Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (c) 2007-2008 CSIRO |
2 | | Copyright (c) 2007-2009 Xiph.Org Foundation |
3 | | Copyright (c) 2008-2009 Gregory Maxwell |
4 | | Written by Jean-Marc Valin and Gregory Maxwell */ |
5 | | /* |
6 | | Redistribution and use in source and binary forms, with or without |
7 | | modification, are permitted provided that the following conditions |
8 | | are met: |
9 | | |
10 | | - Redistributions of source code must retain the above copyright |
11 | | notice, this list of conditions and the following disclaimer. |
12 | | |
13 | | - Redistributions in binary form must reproduce the above copyright |
14 | | notice, this list of conditions and the following disclaimer in the |
15 | | documentation and/or other materials provided with the distribution. |
16 | | |
17 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
18 | | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
19 | | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
20 | | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
21 | | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
22 | | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
23 | | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
24 | | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
25 | | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
26 | | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
27 | | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | |
30 | | #ifdef HAVE_CONFIG_H |
31 | | #include "config.h" |
32 | | #endif |
33 | | |
34 | | #include <math.h> |
35 | | #include "bands.h" |
36 | | #include "modes.h" |
37 | | #include "vq.h" |
38 | | #include "cwrs.h" |
39 | | #include "stack_alloc.h" |
40 | | #include "os_support.h" |
41 | | #include "mathops.h" |
42 | | #include "rate.h" |
43 | | #include "quant_bands.h" |
44 | | #include "pitch.h" |
45 | | |
46 | | int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev) |
47 | 0 | { |
48 | 0 | int i; |
49 | 0 | for (i=0;i<N;i++) |
50 | 0 | { |
51 | 0 | if (val < thresholds[i]) |
52 | 0 | break; |
53 | 0 | } |
54 | 0 | if (i>prev && val < thresholds[prev]+hysteresis[prev]) |
55 | 0 | i=prev; |
56 | 0 | if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1]) |
57 | 0 | i=prev; |
58 | 0 | return i; |
59 | 0 | } |
60 | | |
61 | | opus_uint32 celt_lcg_rand(opus_uint32 seed) |
62 | 0 | { |
63 | 0 | return 1664525 * seed + 1013904223; |
64 | 0 | } |
65 | | |
66 | | /* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness |
67 | | with this approximation is important because it has an impact on the bit allocation */ |
68 | | opus_int16 bitexact_cos(opus_int16 x) |
69 | 0 | { |
70 | 0 | opus_int32 tmp; |
71 | 0 | opus_int16 x2; |
72 | 0 | tmp = (4096+((opus_int32)(x)*(x)))>>13; |
73 | 0 | celt_sig_assert(tmp<=32767); |
74 | 0 | x2 = tmp; |
75 | 0 | x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2))))); |
76 | 0 | celt_sig_assert(x2<=32766); |
77 | 0 | return 1+x2; |
78 | 0 | } |
79 | | |
80 | | int bitexact_log2tan(int isin,int icos) |
81 | 0 | { |
82 | 0 | int lc; |
83 | 0 | int ls; |
84 | 0 | lc=EC_ILOG(icos); |
85 | 0 | ls=EC_ILOG(isin); |
86 | 0 | icos<<=15-lc; |
87 | 0 | isin<<=15-ls; |
88 | 0 | return (ls-lc)*(1<<11) |
89 | 0 | +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932) |
90 | 0 | -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932); |
91 | 0 | } |
92 | | |
93 | | #ifdef FIXED_POINT |
94 | | /* Compute the amplitude (sqrt energy) in each of the bands */ |
95 | | void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch) |
96 | | { |
97 | | int i, c, N; |
98 | | const opus_int16 *eBands = m->eBands; |
99 | | (void)arch; |
100 | | N = m->shortMdctSize<<LM; |
101 | | c=0; do { |
102 | | for (i=0;i<end;i++) |
103 | | { |
104 | | int j; |
105 | | opus_val32 maxval=0; |
106 | | opus_val32 sum = 0; |
107 | | |
108 | | maxval = celt_maxabs32(&X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM); |
109 | | if (maxval > 0) |
110 | | { |
111 | | int shift = celt_ilog2(maxval) - 14 + (((m->logN[i]>>BITRES)+LM+1)>>1); |
112 | | j=eBands[i]<<LM; |
113 | | if (shift>0) |
114 | | { |
115 | | do { |
116 | | sum = MAC16_16(sum, EXTRACT16(SHR32(X[j+c*N],shift)), |
117 | | EXTRACT16(SHR32(X[j+c*N],shift))); |
118 | | } while (++j<eBands[i+1]<<LM); |
119 | | } else { |
120 | | do { |
121 | | sum = MAC16_16(sum, EXTRACT16(SHL32(X[j+c*N],-shift)), |
122 | | EXTRACT16(SHL32(X[j+c*N],-shift))); |
123 | | } while (++j<eBands[i+1]<<LM); |
124 | | } |
125 | | /* We're adding one here to ensure the normalized band isn't larger than unity norm */ |
126 | | bandE[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift); |
127 | | } else { |
128 | | bandE[i+c*m->nbEBands] = EPSILON; |
129 | | } |
130 | | /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ |
131 | | } |
132 | | } while (++c<C); |
133 | | /*printf ("\n");*/ |
134 | | } |
135 | | |
136 | | /* Normalise each band such that the energy is one. */ |
137 | | void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) |
138 | | { |
139 | | int i, c, N; |
140 | | const opus_int16 *eBands = m->eBands; |
141 | | N = M*m->shortMdctSize; |
142 | | c=0; do { |
143 | | i=0; do { |
144 | | opus_val16 g; |
145 | | int j,shift; |
146 | | opus_val16 E; |
147 | | shift = celt_zlog2(bandE[i+c*m->nbEBands])-13; |
148 | | E = VSHR32(bandE[i+c*m->nbEBands], shift); |
149 | | g = EXTRACT16(celt_rcp(SHL32(E,3))); |
150 | | j=M*eBands[i]; do { |
151 | | X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g); |
152 | | } while (++j<M*eBands[i+1]); |
153 | | } while (++i<end); |
154 | | } while (++c<C); |
155 | | } |
156 | | |
157 | | #else /* FIXED_POINT */ |
158 | | /* Compute the amplitude (sqrt energy) in each of the bands */ |
159 | | void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch) |
160 | 0 | { |
161 | 0 | int i, c, N; |
162 | 0 | const opus_int16 *eBands = m->eBands; |
163 | 0 | N = m->shortMdctSize<<LM; |
164 | 0 | c=0; do { |
165 | 0 | for (i=0;i<end;i++) |
166 | 0 | { |
167 | 0 | opus_val32 sum; |
168 | 0 | sum = 1e-27f + celt_inner_prod(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM, arch); |
169 | 0 | bandE[i+c*m->nbEBands] = celt_sqrt(sum); |
170 | | /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ |
171 | 0 | } |
172 | 0 | } while (++c<C); |
173 | | /*printf ("\n");*/ |
174 | 0 | } |
175 | | |
176 | | /* Normalise each band such that the energy is one. */ |
177 | | void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) |
178 | 0 | { |
179 | 0 | int i, c, N; |
180 | 0 | const opus_int16 *eBands = m->eBands; |
181 | 0 | N = M*m->shortMdctSize; |
182 | 0 | c=0; do { |
183 | 0 | for (i=0;i<end;i++) |
184 | 0 | { |
185 | 0 | int j; |
186 | 0 | opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]); |
187 | 0 | for (j=M*eBands[i];j<M*eBands[i+1];j++) |
188 | 0 | X[j+c*N] = freq[j+c*N]*g; |
189 | 0 | } |
190 | 0 | } while (++c<C); |
191 | 0 | } |
192 | | |
193 | | #endif /* FIXED_POINT */ |
194 | | |
195 | | /* De-normalise the energy to produce the synthesis from the unit-energy bands */ |
196 | | void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, |
197 | | celt_sig * OPUS_RESTRICT freq, const opus_val16 *bandLogE, int start, |
198 | | int end, int M, int downsample, int silence) |
199 | 0 | { |
200 | 0 | int i, N; |
201 | 0 | int bound; |
202 | 0 | celt_sig * OPUS_RESTRICT f; |
203 | 0 | const celt_norm * OPUS_RESTRICT x; |
204 | 0 | const opus_int16 *eBands = m->eBands; |
205 | 0 | N = M*m->shortMdctSize; |
206 | 0 | bound = M*eBands[end]; |
207 | 0 | if (downsample!=1) |
208 | 0 | bound = IMIN(bound, N/downsample); |
209 | 0 | if (silence) |
210 | 0 | { |
211 | 0 | bound = 0; |
212 | 0 | start = end = 0; |
213 | 0 | } |
214 | 0 | f = freq; |
215 | 0 | x = X+M*eBands[start]; |
216 | 0 | for (i=0;i<M*eBands[start];i++) |
217 | 0 | *f++ = 0; |
218 | 0 | for (i=start;i<end;i++) |
219 | 0 | { |
220 | 0 | int j, band_end; |
221 | 0 | opus_val16 g; |
222 | 0 | opus_val16 lg; |
223 | | #ifdef FIXED_POINT |
224 | | int shift; |
225 | | #endif |
226 | 0 | j=M*eBands[i]; |
227 | 0 | band_end = M*eBands[i+1]; |
228 | 0 | lg = SATURATE16(ADD32(bandLogE[i], SHL32((opus_val32)eMeans[i],6))); |
229 | 0 | #ifndef FIXED_POINT |
230 | 0 | g = celt_exp2(MIN32(32.f, lg)); |
231 | | #else |
232 | | /* Handle the integer part of the log energy */ |
233 | | shift = 16-(lg>>DB_SHIFT); |
234 | | if (shift>31) |
235 | | { |
236 | | shift=0; |
237 | | g=0; |
238 | | } else { |
239 | | /* Handle the fractional part. */ |
240 | | g = celt_exp2_frac(lg&((1<<DB_SHIFT)-1)); |
241 | | } |
242 | | /* Handle extreme gains with negative shift. */ |
243 | | if (shift<0) |
244 | | { |
245 | | /* For shift <= -2 and g > 16384 we'd be likely to overflow, so we're |
246 | | capping the gain here, which is equivalent to a cap of 18 on lg. |
247 | | This shouldn't trigger unless the bitstream is already corrupted. */ |
248 | | if (shift <= -2) |
249 | | { |
250 | | g = 16384; |
251 | | shift = -2; |
252 | | } |
253 | | do { |
254 | | *f++ = SHL32(MULT16_16(*x++, g), -shift); |
255 | | } while (++j<band_end); |
256 | | } else |
257 | | #endif |
258 | | /* Be careful of the fixed-point "else" just above when changing this code */ |
259 | 0 | do { |
260 | 0 | *f++ = SHR32(MULT16_16(*x++, g), shift); |
261 | 0 | } while (++j<band_end); |
262 | 0 | } |
263 | 0 | celt_assert(start <= end); |
264 | 0 | OPUS_CLEAR(&freq[bound], N-bound); |
265 | 0 | } |
266 | | |
267 | | /* This prevents energy collapse for transients with multiple short MDCTs */ |
268 | | void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size, |
269 | | int start, int end, const opus_val16 *logE, const opus_val16 *prev1logE, |
270 | | const opus_val16 *prev2logE, const int *pulses, opus_uint32 seed, int arch) |
271 | 0 | { |
272 | 0 | int c, i, j, k; |
273 | 0 | for (i=start;i<end;i++) |
274 | 0 | { |
275 | 0 | int N0; |
276 | 0 | opus_val16 thresh, sqrt_1; |
277 | 0 | int depth; |
278 | | #ifdef FIXED_POINT |
279 | | int shift; |
280 | | opus_val32 thresh32; |
281 | | #endif |
282 | |
|
283 | 0 | N0 = m->eBands[i+1]-m->eBands[i]; |
284 | | /* depth in 1/8 bits */ |
285 | 0 | celt_sig_assert(pulses[i]>=0); |
286 | 0 | depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM; |
287 | |
|
288 | | #ifdef FIXED_POINT |
289 | | thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1); |
290 | | thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32)); |
291 | | { |
292 | | opus_val32 t; |
293 | | t = N0<<LM; |
294 | | shift = celt_ilog2(t)>>1; |
295 | | t = SHL32(t, (7-shift)<<1); |
296 | | sqrt_1 = celt_rsqrt_norm(t); |
297 | | } |
298 | | #else |
299 | 0 | thresh = .5f*celt_exp2(-.125f*depth); |
300 | 0 | sqrt_1 = celt_rsqrt(N0<<LM); |
301 | 0 | #endif |
302 | |
|
303 | 0 | c=0; do |
304 | 0 | { |
305 | 0 | celt_norm *X; |
306 | 0 | opus_val16 prev1; |
307 | 0 | opus_val16 prev2; |
308 | 0 | opus_val32 Ediff; |
309 | 0 | opus_val16 r; |
310 | 0 | int renormalize=0; |
311 | 0 | prev1 = prev1logE[c*m->nbEBands+i]; |
312 | 0 | prev2 = prev2logE[c*m->nbEBands+i]; |
313 | 0 | if (C==1) |
314 | 0 | { |
315 | 0 | prev1 = MAX16(prev1,prev1logE[m->nbEBands+i]); |
316 | 0 | prev2 = MAX16(prev2,prev2logE[m->nbEBands+i]); |
317 | 0 | } |
318 | 0 | Ediff = EXTEND32(logE[c*m->nbEBands+i])-EXTEND32(MIN16(prev1,prev2)); |
319 | 0 | Ediff = MAX32(0, Ediff); |
320 | |
|
321 | | #ifdef FIXED_POINT |
322 | | if (Ediff < 16384) |
323 | | { |
324 | | opus_val32 r32 = SHR32(celt_exp2(-EXTRACT16(Ediff)),1); |
325 | | r = 2*MIN16(16383,r32); |
326 | | } else { |
327 | | r = 0; |
328 | | } |
329 | | if (LM==3) |
330 | | r = MULT16_16_Q14(23170, MIN32(23169, r)); |
331 | | r = SHR16(MIN16(thresh, r),1); |
332 | | r = SHR32(MULT16_16_Q15(sqrt_1, r),shift); |
333 | | #else |
334 | | /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because |
335 | | short blocks don't have the same energy as long */ |
336 | 0 | r = 2.f*celt_exp2(-Ediff); |
337 | 0 | if (LM==3) |
338 | 0 | r *= 1.41421356f; |
339 | 0 | r = MIN16(thresh, r); |
340 | 0 | r = r*sqrt_1; |
341 | 0 | #endif |
342 | 0 | X = X_+c*size+(m->eBands[i]<<LM); |
343 | 0 | for (k=0;k<1<<LM;k++) |
344 | 0 | { |
345 | | /* Detect collapse */ |
346 | 0 | if (!(collapse_masks[i*C+c]&1<<k)) |
347 | 0 | { |
348 | | /* Fill with noise */ |
349 | 0 | for (j=0;j<N0;j++) |
350 | 0 | { |
351 | 0 | seed = celt_lcg_rand(seed); |
352 | 0 | X[(j<<LM)+k] = (seed&0x8000 ? r : -r); |
353 | 0 | } |
354 | 0 | renormalize = 1; |
355 | 0 | } |
356 | 0 | } |
357 | | /* We just added some energy, so we need to renormalise */ |
358 | 0 | if (renormalize) |
359 | 0 | renormalise_vector(X, N0<<LM, Q15ONE, arch); |
360 | 0 | } while (++c<C); |
361 | 0 | } |
362 | 0 | } |
363 | | |
364 | | /* Compute the weights to use for optimizing normalized distortion across |
365 | | channels. We use the amplitude to weight square distortion, which means |
366 | | that we use the square root of the value we would have been using if we |
367 | | wanted to minimize the MSE in the non-normalized domain. This roughly |
368 | | corresponds to some quick-and-dirty perceptual experiments I ran to |
369 | | measure inter-aural masking (there doesn't seem to be any published data |
370 | | on the topic). */ |
371 | | static void compute_channel_weights(celt_ener Ex, celt_ener Ey, opus_val16 w[2]) |
372 | 0 | { |
373 | 0 | celt_ener minE; |
374 | | #ifdef FIXED_POINT |
375 | | int shift; |
376 | | #endif |
377 | 0 | minE = MIN32(Ex, Ey); |
378 | | /* Adjustment to make the weights a bit more conservative. */ |
379 | 0 | Ex = ADD32(Ex, minE/3); |
380 | 0 | Ey = ADD32(Ey, minE/3); |
381 | | #ifdef FIXED_POINT |
382 | | shift = celt_ilog2(EPSILON+MAX32(Ex, Ey))-14; |
383 | | #endif |
384 | 0 | w[0] = VSHR32(Ex, shift); |
385 | 0 | w[1] = VSHR32(Ey, shift); |
386 | 0 | } |
387 | | |
388 | | static void intensity_stereo(const CELTMode *m, celt_norm * OPUS_RESTRICT X, const celt_norm * OPUS_RESTRICT Y, const celt_ener *bandE, int bandID, int N) |
389 | 0 | { |
390 | 0 | int i = bandID; |
391 | 0 | int j; |
392 | 0 | opus_val16 a1, a2; |
393 | 0 | opus_val16 left, right; |
394 | 0 | opus_val16 norm; |
395 | | #ifdef FIXED_POINT |
396 | | int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13; |
397 | | #endif |
398 | 0 | left = VSHR32(bandE[i],shift); |
399 | 0 | right = VSHR32(bandE[i+m->nbEBands],shift); |
400 | 0 | norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); |
401 | 0 | a1 = DIV32_16(SHL32(EXTEND32(left),14),norm); |
402 | 0 | a2 = DIV32_16(SHL32(EXTEND32(right),14),norm); |
403 | 0 | for (j=0;j<N;j++) |
404 | 0 | { |
405 | 0 | celt_norm r, l; |
406 | 0 | l = X[j]; |
407 | 0 | r = Y[j]; |
408 | 0 | X[j] = EXTRACT16(SHR32(MAC16_16(MULT16_16(a1, l), a2, r), 14)); |
409 | | /* Side is not encoded, no need to calculate */ |
410 | 0 | } |
411 | 0 | } |
412 | | |
413 | | static void stereo_split(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, int N) |
414 | 0 | { |
415 | 0 | int j; |
416 | 0 | for (j=0;j<N;j++) |
417 | 0 | { |
418 | 0 | opus_val32 r, l; |
419 | 0 | l = MULT16_16(QCONST16(.70710678f, 15), X[j]); |
420 | 0 | r = MULT16_16(QCONST16(.70710678f, 15), Y[j]); |
421 | 0 | X[j] = EXTRACT16(SHR32(ADD32(l, r), 15)); |
422 | 0 | Y[j] = EXTRACT16(SHR32(SUB32(r, l), 15)); |
423 | 0 | } |
424 | 0 | } |
425 | | |
426 | | static void stereo_merge(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, opus_val16 mid, int N, int arch) |
427 | 0 | { |
428 | 0 | int j; |
429 | 0 | opus_val32 xp=0, side=0; |
430 | 0 | opus_val32 El, Er; |
431 | 0 | opus_val16 mid2; |
432 | | #ifdef FIXED_POINT |
433 | | int kl, kr; |
434 | | #endif |
435 | 0 | opus_val32 t, lgain, rgain; |
436 | | |
437 | | /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ |
438 | 0 | dual_inner_prod(Y, X, Y, N, &xp, &side, arch); |
439 | | /* Compensating for the mid normalization */ |
440 | 0 | xp = MULT16_32_Q15(mid, xp); |
441 | | /* mid and side are in Q15, not Q14 like X and Y */ |
442 | 0 | mid2 = SHR16(mid, 1); |
443 | 0 | El = MULT16_16(mid2, mid2) + side - 2*xp; |
444 | 0 | Er = MULT16_16(mid2, mid2) + side + 2*xp; |
445 | 0 | if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28)) |
446 | 0 | { |
447 | 0 | OPUS_COPY(Y, X, N); |
448 | 0 | return; |
449 | 0 | } |
450 | | |
451 | | #ifdef FIXED_POINT |
452 | | kl = celt_ilog2(El)>>1; |
453 | | kr = celt_ilog2(Er)>>1; |
454 | | #endif |
455 | 0 | t = VSHR32(El, (kl-7)<<1); |
456 | 0 | lgain = celt_rsqrt_norm(t); |
457 | 0 | t = VSHR32(Er, (kr-7)<<1); |
458 | 0 | rgain = celt_rsqrt_norm(t); |
459 | |
|
460 | | #ifdef FIXED_POINT |
461 | | if (kl < 7) |
462 | | kl = 7; |
463 | | if (kr < 7) |
464 | | kr = 7; |
465 | | #endif |
466 | |
|
467 | 0 | for (j=0;j<N;j++) |
468 | 0 | { |
469 | 0 | celt_norm r, l; |
470 | | /* Apply mid scaling (side is already scaled) */ |
471 | 0 | l = MULT16_16_P15(mid, X[j]); |
472 | 0 | r = Y[j]; |
473 | 0 | X[j] = EXTRACT16(PSHR32(MULT16_16(lgain, SUB16(l,r)), kl+1)); |
474 | 0 | Y[j] = EXTRACT16(PSHR32(MULT16_16(rgain, ADD16(l,r)), kr+1)); |
475 | 0 | } |
476 | 0 | } |
477 | | |
478 | | /* Decide whether we should spread the pulses in the current frame */ |
479 | | int spreading_decision(const CELTMode *m, const celt_norm *X, int *average, |
480 | | int last_decision, int *hf_average, int *tapset_decision, int update_hf, |
481 | | int end, int C, int M, const int *spread_weight) |
482 | 0 | { |
483 | 0 | int i, c, N0; |
484 | 0 | int sum = 0, nbBands=0; |
485 | 0 | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
486 | 0 | int decision; |
487 | 0 | int hf_sum=0; |
488 | |
|
489 | 0 | celt_assert(end>0); |
490 | |
|
491 | 0 | N0 = M*m->shortMdctSize; |
492 | |
|
493 | 0 | if (M*(eBands[end]-eBands[end-1]) <= 8) |
494 | 0 | return SPREAD_NONE; |
495 | 0 | c=0; do { |
496 | 0 | for (i=0;i<end;i++) |
497 | 0 | { |
498 | 0 | int j, N, tmp=0; |
499 | 0 | int tcount[3] = {0,0,0}; |
500 | 0 | const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0; |
501 | 0 | N = M*(eBands[i+1]-eBands[i]); |
502 | 0 | if (N<=8) |
503 | 0 | continue; |
504 | | /* Compute rough CDF of |x[j]| */ |
505 | 0 | for (j=0;j<N;j++) |
506 | 0 | { |
507 | 0 | opus_val32 x2N; /* Q13 */ |
508 | |
|
509 | 0 | x2N = MULT16_16(MULT16_16_Q15(x[j], x[j]), N); |
510 | 0 | if (x2N < QCONST16(0.25f,13)) |
511 | 0 | tcount[0]++; |
512 | 0 | if (x2N < QCONST16(0.0625f,13)) |
513 | 0 | tcount[1]++; |
514 | 0 | if (x2N < QCONST16(0.015625f,13)) |
515 | 0 | tcount[2]++; |
516 | 0 | } |
517 | | |
518 | | /* Only include four last bands (8 kHz and up) */ |
519 | 0 | if (i>m->nbEBands-4) |
520 | 0 | hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N); |
521 | 0 | tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); |
522 | 0 | sum += tmp*spread_weight[i]; |
523 | 0 | nbBands+=spread_weight[i]; |
524 | 0 | } |
525 | 0 | } while (++c<C); |
526 | |
|
527 | 0 | if (update_hf) |
528 | 0 | { |
529 | 0 | if (hf_sum) |
530 | 0 | hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end)); |
531 | 0 | *hf_average = (*hf_average+hf_sum)>>1; |
532 | 0 | hf_sum = *hf_average; |
533 | 0 | if (*tapset_decision==2) |
534 | 0 | hf_sum += 4; |
535 | 0 | else if (*tapset_decision==0) |
536 | 0 | hf_sum -= 4; |
537 | 0 | if (hf_sum > 22) |
538 | 0 | *tapset_decision=2; |
539 | 0 | else if (hf_sum > 18) |
540 | 0 | *tapset_decision=1; |
541 | 0 | else |
542 | 0 | *tapset_decision=0; |
543 | 0 | } |
544 | | /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ |
545 | 0 | celt_assert(nbBands>0); /* end has to be non-zero */ |
546 | 0 | celt_assert(sum>=0); |
547 | 0 | sum = celt_udiv((opus_int32)sum<<8, nbBands); |
548 | | /* Recursive averaging */ |
549 | 0 | sum = (sum+*average)>>1; |
550 | 0 | *average = sum; |
551 | | /* Hysteresis */ |
552 | 0 | sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; |
553 | 0 | if (sum < 80) |
554 | 0 | { |
555 | 0 | decision = SPREAD_AGGRESSIVE; |
556 | 0 | } else if (sum < 256) |
557 | 0 | { |
558 | 0 | decision = SPREAD_NORMAL; |
559 | 0 | } else if (sum < 384) |
560 | 0 | { |
561 | 0 | decision = SPREAD_LIGHT; |
562 | 0 | } else { |
563 | 0 | decision = SPREAD_NONE; |
564 | 0 | } |
565 | | #ifdef FUZZING |
566 | | decision = rand()&0x3; |
567 | | *tapset_decision=rand()%3; |
568 | | #endif |
569 | 0 | return decision; |
570 | 0 | } |
571 | | |
572 | | /* Indexing table for converting from natural Hadamard to ordery Hadamard |
573 | | This is essentially a bit-reversed Gray, on top of which we've added |
574 | | an inversion of the order because we want the DC at the end rather than |
575 | | the beginning. The lines are for N=2, 4, 8, 16 */ |
576 | | static const int ordery_table[] = { |
577 | | 1, 0, |
578 | | 3, 0, 2, 1, |
579 | | 7, 0, 4, 3, 6, 1, 5, 2, |
580 | | 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5, |
581 | | }; |
582 | | |
583 | | static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) |
584 | 0 | { |
585 | 0 | int i,j; |
586 | 0 | VARDECL(celt_norm, tmp); |
587 | 0 | int N; |
588 | 0 | SAVE_STACK; |
589 | 0 | N = N0*stride; |
590 | 0 | ALLOC(tmp, N, celt_norm); |
591 | 0 | celt_assert(stride>0); |
592 | 0 | if (hadamard) |
593 | 0 | { |
594 | 0 | const int *ordery = ordery_table+stride-2; |
595 | 0 | for (i=0;i<stride;i++) |
596 | 0 | { |
597 | 0 | for (j=0;j<N0;j++) |
598 | 0 | tmp[ordery[i]*N0+j] = X[j*stride+i]; |
599 | 0 | } |
600 | 0 | } else { |
601 | 0 | for (i=0;i<stride;i++) |
602 | 0 | for (j=0;j<N0;j++) |
603 | 0 | tmp[i*N0+j] = X[j*stride+i]; |
604 | 0 | } |
605 | 0 | OPUS_COPY(X, tmp, N); |
606 | 0 | RESTORE_STACK; |
607 | 0 | } |
608 | | |
609 | | static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) |
610 | 0 | { |
611 | 0 | int i,j; |
612 | 0 | VARDECL(celt_norm, tmp); |
613 | 0 | int N; |
614 | 0 | SAVE_STACK; |
615 | 0 | N = N0*stride; |
616 | 0 | ALLOC(tmp, N, celt_norm); |
617 | 0 | if (hadamard) |
618 | 0 | { |
619 | 0 | const int *ordery = ordery_table+stride-2; |
620 | 0 | for (i=0;i<stride;i++) |
621 | 0 | for (j=0;j<N0;j++) |
622 | 0 | tmp[j*stride+i] = X[ordery[i]*N0+j]; |
623 | 0 | } else { |
624 | 0 | for (i=0;i<stride;i++) |
625 | 0 | for (j=0;j<N0;j++) |
626 | 0 | tmp[j*stride+i] = X[i*N0+j]; |
627 | 0 | } |
628 | 0 | OPUS_COPY(X, tmp, N); |
629 | 0 | RESTORE_STACK; |
630 | 0 | } |
631 | | |
632 | | void haar1(celt_norm *X, int N0, int stride) |
633 | 0 | { |
634 | 0 | int i, j; |
635 | 0 | N0 >>= 1; |
636 | 0 | for (i=0;i<stride;i++) |
637 | 0 | for (j=0;j<N0;j++) |
638 | 0 | { |
639 | 0 | opus_val32 tmp1, tmp2; |
640 | 0 | tmp1 = MULT16_16(QCONST16(.70710678f,15), X[stride*2*j+i]); |
641 | 0 | tmp2 = MULT16_16(QCONST16(.70710678f,15), X[stride*(2*j+1)+i]); |
642 | 0 | X[stride*2*j+i] = EXTRACT16(PSHR32(ADD32(tmp1, tmp2), 15)); |
643 | 0 | X[stride*(2*j+1)+i] = EXTRACT16(PSHR32(SUB32(tmp1, tmp2), 15)); |
644 | 0 | } |
645 | 0 | } |
646 | | |
647 | | static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo) |
648 | 0 | { |
649 | 0 | static const opus_int16 exp2_table8[8] = |
650 | 0 | {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048}; |
651 | 0 | int qn, qb; |
652 | 0 | int N2 = 2*N-1; |
653 | 0 | if (stereo && N==2) |
654 | 0 | N2--; |
655 | | /* The upper limit ensures that in a stereo split with itheta==16384, we'll |
656 | | always have enough bits left over to code at least one pulse in the |
657 | | side; otherwise it would collapse, since it doesn't get folded. */ |
658 | 0 | qb = celt_sudiv(b+N2*offset, N2); |
659 | 0 | qb = IMIN(b-pulse_cap-(4<<BITRES), qb); |
660 | |
|
661 | 0 | qb = IMIN(8<<BITRES, qb); |
662 | |
|
663 | 0 | if (qb<(1<<BITRES>>1)) { |
664 | 0 | qn = 1; |
665 | 0 | } else { |
666 | 0 | qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES)); |
667 | 0 | qn = (qn+1)>>1<<1; |
668 | 0 | } |
669 | 0 | celt_assert(qn <= 256); |
670 | 0 | return qn; |
671 | 0 | } |
672 | | |
673 | | struct band_ctx { |
674 | | int encode; |
675 | | int resynth; |
676 | | const CELTMode *m; |
677 | | int i; |
678 | | int intensity; |
679 | | int spread; |
680 | | int tf_change; |
681 | | ec_ctx *ec; |
682 | | opus_int32 remaining_bits; |
683 | | const celt_ener *bandE; |
684 | | opus_uint32 seed; |
685 | | int arch; |
686 | | int theta_round; |
687 | | int disable_inv; |
688 | | int avoid_split_noise; |
689 | | }; |
690 | | |
691 | | struct split_ctx { |
692 | | int inv; |
693 | | int imid; |
694 | | int iside; |
695 | | int delta; |
696 | | int itheta; |
697 | | int qalloc; |
698 | | }; |
699 | | |
700 | | static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx, |
701 | | celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0, |
702 | | int LM, |
703 | | int stereo, int *fill) |
704 | 0 | { |
705 | 0 | int qn; |
706 | 0 | int itheta=0; |
707 | 0 | int delta; |
708 | 0 | int imid, iside; |
709 | 0 | int qalloc; |
710 | 0 | int pulse_cap; |
711 | 0 | int offset; |
712 | 0 | opus_int32 tell; |
713 | 0 | int inv=0; |
714 | 0 | int encode; |
715 | 0 | const CELTMode *m; |
716 | 0 | int i; |
717 | 0 | int intensity; |
718 | 0 | ec_ctx *ec; |
719 | 0 | const celt_ener *bandE; |
720 | |
|
721 | 0 | encode = ctx->encode; |
722 | 0 | m = ctx->m; |
723 | 0 | i = ctx->i; |
724 | 0 | intensity = ctx->intensity; |
725 | 0 | ec = ctx->ec; |
726 | 0 | bandE = ctx->bandE; |
727 | | |
728 | | /* Decide on the resolution to give to the split parameter theta */ |
729 | 0 | pulse_cap = m->logN[i]+LM*(1<<BITRES); |
730 | 0 | offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET); |
731 | 0 | qn = compute_qn(N, *b, offset, pulse_cap, stereo); |
732 | 0 | if (stereo && i>=intensity) |
733 | 0 | qn = 1; |
734 | 0 | if (encode) |
735 | 0 | { |
736 | | /* theta is the atan() of the ratio between the (normalized) |
737 | | side and mid. With just that parameter, we can re-scale both |
738 | | mid and side because we know that 1) they have unit norm and |
739 | | 2) they are orthogonal. */ |
740 | 0 | itheta = stereo_itheta(X, Y, stereo, N, ctx->arch); |
741 | 0 | } |
742 | 0 | tell = ec_tell_frac(ec); |
743 | 0 | if (qn!=1) |
744 | 0 | { |
745 | 0 | if (encode) |
746 | 0 | { |
747 | 0 | if (!stereo || ctx->theta_round == 0) |
748 | 0 | { |
749 | 0 | itheta = (itheta*(opus_int32)qn+8192)>>14; |
750 | 0 | if (!stereo && ctx->avoid_split_noise && itheta > 0 && itheta < qn) |
751 | 0 | { |
752 | | /* Check if the selected value of theta will cause the bit allocation |
753 | | to inject noise on one side. If so, make sure the energy of that side |
754 | | is zero. */ |
755 | 0 | int unquantized = celt_udiv((opus_int32)itheta*16384, qn); |
756 | 0 | imid = bitexact_cos((opus_int16)unquantized); |
757 | 0 | iside = bitexact_cos((opus_int16)(16384-unquantized)); |
758 | 0 | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); |
759 | 0 | if (delta > *b) |
760 | 0 | itheta = qn; |
761 | 0 | else if (delta < -*b) |
762 | 0 | itheta = 0; |
763 | 0 | } |
764 | 0 | } else { |
765 | 0 | int down; |
766 | | /* Bias quantization towards itheta=0 and itheta=16384. */ |
767 | 0 | int bias = itheta > 8192 ? 32767/qn : -32767/qn; |
768 | 0 | down = IMIN(qn-1, IMAX(0, (itheta*(opus_int32)qn + bias)>>14)); |
769 | 0 | if (ctx->theta_round < 0) |
770 | 0 | itheta = down; |
771 | 0 | else |
772 | 0 | itheta = down+1; |
773 | 0 | } |
774 | 0 | } |
775 | | /* Entropy coding of the angle. We use a uniform pdf for the |
776 | | time split, a step for stereo, and a triangular one for the rest. */ |
777 | 0 | if (stereo && N>2) |
778 | 0 | { |
779 | 0 | int p0 = 3; |
780 | 0 | int x = itheta; |
781 | 0 | int x0 = qn/2; |
782 | 0 | int ft = p0*(x0+1) + x0; |
783 | | /* Use a probability of p0 up to itheta=8192 and then use 1 after */ |
784 | 0 | if (encode) |
785 | 0 | { |
786 | 0 | ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); |
787 | 0 | } else { |
788 | 0 | int fs; |
789 | 0 | fs=ec_decode(ec,ft); |
790 | 0 | if (fs<(x0+1)*p0) |
791 | 0 | x=fs/p0; |
792 | 0 | else |
793 | 0 | x=x0+1+(fs-(x0+1)*p0); |
794 | 0 | ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); |
795 | 0 | itheta = x; |
796 | 0 | } |
797 | 0 | } else if (B0>1 || stereo) { |
798 | | /* Uniform pdf */ |
799 | 0 | if (encode) |
800 | 0 | ec_enc_uint(ec, itheta, qn+1); |
801 | 0 | else |
802 | 0 | itheta = ec_dec_uint(ec, qn+1); |
803 | 0 | } else { |
804 | 0 | int fs=1, ft; |
805 | 0 | ft = ((qn>>1)+1)*((qn>>1)+1); |
806 | 0 | if (encode) |
807 | 0 | { |
808 | 0 | int fl; |
809 | |
|
810 | 0 | fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; |
811 | 0 | fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : |
812 | 0 | ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); |
813 | |
|
814 | 0 | ec_encode(ec, fl, fl+fs, ft); |
815 | 0 | } else { |
816 | | /* Triangular pdf */ |
817 | 0 | int fl=0; |
818 | 0 | int fm; |
819 | 0 | fm = ec_decode(ec, ft); |
820 | |
|
821 | 0 | if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) |
822 | 0 | { |
823 | 0 | itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; |
824 | 0 | fs = itheta + 1; |
825 | 0 | fl = itheta*(itheta + 1)>>1; |
826 | 0 | } |
827 | 0 | else |
828 | 0 | { |
829 | 0 | itheta = (2*(qn + 1) |
830 | 0 | - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; |
831 | 0 | fs = qn + 1 - itheta; |
832 | 0 | fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); |
833 | 0 | } |
834 | |
|
835 | 0 | ec_dec_update(ec, fl, fl+fs, ft); |
836 | 0 | } |
837 | 0 | } |
838 | 0 | celt_assert(itheta>=0); |
839 | 0 | itheta = celt_udiv((opus_int32)itheta*16384, qn); |
840 | 0 | if (encode && stereo) |
841 | 0 | { |
842 | 0 | if (itheta==0) |
843 | 0 | intensity_stereo(m, X, Y, bandE, i, N); |
844 | 0 | else |
845 | 0 | stereo_split(X, Y, N); |
846 | 0 | } |
847 | | /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. |
848 | | Let's do that at higher complexity */ |
849 | 0 | } else if (stereo) { |
850 | 0 | if (encode) |
851 | 0 | { |
852 | 0 | inv = itheta > 8192 && !ctx->disable_inv; |
853 | 0 | if (inv) |
854 | 0 | { |
855 | 0 | int j; |
856 | 0 | for (j=0;j<N;j++) |
857 | 0 | Y[j] = -Y[j]; |
858 | 0 | } |
859 | 0 | intensity_stereo(m, X, Y, bandE, i, N); |
860 | 0 | } |
861 | 0 | if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES) |
862 | 0 | { |
863 | 0 | if (encode) |
864 | 0 | ec_enc_bit_logp(ec, inv, 2); |
865 | 0 | else |
866 | 0 | inv = ec_dec_bit_logp(ec, 2); |
867 | 0 | } else |
868 | 0 | inv = 0; |
869 | | /* inv flag override to avoid problems with downmixing. */ |
870 | 0 | if (ctx->disable_inv) |
871 | 0 | inv = 0; |
872 | 0 | itheta = 0; |
873 | 0 | } |
874 | 0 | qalloc = ec_tell_frac(ec) - tell; |
875 | 0 | *b -= qalloc; |
876 | |
|
877 | 0 | if (itheta == 0) |
878 | 0 | { |
879 | 0 | imid = 32767; |
880 | 0 | iside = 0; |
881 | 0 | *fill &= (1<<B)-1; |
882 | 0 | delta = -16384; |
883 | 0 | } else if (itheta == 16384) |
884 | 0 | { |
885 | 0 | imid = 0; |
886 | 0 | iside = 32767; |
887 | 0 | *fill &= ((1<<B)-1)<<B; |
888 | 0 | delta = 16384; |
889 | 0 | } else { |
890 | 0 | imid = bitexact_cos((opus_int16)itheta); |
891 | 0 | iside = bitexact_cos((opus_int16)(16384-itheta)); |
892 | | /* This is the mid vs side allocation that minimizes squared error |
893 | | in that band. */ |
894 | 0 | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); |
895 | 0 | } |
896 | |
|
897 | 0 | sctx->inv = inv; |
898 | 0 | sctx->imid = imid; |
899 | 0 | sctx->iside = iside; |
900 | 0 | sctx->delta = delta; |
901 | 0 | sctx->itheta = itheta; |
902 | 0 | sctx->qalloc = qalloc; |
903 | 0 | } |
904 | | static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, |
905 | | celt_norm *lowband_out) |
906 | 0 | { |
907 | 0 | int c; |
908 | 0 | int stereo; |
909 | 0 | celt_norm *x = X; |
910 | 0 | int encode; |
911 | 0 | ec_ctx *ec; |
912 | |
|
913 | 0 | encode = ctx->encode; |
914 | 0 | ec = ctx->ec; |
915 | |
|
916 | 0 | stereo = Y != NULL; |
917 | 0 | c=0; do { |
918 | 0 | int sign=0; |
919 | 0 | if (ctx->remaining_bits>=1<<BITRES) |
920 | 0 | { |
921 | 0 | if (encode) |
922 | 0 | { |
923 | 0 | sign = x[0]<0; |
924 | 0 | ec_enc_bits(ec, sign, 1); |
925 | 0 | } else { |
926 | 0 | sign = ec_dec_bits(ec, 1); |
927 | 0 | } |
928 | 0 | ctx->remaining_bits -= 1<<BITRES; |
929 | 0 | } |
930 | 0 | if (ctx->resynth) |
931 | 0 | x[0] = sign ? -NORM_SCALING : NORM_SCALING; |
932 | 0 | x = Y; |
933 | 0 | } while (++c<1+stereo); |
934 | 0 | if (lowband_out) |
935 | 0 | lowband_out[0] = SHR16(X[0],4); |
936 | 0 | return 1; |
937 | 0 | } |
938 | | |
939 | | /* This function is responsible for encoding and decoding a mono partition. |
940 | | It can split the band in two and transmit the energy difference with |
941 | | the two half-bands. It can be called recursively so bands can end up being |
942 | | split in 8 parts. */ |
943 | | static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X, |
944 | | int N, int b, int B, celt_norm *lowband, |
945 | | int LM, |
946 | | opus_val16 gain, int fill) |
947 | 0 | { |
948 | 0 | const unsigned char *cache; |
949 | 0 | int q; |
950 | 0 | int curr_bits; |
951 | 0 | int imid=0, iside=0; |
952 | 0 | int B0=B; |
953 | 0 | opus_val16 mid=0, side=0; |
954 | 0 | unsigned cm=0; |
955 | 0 | celt_norm *Y=NULL; |
956 | 0 | int encode; |
957 | 0 | const CELTMode *m; |
958 | 0 | int i; |
959 | 0 | int spread; |
960 | 0 | ec_ctx *ec; |
961 | |
|
962 | 0 | encode = ctx->encode; |
963 | 0 | m = ctx->m; |
964 | 0 | i = ctx->i; |
965 | 0 | spread = ctx->spread; |
966 | 0 | ec = ctx->ec; |
967 | | |
968 | | /* If we need 1.5 more bit than we can produce, split the band in two. */ |
969 | 0 | cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; |
970 | 0 | if (LM != -1 && b > cache[cache[0]]+12 && N>2) |
971 | 0 | { |
972 | 0 | int mbits, sbits, delta; |
973 | 0 | int itheta; |
974 | 0 | int qalloc; |
975 | 0 | struct split_ctx sctx; |
976 | 0 | celt_norm *next_lowband2=NULL; |
977 | 0 | opus_int32 rebalance; |
978 | |
|
979 | 0 | N >>= 1; |
980 | 0 | Y = X+N; |
981 | 0 | LM -= 1; |
982 | 0 | if (B==1) |
983 | 0 | fill = (fill&1)|(fill<<1); |
984 | 0 | B = (B+1)>>1; |
985 | |
|
986 | 0 | compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill); |
987 | 0 | imid = sctx.imid; |
988 | 0 | iside = sctx.iside; |
989 | 0 | delta = sctx.delta; |
990 | 0 | itheta = sctx.itheta; |
991 | 0 | qalloc = sctx.qalloc; |
992 | | #ifdef FIXED_POINT |
993 | | mid = imid; |
994 | | side = iside; |
995 | | #else |
996 | 0 | mid = (1.f/32768)*imid; |
997 | 0 | side = (1.f/32768)*iside; |
998 | 0 | #endif |
999 | | |
1000 | | /* Give more bits to low-energy MDCTs than they would otherwise deserve */ |
1001 | 0 | if (B0>1 && (itheta&0x3fff)) |
1002 | 0 | { |
1003 | 0 | if (itheta > 8192) |
1004 | | /* Rough approximation for pre-echo masking */ |
1005 | 0 | delta -= delta>>(4-LM); |
1006 | 0 | else |
1007 | | /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ |
1008 | 0 | delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); |
1009 | 0 | } |
1010 | 0 | mbits = IMAX(0, IMIN(b, (b-delta)/2)); |
1011 | 0 | sbits = b-mbits; |
1012 | 0 | ctx->remaining_bits -= qalloc; |
1013 | |
|
1014 | 0 | if (lowband) |
1015 | 0 | next_lowband2 = lowband+N; /* >32-bit split case */ |
1016 | |
|
1017 | 0 | rebalance = ctx->remaining_bits; |
1018 | 0 | if (mbits >= sbits) |
1019 | 0 | { |
1020 | 0 | cm = quant_partition(ctx, X, N, mbits, B, lowband, LM, |
1021 | 0 | MULT16_16_P15(gain,mid), fill); |
1022 | 0 | rebalance = mbits - (rebalance-ctx->remaining_bits); |
1023 | 0 | if (rebalance > 3<<BITRES && itheta!=0) |
1024 | 0 | sbits += rebalance - (3<<BITRES); |
1025 | 0 | cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, |
1026 | 0 | MULT16_16_P15(gain,side), fill>>B)<<(B0>>1); |
1027 | 0 | } else { |
1028 | 0 | cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, |
1029 | 0 | MULT16_16_P15(gain,side), fill>>B)<<(B0>>1); |
1030 | 0 | rebalance = sbits - (rebalance-ctx->remaining_bits); |
1031 | 0 | if (rebalance > 3<<BITRES && itheta!=16384) |
1032 | 0 | mbits += rebalance - (3<<BITRES); |
1033 | 0 | cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM, |
1034 | 0 | MULT16_16_P15(gain,mid), fill); |
1035 | 0 | } |
1036 | 0 | } else { |
1037 | | /* This is the basic no-split case */ |
1038 | 0 | q = bits2pulses(m, i, LM, b); |
1039 | 0 | curr_bits = pulses2bits(m, i, LM, q); |
1040 | 0 | ctx->remaining_bits -= curr_bits; |
1041 | | |
1042 | | /* Ensures we can never bust the budget */ |
1043 | 0 | while (ctx->remaining_bits < 0 && q > 0) |
1044 | 0 | { |
1045 | 0 | ctx->remaining_bits += curr_bits; |
1046 | 0 | q--; |
1047 | 0 | curr_bits = pulses2bits(m, i, LM, q); |
1048 | 0 | ctx->remaining_bits -= curr_bits; |
1049 | 0 | } |
1050 | |
|
1051 | 0 | if (q!=0) |
1052 | 0 | { |
1053 | 0 | int K = get_pulses(q); |
1054 | | |
1055 | | /* Finally do the actual quantization */ |
1056 | 0 | if (encode) |
1057 | 0 | { |
1058 | 0 | cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth, ctx->arch); |
1059 | 0 | } else { |
1060 | 0 | cm = alg_unquant(X, N, K, spread, B, ec, gain); |
1061 | 0 | } |
1062 | 0 | } else { |
1063 | | /* If there's no pulse, fill the band anyway */ |
1064 | 0 | int j; |
1065 | 0 | if (ctx->resynth) |
1066 | 0 | { |
1067 | 0 | unsigned cm_mask; |
1068 | | /* B can be as large as 16, so this shift might overflow an int on a |
1069 | | 16-bit platform; use a long to get defined behavior.*/ |
1070 | 0 | cm_mask = (unsigned)(1UL<<B)-1; |
1071 | 0 | fill &= cm_mask; |
1072 | 0 | if (!fill) |
1073 | 0 | { |
1074 | 0 | OPUS_CLEAR(X, N); |
1075 | 0 | } else { |
1076 | 0 | if (lowband == NULL) |
1077 | 0 | { |
1078 | | /* Noise */ |
1079 | 0 | for (j=0;j<N;j++) |
1080 | 0 | { |
1081 | 0 | ctx->seed = celt_lcg_rand(ctx->seed); |
1082 | 0 | X[j] = (celt_norm)((opus_int32)ctx->seed>>20); |
1083 | 0 | } |
1084 | 0 | cm = cm_mask; |
1085 | 0 | } else { |
1086 | | /* Folded spectrum */ |
1087 | 0 | for (j=0;j<N;j++) |
1088 | 0 | { |
1089 | 0 | opus_val16 tmp; |
1090 | 0 | ctx->seed = celt_lcg_rand(ctx->seed); |
1091 | | /* About 48 dB below the "normal" folding level */ |
1092 | 0 | tmp = QCONST16(1.0f/256, 10); |
1093 | 0 | tmp = (ctx->seed)&0x8000 ? tmp : -tmp; |
1094 | 0 | X[j] = lowband[j]+tmp; |
1095 | 0 | } |
1096 | 0 | cm = fill; |
1097 | 0 | } |
1098 | 0 | renormalise_vector(X, N, gain, ctx->arch); |
1099 | 0 | } |
1100 | 0 | } |
1101 | 0 | } |
1102 | 0 | } |
1103 | |
|
1104 | 0 | return cm; |
1105 | 0 | } |
1106 | | |
1107 | | |
1108 | | /* This function is responsible for encoding and decoding a band for the mono case. */ |
1109 | | static unsigned quant_band(struct band_ctx *ctx, celt_norm *X, |
1110 | | int N, int b, int B, celt_norm *lowband, |
1111 | | int LM, celt_norm *lowband_out, |
1112 | | opus_val16 gain, celt_norm *lowband_scratch, int fill) |
1113 | 0 | { |
1114 | 0 | int N0=N; |
1115 | 0 | int N_B=N; |
1116 | 0 | int N_B0; |
1117 | 0 | int B0=B; |
1118 | 0 | int time_divide=0; |
1119 | 0 | int recombine=0; |
1120 | 0 | int longBlocks; |
1121 | 0 | unsigned cm=0; |
1122 | 0 | int k; |
1123 | 0 | int encode; |
1124 | 0 | int tf_change; |
1125 | |
|
1126 | 0 | encode = ctx->encode; |
1127 | 0 | tf_change = ctx->tf_change; |
1128 | |
|
1129 | 0 | longBlocks = B0==1; |
1130 | |
|
1131 | 0 | N_B = celt_udiv(N_B, B); |
1132 | | |
1133 | | /* Special case for one sample */ |
1134 | 0 | if (N==1) |
1135 | 0 | { |
1136 | 0 | return quant_band_n1(ctx, X, NULL, lowband_out); |
1137 | 0 | } |
1138 | | |
1139 | 0 | if (tf_change>0) |
1140 | 0 | recombine = tf_change; |
1141 | | /* Band recombining to increase frequency resolution */ |
1142 | |
|
1143 | 0 | if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) |
1144 | 0 | { |
1145 | 0 | OPUS_COPY(lowband_scratch, lowband, N); |
1146 | 0 | lowband = lowband_scratch; |
1147 | 0 | } |
1148 | |
|
1149 | 0 | for (k=0;k<recombine;k++) |
1150 | 0 | { |
1151 | 0 | static const unsigned char bit_interleave_table[16]={ |
1152 | 0 | 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 |
1153 | 0 | }; |
1154 | 0 | if (encode) |
1155 | 0 | haar1(X, N>>k, 1<<k); |
1156 | 0 | if (lowband) |
1157 | 0 | haar1(lowband, N>>k, 1<<k); |
1158 | 0 | fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; |
1159 | 0 | } |
1160 | 0 | B>>=recombine; |
1161 | 0 | N_B<<=recombine; |
1162 | | |
1163 | | /* Increasing the time resolution */ |
1164 | 0 | while ((N_B&1) == 0 && tf_change<0) |
1165 | 0 | { |
1166 | 0 | if (encode) |
1167 | 0 | haar1(X, N_B, B); |
1168 | 0 | if (lowband) |
1169 | 0 | haar1(lowband, N_B, B); |
1170 | 0 | fill |= fill<<B; |
1171 | 0 | B <<= 1; |
1172 | 0 | N_B >>= 1; |
1173 | 0 | time_divide++; |
1174 | 0 | tf_change++; |
1175 | 0 | } |
1176 | 0 | B0=B; |
1177 | 0 | N_B0 = N_B; |
1178 | | |
1179 | | /* Reorganize the samples in time order instead of frequency order */ |
1180 | 0 | if (B0>1) |
1181 | 0 | { |
1182 | 0 | if (encode) |
1183 | 0 | deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); |
1184 | 0 | if (lowband) |
1185 | 0 | deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); |
1186 | 0 | } |
1187 | |
|
1188 | 0 | cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill); |
1189 | | |
1190 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
1191 | 0 | if (ctx->resynth) |
1192 | 0 | { |
1193 | | /* Undo the sample reorganization going from time order to frequency order */ |
1194 | 0 | if (B0>1) |
1195 | 0 | interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); |
1196 | | |
1197 | | /* Undo time-freq changes that we did earlier */ |
1198 | 0 | N_B = N_B0; |
1199 | 0 | B = B0; |
1200 | 0 | for (k=0;k<time_divide;k++) |
1201 | 0 | { |
1202 | 0 | B >>= 1; |
1203 | 0 | N_B <<= 1; |
1204 | 0 | cm |= cm>>B; |
1205 | 0 | haar1(X, N_B, B); |
1206 | 0 | } |
1207 | |
|
1208 | 0 | for (k=0;k<recombine;k++) |
1209 | 0 | { |
1210 | 0 | static const unsigned char bit_deinterleave_table[16]={ |
1211 | 0 | 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, |
1212 | 0 | 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF |
1213 | 0 | }; |
1214 | 0 | cm = bit_deinterleave_table[cm]; |
1215 | 0 | haar1(X, N0>>k, 1<<k); |
1216 | 0 | } |
1217 | 0 | B<<=recombine; |
1218 | | |
1219 | | /* Scale output for later folding */ |
1220 | 0 | if (lowband_out) |
1221 | 0 | { |
1222 | 0 | int j; |
1223 | 0 | opus_val16 n; |
1224 | 0 | n = celt_sqrt(SHL32(EXTEND32(N0),22)); |
1225 | 0 | for (j=0;j<N0;j++) |
1226 | 0 | lowband_out[j] = MULT16_16_Q15(n,X[j]); |
1227 | 0 | } |
1228 | 0 | cm &= (1<<B)-1; |
1229 | 0 | } |
1230 | 0 | return cm; |
1231 | 0 | } |
1232 | | |
1233 | | |
1234 | | /* This function is responsible for encoding and decoding a band for the stereo case. */ |
1235 | | static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, |
1236 | | int N, int b, int B, celt_norm *lowband, |
1237 | | int LM, celt_norm *lowband_out, |
1238 | | celt_norm *lowband_scratch, int fill) |
1239 | 0 | { |
1240 | 0 | int imid=0, iside=0; |
1241 | 0 | int inv = 0; |
1242 | 0 | opus_val16 mid=0, side=0; |
1243 | 0 | unsigned cm=0; |
1244 | 0 | int mbits, sbits, delta; |
1245 | 0 | int itheta; |
1246 | 0 | int qalloc; |
1247 | 0 | struct split_ctx sctx; |
1248 | 0 | int orig_fill; |
1249 | 0 | int encode; |
1250 | 0 | ec_ctx *ec; |
1251 | |
|
1252 | 0 | encode = ctx->encode; |
1253 | 0 | ec = ctx->ec; |
1254 | | |
1255 | | /* Special case for one sample */ |
1256 | 0 | if (N==1) |
1257 | 0 | { |
1258 | 0 | return quant_band_n1(ctx, X, Y, lowband_out); |
1259 | 0 | } |
1260 | | |
1261 | 0 | orig_fill = fill; |
1262 | |
|
1263 | 0 | compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill); |
1264 | 0 | inv = sctx.inv; |
1265 | 0 | imid = sctx.imid; |
1266 | 0 | iside = sctx.iside; |
1267 | 0 | delta = sctx.delta; |
1268 | 0 | itheta = sctx.itheta; |
1269 | 0 | qalloc = sctx.qalloc; |
1270 | | #ifdef FIXED_POINT |
1271 | | mid = imid; |
1272 | | side = iside; |
1273 | | #else |
1274 | 0 | mid = (1.f/32768)*imid; |
1275 | 0 | side = (1.f/32768)*iside; |
1276 | 0 | #endif |
1277 | | |
1278 | | /* This is a special case for N=2 that only works for stereo and takes |
1279 | | advantage of the fact that mid and side are orthogonal to encode |
1280 | | the side with just one bit. */ |
1281 | 0 | if (N==2) |
1282 | 0 | { |
1283 | 0 | int c; |
1284 | 0 | int sign=0; |
1285 | 0 | celt_norm *x2, *y2; |
1286 | 0 | mbits = b; |
1287 | 0 | sbits = 0; |
1288 | | /* Only need one bit for the side. */ |
1289 | 0 | if (itheta != 0 && itheta != 16384) |
1290 | 0 | sbits = 1<<BITRES; |
1291 | 0 | mbits -= sbits; |
1292 | 0 | c = itheta > 8192; |
1293 | 0 | ctx->remaining_bits -= qalloc+sbits; |
1294 | |
|
1295 | 0 | x2 = c ? Y : X; |
1296 | 0 | y2 = c ? X : Y; |
1297 | 0 | if (sbits) |
1298 | 0 | { |
1299 | 0 | if (encode) |
1300 | 0 | { |
1301 | | /* Here we only need to encode a sign for the side. */ |
1302 | 0 | sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; |
1303 | 0 | ec_enc_bits(ec, sign, 1); |
1304 | 0 | } else { |
1305 | 0 | sign = ec_dec_bits(ec, 1); |
1306 | 0 | } |
1307 | 0 | } |
1308 | 0 | sign = 1-2*sign; |
1309 | | /* We use orig_fill here because we want to fold the side, but if |
1310 | | itheta==16384, we'll have cleared the low bits of fill. */ |
1311 | 0 | cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q15ONE, |
1312 | 0 | lowband_scratch, orig_fill); |
1313 | | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), |
1314 | | and there's no need to worry about mixing with the other channel. */ |
1315 | 0 | y2[0] = -sign*x2[1]; |
1316 | 0 | y2[1] = sign*x2[0]; |
1317 | 0 | if (ctx->resynth) |
1318 | 0 | { |
1319 | 0 | celt_norm tmp; |
1320 | 0 | X[0] = MULT16_16_Q15(mid, X[0]); |
1321 | 0 | X[1] = MULT16_16_Q15(mid, X[1]); |
1322 | 0 | Y[0] = MULT16_16_Q15(side, Y[0]); |
1323 | 0 | Y[1] = MULT16_16_Q15(side, Y[1]); |
1324 | 0 | tmp = X[0]; |
1325 | 0 | X[0] = SUB16(tmp,Y[0]); |
1326 | 0 | Y[0] = ADD16(tmp,Y[0]); |
1327 | 0 | tmp = X[1]; |
1328 | 0 | X[1] = SUB16(tmp,Y[1]); |
1329 | 0 | Y[1] = ADD16(tmp,Y[1]); |
1330 | 0 | } |
1331 | 0 | } else { |
1332 | | /* "Normal" split code */ |
1333 | 0 | opus_int32 rebalance; |
1334 | |
|
1335 | 0 | mbits = IMAX(0, IMIN(b, (b-delta)/2)); |
1336 | 0 | sbits = b-mbits; |
1337 | 0 | ctx->remaining_bits -= qalloc; |
1338 | |
|
1339 | 0 | rebalance = ctx->remaining_bits; |
1340 | 0 | if (mbits >= sbits) |
1341 | 0 | { |
1342 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized |
1343 | | mid for folding later. */ |
1344 | 0 | cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q15ONE, |
1345 | 0 | lowband_scratch, fill); |
1346 | 0 | rebalance = mbits - (rebalance-ctx->remaining_bits); |
1347 | 0 | if (rebalance > 3<<BITRES && itheta!=0) |
1348 | 0 | sbits += rebalance - (3<<BITRES); |
1349 | | |
1350 | | /* For a stereo split, the high bits of fill are always zero, so no |
1351 | | folding will be done to the side. */ |
1352 | 0 | cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B); |
1353 | 0 | } else { |
1354 | | /* For a stereo split, the high bits of fill are always zero, so no |
1355 | | folding will be done to the side. */ |
1356 | 0 | cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B); |
1357 | 0 | rebalance = sbits - (rebalance-ctx->remaining_bits); |
1358 | 0 | if (rebalance > 3<<BITRES && itheta!=16384) |
1359 | 0 | mbits += rebalance - (3<<BITRES); |
1360 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized |
1361 | | mid for folding later. */ |
1362 | 0 | cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q15ONE, |
1363 | 0 | lowband_scratch, fill); |
1364 | 0 | } |
1365 | 0 | } |
1366 | | |
1367 | | |
1368 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
1369 | 0 | if (ctx->resynth) |
1370 | 0 | { |
1371 | 0 | if (N!=2) |
1372 | 0 | stereo_merge(X, Y, mid, N, ctx->arch); |
1373 | 0 | if (inv) |
1374 | 0 | { |
1375 | 0 | int j; |
1376 | 0 | for (j=0;j<N;j++) |
1377 | 0 | Y[j] = -Y[j]; |
1378 | 0 | } |
1379 | 0 | } |
1380 | 0 | return cm; |
1381 | 0 | } |
1382 | | |
1383 | | #ifndef DISABLE_UPDATE_DRAFT |
1384 | | static void special_hybrid_folding(const CELTMode *m, celt_norm *norm, celt_norm *norm2, int start, int M, int dual_stereo) |
1385 | 0 | { |
1386 | 0 | int n1, n2; |
1387 | 0 | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
1388 | 0 | n1 = M*(eBands[start+1]-eBands[start]); |
1389 | 0 | n2 = M*(eBands[start+2]-eBands[start+1]); |
1390 | | /* Duplicate enough of the first band folding data to be able to fold the second band. |
1391 | | Copies no data for CELT-only mode. */ |
1392 | 0 | OPUS_COPY(&norm[n1], &norm[2*n1 - n2], n2-n1); |
1393 | 0 | if (dual_stereo) |
1394 | 0 | OPUS_COPY(&norm2[n1], &norm2[2*n1 - n2], n2-n1); |
1395 | 0 | } |
1396 | | #endif |
1397 | | |
1398 | | void quant_all_bands(int encode, const CELTMode *m, int start, int end, |
1399 | | celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, |
1400 | | const celt_ener *bandE, int *pulses, int shortBlocks, int spread, |
1401 | | int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits, |
1402 | | opus_int32 balance, ec_ctx *ec, int LM, int codedBands, |
1403 | | opus_uint32 *seed, int complexity, int arch, int disable_inv) |
1404 | 0 | { |
1405 | 0 | int i; |
1406 | 0 | opus_int32 remaining_bits; |
1407 | 0 | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
1408 | 0 | celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; |
1409 | 0 | VARDECL(celt_norm, _norm); |
1410 | 0 | VARDECL(celt_norm, _lowband_scratch); |
1411 | 0 | VARDECL(celt_norm, X_save); |
1412 | 0 | VARDECL(celt_norm, Y_save); |
1413 | 0 | VARDECL(celt_norm, X_save2); |
1414 | 0 | VARDECL(celt_norm, Y_save2); |
1415 | 0 | VARDECL(celt_norm, norm_save2); |
1416 | 0 | int resynth_alloc; |
1417 | 0 | celt_norm *lowband_scratch; |
1418 | 0 | int B; |
1419 | 0 | int M; |
1420 | 0 | int lowband_offset; |
1421 | 0 | int update_lowband = 1; |
1422 | 0 | int C = Y_ != NULL ? 2 : 1; |
1423 | 0 | int norm_offset; |
1424 | 0 | int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8; |
1425 | | #ifdef RESYNTH |
1426 | | int resynth = 1; |
1427 | | #else |
1428 | 0 | int resynth = !encode || theta_rdo; |
1429 | 0 | #endif |
1430 | 0 | struct band_ctx ctx; |
1431 | 0 | SAVE_STACK; |
1432 | |
|
1433 | 0 | M = 1<<LM; |
1434 | 0 | B = shortBlocks ? M : 1; |
1435 | 0 | norm_offset = M*eBands[start]; |
1436 | | /* No need to allocate norm for the last band because we don't need an |
1437 | | output in that band. */ |
1438 | 0 | ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); |
1439 | 0 | norm = _norm; |
1440 | 0 | norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; |
1441 | | |
1442 | | /* For decoding, we can use the last band as scratch space because we don't need that |
1443 | | scratch space for the last band and we don't care about the data there until we're |
1444 | | decoding the last band. */ |
1445 | 0 | if (encode && resynth) |
1446 | 0 | resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]); |
1447 | 0 | else |
1448 | 0 | resynth_alloc = ALLOC_NONE; |
1449 | 0 | ALLOC(_lowband_scratch, resynth_alloc, celt_norm); |
1450 | 0 | if (encode && resynth) |
1451 | 0 | lowband_scratch = _lowband_scratch; |
1452 | 0 | else |
1453 | 0 | lowband_scratch = X_+M*eBands[m->effEBands-1]; |
1454 | 0 | ALLOC(X_save, resynth_alloc, celt_norm); |
1455 | 0 | ALLOC(Y_save, resynth_alloc, celt_norm); |
1456 | 0 | ALLOC(X_save2, resynth_alloc, celt_norm); |
1457 | 0 | ALLOC(Y_save2, resynth_alloc, celt_norm); |
1458 | 0 | ALLOC(norm_save2, resynth_alloc, celt_norm); |
1459 | |
|
1460 | 0 | lowband_offset = 0; |
1461 | 0 | ctx.bandE = bandE; |
1462 | 0 | ctx.ec = ec; |
1463 | 0 | ctx.encode = encode; |
1464 | 0 | ctx.intensity = intensity; |
1465 | 0 | ctx.m = m; |
1466 | 0 | ctx.seed = *seed; |
1467 | 0 | ctx.spread = spread; |
1468 | 0 | ctx.arch = arch; |
1469 | 0 | ctx.disable_inv = disable_inv; |
1470 | 0 | ctx.resynth = resynth; |
1471 | 0 | ctx.theta_round = 0; |
1472 | | /* Avoid injecting noise in the first band on transients. */ |
1473 | 0 | ctx.avoid_split_noise = B > 1; |
1474 | 0 | for (i=start;i<end;i++) |
1475 | 0 | { |
1476 | 0 | opus_int32 tell; |
1477 | 0 | int b; |
1478 | 0 | int N; |
1479 | 0 | opus_int32 curr_balance; |
1480 | 0 | int effective_lowband=-1; |
1481 | 0 | celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; |
1482 | 0 | int tf_change=0; |
1483 | 0 | unsigned x_cm; |
1484 | 0 | unsigned y_cm; |
1485 | 0 | int last; |
1486 | |
|
1487 | 0 | ctx.i = i; |
1488 | 0 | last = (i==end-1); |
1489 | |
|
1490 | 0 | X = X_+M*eBands[i]; |
1491 | 0 | if (Y_!=NULL) |
1492 | 0 | Y = Y_+M*eBands[i]; |
1493 | 0 | else |
1494 | 0 | Y = NULL; |
1495 | 0 | N = M*eBands[i+1]-M*eBands[i]; |
1496 | 0 | celt_assert(N > 0); |
1497 | 0 | tell = ec_tell_frac(ec); |
1498 | | |
1499 | | /* Compute how many bits we want to allocate to this band */ |
1500 | 0 | if (i != start) |
1501 | 0 | balance -= tell; |
1502 | 0 | remaining_bits = total_bits-tell-1; |
1503 | 0 | ctx.remaining_bits = remaining_bits; |
1504 | 0 | if (i <= codedBands-1) |
1505 | 0 | { |
1506 | 0 | curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); |
1507 | 0 | b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); |
1508 | 0 | } else { |
1509 | 0 | b = 0; |
1510 | 0 | } |
1511 | |
|
1512 | 0 | #ifndef DISABLE_UPDATE_DRAFT |
1513 | 0 | if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0)) |
1514 | 0 | lowband_offset = i; |
1515 | 0 | if (i == start+1) |
1516 | 0 | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); |
1517 | | #else |
1518 | | if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) |
1519 | | lowband_offset = i; |
1520 | | #endif |
1521 | |
|
1522 | 0 | tf_change = tf_res[i]; |
1523 | 0 | ctx.tf_change = tf_change; |
1524 | 0 | if (i>=m->effEBands) |
1525 | 0 | { |
1526 | 0 | X=norm; |
1527 | 0 | if (Y_!=NULL) |
1528 | 0 | Y = norm; |
1529 | 0 | lowband_scratch = NULL; |
1530 | 0 | } |
1531 | 0 | if (last && !theta_rdo) |
1532 | 0 | lowband_scratch = NULL; |
1533 | | |
1534 | | /* Get a conservative estimate of the collapse_mask's for the bands we're |
1535 | | going to be folding from. */ |
1536 | 0 | if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) |
1537 | 0 | { |
1538 | 0 | int fold_start; |
1539 | 0 | int fold_end; |
1540 | 0 | int fold_i; |
1541 | | /* This ensures we never repeat spectral content within one band */ |
1542 | 0 | effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); |
1543 | 0 | fold_start = lowband_offset; |
1544 | 0 | while(M*eBands[--fold_start] > effective_lowband+norm_offset); |
1545 | 0 | fold_end = lowband_offset-1; |
1546 | 0 | #ifndef DISABLE_UPDATE_DRAFT |
1547 | 0 | while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N); |
1548 | | #else |
1549 | | while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); |
1550 | | #endif |
1551 | 0 | x_cm = y_cm = 0; |
1552 | 0 | fold_i = fold_start; do { |
1553 | 0 | x_cm |= collapse_masks[fold_i*C+0]; |
1554 | 0 | y_cm |= collapse_masks[fold_i*C+C-1]; |
1555 | 0 | } while (++fold_i<fold_end); |
1556 | 0 | } |
1557 | | /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost |
1558 | | always) be non-zero. */ |
1559 | 0 | else |
1560 | 0 | x_cm = y_cm = (1<<B)-1; |
1561 | |
|
1562 | 0 | if (dual_stereo && i==intensity) |
1563 | 0 | { |
1564 | 0 | int j; |
1565 | | |
1566 | | /* Switch off dual stereo to do intensity. */ |
1567 | 0 | dual_stereo = 0; |
1568 | 0 | if (resynth) |
1569 | 0 | for (j=0;j<M*eBands[i]-norm_offset;j++) |
1570 | 0 | norm[j] = HALF32(norm[j]+norm2[j]); |
1571 | 0 | } |
1572 | 0 | if (dual_stereo) |
1573 | 0 | { |
1574 | 0 | x_cm = quant_band(&ctx, X, N, b/2, B, |
1575 | 0 | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1576 | 0 | last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm); |
1577 | 0 | y_cm = quant_band(&ctx, Y, N, b/2, B, |
1578 | 0 | effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, |
1579 | 0 | last?NULL:norm2+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, y_cm); |
1580 | 0 | } else { |
1581 | 0 | if (Y!=NULL) |
1582 | 0 | { |
1583 | 0 | if (theta_rdo && i < intensity) |
1584 | 0 | { |
1585 | 0 | ec_ctx ec_save, ec_save2; |
1586 | 0 | struct band_ctx ctx_save, ctx_save2; |
1587 | 0 | opus_val32 dist0, dist1; |
1588 | 0 | unsigned cm, cm2; |
1589 | 0 | int nstart_bytes, nend_bytes, save_bytes; |
1590 | 0 | unsigned char *bytes_buf; |
1591 | 0 | unsigned char bytes_save[1275]; |
1592 | 0 | opus_val16 w[2]; |
1593 | 0 | compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w); |
1594 | | /* Make a copy. */ |
1595 | 0 | cm = x_cm|y_cm; |
1596 | 0 | ec_save = *ec; |
1597 | 0 | ctx_save = ctx; |
1598 | 0 | OPUS_COPY(X_save, X, N); |
1599 | 0 | OPUS_COPY(Y_save, Y, N); |
1600 | | /* Encode and round down. */ |
1601 | 0 | ctx.theta_round = -1; |
1602 | 0 | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
1603 | 0 | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1604 | 0 | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm); |
1605 | 0 | dist0 = MULT16_32_Q15(w[0], celt_inner_prod(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod(Y_save, Y, N, arch)); |
1606 | | |
1607 | | /* Save first result. */ |
1608 | 0 | cm2 = x_cm; |
1609 | 0 | ec_save2 = *ec; |
1610 | 0 | ctx_save2 = ctx; |
1611 | 0 | OPUS_COPY(X_save2, X, N); |
1612 | 0 | OPUS_COPY(Y_save2, Y, N); |
1613 | 0 | if (!last) |
1614 | 0 | OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N); |
1615 | 0 | nstart_bytes = ec_save.offs; |
1616 | 0 | nend_bytes = ec_save.storage; |
1617 | 0 | bytes_buf = ec_save.buf+nstart_bytes; |
1618 | 0 | save_bytes = nend_bytes-nstart_bytes; |
1619 | 0 | OPUS_COPY(bytes_save, bytes_buf, save_bytes); |
1620 | | |
1621 | | /* Restore */ |
1622 | 0 | *ec = ec_save; |
1623 | 0 | ctx = ctx_save; |
1624 | 0 | OPUS_COPY(X, X_save, N); |
1625 | 0 | OPUS_COPY(Y, Y_save, N); |
1626 | 0 | #ifndef DISABLE_UPDATE_DRAFT |
1627 | 0 | if (i == start+1) |
1628 | 0 | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); |
1629 | 0 | #endif |
1630 | | /* Encode and round up. */ |
1631 | 0 | ctx.theta_round = 1; |
1632 | 0 | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
1633 | 0 | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1634 | 0 | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm); |
1635 | 0 | dist1 = MULT16_32_Q15(w[0], celt_inner_prod(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod(Y_save, Y, N, arch)); |
1636 | 0 | if (dist0 >= dist1) { |
1637 | 0 | x_cm = cm2; |
1638 | 0 | *ec = ec_save2; |
1639 | 0 | ctx = ctx_save2; |
1640 | 0 | OPUS_COPY(X, X_save2, N); |
1641 | 0 | OPUS_COPY(Y, Y_save2, N); |
1642 | 0 | if (!last) |
1643 | 0 | OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N); |
1644 | 0 | OPUS_COPY(bytes_buf, bytes_save, save_bytes); |
1645 | 0 | } |
1646 | 0 | } else { |
1647 | 0 | ctx.theta_round = 0; |
1648 | 0 | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
1649 | 0 | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1650 | 0 | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm); |
1651 | 0 | } |
1652 | 0 | } else { |
1653 | 0 | x_cm = quant_band(&ctx, X, N, b, B, |
1654 | 0 | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1655 | 0 | last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm); |
1656 | 0 | } |
1657 | 0 | y_cm = x_cm; |
1658 | 0 | } |
1659 | 0 | collapse_masks[i*C+0] = (unsigned char)x_cm; |
1660 | 0 | collapse_masks[i*C+C-1] = (unsigned char)y_cm; |
1661 | 0 | balance += pulses[i] + tell; |
1662 | | |
1663 | | /* Update the folding position only as long as we have 1 bit/sample depth. */ |
1664 | 0 | update_lowband = b>(N<<BITRES); |
1665 | | /* We only need to avoid noise on a split for the first band. After that, we |
1666 | | have folding. */ |
1667 | 0 | ctx.avoid_split_noise = 0; |
1668 | 0 | } |
1669 | 0 | *seed = ctx.seed; |
1670 | |
|
1671 | 0 | RESTORE_STACK; |
1672 | 0 | } |
1673 | | |