_overshoot(VP9_COMP *cpi, int frame_size, int *q) {
3236
0
  VP9_COMMON *const cm = &cpi->common;
3237
0
  RATE_CONTROL *const rc = &cpi->rc;
3238
0
  SPEED_FEATURES *const sf = &cpi->sf;
3239
0
  int thresh_qp = 7 * (rc->worst_quality >> 3);
3240
0
  int thresh_rate = rc->avg_frame_bandwidth << 3;
3241
  // Lower thresh_qp for video (more overshoot at lower Q) to be
3242
  // more conservative for video.
3243
0
  if (cpi->oxcf.content != VP9E_CONTENT_SCREEN)
3244
0
    thresh_qp = 3 * (rc->worst_quality >> 2);
3245
  // If this decision is not based on an encoded frame size but just on
3246
  // scene/slide change detection (i.e., re_encode_overshoot_cbr_rt ==
3247
  // FAST_DETECTION_MAXQ), for now skip the (frame_size > thresh_rate)
3248
  // condition in this case.
3249
  // TODO(marpan): Use a better size/rate condition for this case and
3250
  // adjust thresholds.
3251
0
  if ((sf->overshoot_detection_cbr_rt == FAST_DETECTION_MAXQ ||
3252
0
       frame_size > thresh_rate) &&
3253
0
      cm->base_qindex < thresh_qp) {
3254
0
    double rate_correction_factor =
3255
0
        cpi->rc.rate_correction_factors[INTER_NORMAL];
3256
0
    const int target_size = cpi->rc.avg_frame_bandwidth;
3257
0
    double new_correction_factor;
3258
0
    int target_bits_per_mb;
3259
0
    double q2;
3260
0
    int enumerator;
3261
    // Force a re-encode, and for now use max-QP.
3262
0
    *q = cpi->rc.worst_quality;
3263
0
    cpi->cyclic_refresh->counter_encode_maxq_scene_change = 0;
3264
0
    cpi->rc.re_encode_maxq_scene_change = 1;
3265
    // If the frame_size is much larger than the threshold (big content change)
3266
    // and the encoded frame used alot of Intra modes, then force hybrid_intra
3267
    // encoding for the re-encode on this scene change. hybrid_intra will
3268
    // use rd-based intra mode selection for small blocks.
3269
0
    if (sf->overshoot_detection_cbr_rt == RE_ENCODE_MAXQ &&
3270
0
        frame_size > (thresh_rate << 1) && cpi->svc.spatial_layer_id == 0) {
3271
0
      MODE_INFO **mi = cm->mi_grid_visible;
3272
0
      int sum_intra_usage = 0;
3273
0
      int mi_row, mi_col;
3274
0
      for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) {
3275
0
        for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) {
3276
0
          if (mi[0]->ref_frame[0] == INTRA_FRAME) sum_intra_usage++;
3277
0
          mi++;
3278
0
        }
3279
0
        mi += 8;
3280
0
      }
3281
0
      sum_intra_usage = 100 * sum_intra_usage / (cm->mi_rows * cm->mi_cols);
3282
0
      if (sum_intra_usage > 60) cpi->rc.hybrid_intra_scene_change = 1;
3283
0
    }
3284
    // Adjust avg_frame_qindex, buffer_level, and rate correction factors, as
3285
    // these parameters will affect QP selection for subsequent frames. If they
3286
    // have settled down to a very different (low QP) state, then not adjusting
3287
    // them may cause next frame to select low QP and overshoot again.
3288
0
    cpi->rc.avg_frame_qindex[INTER_FRAME] = *q;
3289
0
    rc->buffer_level = rc->optimal_buffer_level;
3290
0
    rc->bits_off_target = rc->optimal_buffer_level;
3291
    // Reset rate under/over-shoot flags.
3292
0
    cpi->rc.rc_1_frame = 0;
3293
0
    cpi->rc.rc_2_frame = 0;
3294
    // Adjust rate correction factor.
3295
0
    target_bits_per_mb =
3296
0
        (int)(((uint64_t)target_size << BPER_MB_NORMBITS) / cm->MBs);
3297
    // Rate correction factor based on target_bits_per_mb and qp (==max_QP).
3298
    // This comes from the inverse computation of vp9_rc_bits_per_mb().
3299
0
    q2 = vp9_convert_qindex_to_q(*q, cm->bit_depth);
3300
0
    enumerator = 1800000;  // Factor for inter frame.
3301
0
    enumerator += (int)(enumerator * q2) >> 12;
3302
0
    new_correction_factor = (double)target_bits_per_mb * q2 / enumerator;
3303
0
    if (new_correction_factor > rate_correction_factor) {
3304
0
      rate_correction_factor =
3305
0
          VPXMIN(2.0 * rate_correction_factor, new_correction_factor);
3306
0
      if (rate_correction_factor > MAX_BPB_FACTOR)
3307
0
        rate_correction_factor = MAX_BPB_FACTOR;
3308
0
      cpi->rc.rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
3309
0
    }
3310
    // For temporal layers, reset the rate control parametes across all
3311
    // temporal layers.
3312
    // If the first_spatial_layer_to_encode > 0, then this superframe has
3313
    // skipped lower base layers. So in this case we should also reset and
3314
    // force max-q for spatial layers < first_spatial_layer_to_encode.
3315
    // For the case of no inter-layer prediction on delta frames: reset and
3316
    // force max-q for all spatial layers, to avoid excessive frame drops.
3317
0
    if (cpi->use_svc) {
3318
0
      int tl = 0;
3319
0
      int sl = 0;
3320
0
      SVC *svc = &cpi->svc;
3321
0
      int num_spatial_layers = VPXMAX(1, svc->first_spatial_layer_to_encode);
3322
0
      if (svc->disable_inter_layer_pred != INTER_LAYER_PRED_ON)
3323
0
        num_spatial_layers = svc->number_spatial_layers;
3324
0
      for (sl = 0; sl < num_spatial_layers; ++sl) {
3325
0
        for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
3326
0
          const int layer =
3327
0
              LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
3328
0
          LAYER_CONTEXT *lc = &svc->layer_context[layer];
3329
0
          RATE_CONTROL *lrc = &lc->rc;
3330
0
          lrc->avg_frame_qindex[INTER_FRAME] = *q;
3331
0
          lrc->buffer_level = lrc->optimal_buffer_level;
3332
0
          lrc->bits_off_target = lrc->optimal_buffer_level;
3333
0
          lrc->rc_1_frame = 0;
3334
0
          lrc->rc_2_frame = 0;
3335
0
          lrc->rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
3336
0
          lrc->force_max_q = 1;
3337
0
        }
3338
0
      }
3339
0
    }
3340
0
    return 1;
3341
0
  } else {
3342
0
    return 0;
3343
0
  }
3344
0
}