/src/opus/celt/celt_lpc.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (c) 2009-2010 Xiph.Org Foundation |
2 | | Written by Jean-Marc Valin */ |
3 | | /* |
4 | | Redistribution and use in source and binary forms, with or without |
5 | | modification, are permitted provided that the following conditions |
6 | | are met: |
7 | | |
8 | | - Redistributions of source code must retain the above copyright |
9 | | notice, this list of conditions and the following disclaimer. |
10 | | |
11 | | - Redistributions in binary form must reproduce the above copyright |
12 | | notice, this list of conditions and the following disclaimer in the |
13 | | documentation and/or other materials provided with the distribution. |
14 | | |
15 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
16 | | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
17 | | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
18 | | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
19 | | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
20 | | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
21 | | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
22 | | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
23 | | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
24 | | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
25 | | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
26 | | */ |
27 | | |
28 | | #ifdef HAVE_CONFIG_H |
29 | | #include "config.h" |
30 | | #endif |
31 | | |
32 | | #include "celt_lpc.h" |
33 | | #include "stack_alloc.h" |
34 | | #include "mathops.h" |
35 | | #include "pitch.h" |
36 | | |
37 | | void _celt_lpc( |
38 | | opus_val16 *_lpc, /* out: [0...p-1] LPC coefficients */ |
39 | | const opus_val32 *ac, /* in: [0...p] autocorrelation values */ |
40 | | int p |
41 | | ) |
42 | 0 | { |
43 | 0 | int i, j; |
44 | 0 | opus_val32 r; |
45 | 0 | opus_val32 error = ac[0]; |
46 | | #ifdef FIXED_POINT |
47 | | opus_val32 lpc[CELT_LPC_ORDER]; |
48 | | #else |
49 | 0 | float *lpc = _lpc; |
50 | 0 | #endif |
51 | |
|
52 | 0 | OPUS_CLEAR(lpc, p); |
53 | | #ifdef FIXED_POINT |
54 | | if (ac[0] != 0) |
55 | | #else |
56 | 0 | if (ac[0] > 1e-10f) |
57 | 0 | #endif |
58 | 0 | { |
59 | 0 | for (i = 0; i < p; i++) { |
60 | | /* Sum up this iteration's reflection coefficient */ |
61 | 0 | opus_val32 rr = 0; |
62 | 0 | for (j = 0; j < i; j++) |
63 | 0 | rr += MULT32_32_Q31(lpc[j],ac[i - j]); |
64 | 0 | rr += SHR32(ac[i + 1],6); |
65 | 0 | r = -frac_div32(SHL32(rr,6), error); |
66 | | /* Update LPC coefficients and total error */ |
67 | 0 | lpc[i] = SHR32(r,6); |
68 | 0 | for (j = 0; j < (i+1)>>1; j++) |
69 | 0 | { |
70 | 0 | opus_val32 tmp1, tmp2; |
71 | 0 | tmp1 = lpc[j]; |
72 | 0 | tmp2 = lpc[i-1-j]; |
73 | 0 | lpc[j] = tmp1 + MULT32_32_Q31(r,tmp2); |
74 | 0 | lpc[i-1-j] = tmp2 + MULT32_32_Q31(r,tmp1); |
75 | 0 | } |
76 | |
|
77 | 0 | error = error - MULT32_32_Q31(MULT32_32_Q31(r,r),error); |
78 | | /* Bail out once we get 30 dB gain */ |
79 | | #ifdef FIXED_POINT |
80 | | if (error<=SHR32(ac[0],10)) |
81 | | break; |
82 | | #else |
83 | 0 | if (error<=.001f*ac[0]) |
84 | 0 | break; |
85 | 0 | #endif |
86 | 0 | } |
87 | 0 | } |
88 | | #ifdef FIXED_POINT |
89 | | { |
90 | | /* Convert the int32 lpcs to int16 and ensure there are no wrap-arounds. |
91 | | This reuses the logic in silk_LPC_fit() and silk_bwexpander_32(). Any bug |
92 | | fixes should also be applied there. */ |
93 | | int iter, idx = 0; |
94 | | opus_val32 maxabs, absval, chirp_Q16, chirp_minus_one_Q16; |
95 | | |
96 | | for (iter = 0; iter < 10; iter++) { |
97 | | maxabs = 0; |
98 | | for (i = 0; i < p; i++) { |
99 | | absval = ABS32(lpc[i]); |
100 | | if (absval > maxabs) { |
101 | | maxabs = absval; |
102 | | idx = i; |
103 | | } |
104 | | } |
105 | | maxabs = PSHR32(maxabs, 13); /* Q25->Q12 */ |
106 | | |
107 | | if (maxabs > 32767) { |
108 | | maxabs = MIN32(maxabs, 163838); |
109 | | chirp_Q16 = QCONST32(0.999, 16) - DIV32(SHL32(maxabs - 32767, 14), |
110 | | SHR32(MULT32_32_32(maxabs, idx + 1), 2)); |
111 | | chirp_minus_one_Q16 = chirp_Q16 - 65536; |
112 | | |
113 | | /* Apply bandwidth expansion. */ |
114 | | for (i = 0; i < p - 1; i++) { |
115 | | lpc[i] = MULT32_32_Q16(chirp_Q16, lpc[i]); |
116 | | chirp_Q16 += PSHR32(MULT32_32_32(chirp_Q16, chirp_minus_one_Q16), 16); |
117 | | } |
118 | | lpc[p - 1] = MULT32_32_Q16(chirp_Q16, lpc[p - 1]); |
119 | | } else { |
120 | | break; |
121 | | } |
122 | | } |
123 | | |
124 | | if (iter == 10) { |
125 | | /* If the coeffs still do not fit into the 16 bit range after 10 iterations, |
126 | | fall back to the A(z)=1 filter. */ |
127 | | OPUS_CLEAR(lpc, p); |
128 | | _lpc[0] = 4096; /* Q12 */ |
129 | | } else { |
130 | | for (i = 0; i < p; i++) { |
131 | | _lpc[i] = EXTRACT16(PSHR32(lpc[i], 13)); /* Q25->Q12 */ |
132 | | } |
133 | | } |
134 | | } |
135 | | #endif |
136 | 0 | } |
137 | | |
138 | | |
139 | | void celt_fir_c( |
140 | | const opus_val16 *x, |
141 | | const opus_val16 *num, |
142 | | opus_val16 *y, |
143 | | int N, |
144 | | int ord, |
145 | | int arch) |
146 | 0 | { |
147 | 0 | int i,j; |
148 | 0 | VARDECL(opus_val16, rnum); |
149 | 0 | SAVE_STACK; |
150 | 0 | celt_assert(x != y); |
151 | 0 | ALLOC(rnum, ord, opus_val16); |
152 | 0 | for(i=0;i<ord;i++) |
153 | 0 | rnum[i] = num[ord-i-1]; |
154 | 0 | for (i=0;i<N-3;i+=4) |
155 | 0 | { |
156 | 0 | opus_val32 sum[4]; |
157 | 0 | sum[0] = SHL32(EXTEND32(x[i ]), SIG_SHIFT); |
158 | 0 | sum[1] = SHL32(EXTEND32(x[i+1]), SIG_SHIFT); |
159 | 0 | sum[2] = SHL32(EXTEND32(x[i+2]), SIG_SHIFT); |
160 | 0 | sum[3] = SHL32(EXTEND32(x[i+3]), SIG_SHIFT); |
161 | | #if defined(OPUS_CHECK_ASM) && defined(FIXED_POINT) |
162 | | { |
163 | | opus_val32 sum_c[4]; |
164 | | memcpy(sum_c, sum, sizeof(sum_c)); |
165 | | xcorr_kernel_c(rnum, x+i-ord, sum_c, ord); |
166 | | #endif |
167 | 0 | xcorr_kernel(rnum, x+i-ord, sum, ord, arch); |
168 | | #if defined(OPUS_CHECK_ASM) && defined(FIXED_POINT) |
169 | | celt_assert(memcmp(sum, sum_c, sizeof(sum)) == 0); |
170 | | } |
171 | | #endif |
172 | 0 | y[i ] = SROUND16(sum[0], SIG_SHIFT); |
173 | 0 | y[i+1] = SROUND16(sum[1], SIG_SHIFT); |
174 | 0 | y[i+2] = SROUND16(sum[2], SIG_SHIFT); |
175 | 0 | y[i+3] = SROUND16(sum[3], SIG_SHIFT); |
176 | 0 | } |
177 | 0 | for (;i<N;i++) |
178 | 0 | { |
179 | 0 | opus_val32 sum = SHL32(EXTEND32(x[i]), SIG_SHIFT); |
180 | 0 | for (j=0;j<ord;j++) |
181 | 0 | sum = MAC16_16(sum,rnum[j],x[i+j-ord]); |
182 | 0 | y[i] = SROUND16(sum, SIG_SHIFT); |
183 | 0 | } |
184 | 0 | RESTORE_STACK; |
185 | 0 | } |
186 | | |
187 | | void celt_iir(const opus_val32 *_x, |
188 | | const opus_val16 *den, |
189 | | opus_val32 *_y, |
190 | | int N, |
191 | | int ord, |
192 | | opus_val16 *mem, |
193 | | int arch) |
194 | 0 | { |
195 | | #ifdef SMALL_FOOTPRINT |
196 | | int i,j; |
197 | | (void)arch; |
198 | | for (i=0;i<N;i++) |
199 | | { |
200 | | opus_val32 sum = _x[i]; |
201 | | for (j=0;j<ord;j++) |
202 | | { |
203 | | sum -= MULT16_16(den[j],mem[j]); |
204 | | } |
205 | | for (j=ord-1;j>=1;j--) |
206 | | { |
207 | | mem[j]=mem[j-1]; |
208 | | } |
209 | | mem[0] = SROUND16(sum, SIG_SHIFT); |
210 | | _y[i] = sum; |
211 | | } |
212 | | #else |
213 | 0 | int i,j; |
214 | 0 | VARDECL(opus_val16, rden); |
215 | 0 | VARDECL(opus_val16, y); |
216 | 0 | SAVE_STACK; |
217 | |
|
218 | 0 | celt_assert((ord&3)==0); |
219 | 0 | ALLOC(rden, ord, opus_val16); |
220 | 0 | ALLOC(y, N+ord, opus_val16); |
221 | 0 | for(i=0;i<ord;i++) |
222 | 0 | rden[i] = den[ord-i-1]; |
223 | 0 | for(i=0;i<ord;i++) |
224 | 0 | y[i] = -mem[ord-i-1]; |
225 | 0 | for(;i<N+ord;i++) |
226 | 0 | y[i]=0; |
227 | 0 | for (i=0;i<N-3;i+=4) |
228 | 0 | { |
229 | | /* Unroll by 4 as if it were an FIR filter */ |
230 | 0 | opus_val32 sum[4]; |
231 | 0 | sum[0]=_x[i]; |
232 | 0 | sum[1]=_x[i+1]; |
233 | 0 | sum[2]=_x[i+2]; |
234 | 0 | sum[3]=_x[i+3]; |
235 | | #if defined(OPUS_CHECK_ASM) && defined(FIXED_POINT) |
236 | | { |
237 | | opus_val32 sum_c[4]; |
238 | | memcpy(sum_c, sum, sizeof(sum_c)); |
239 | | xcorr_kernel_c(rden, y+i, sum_c, ord); |
240 | | #endif |
241 | 0 | xcorr_kernel(rden, y+i, sum, ord, arch); |
242 | | #if defined(OPUS_CHECK_ASM) && defined(FIXED_POINT) |
243 | | celt_assert(memcmp(sum, sum_c, sizeof(sum)) == 0); |
244 | | } |
245 | | #endif |
246 | | /* Patch up the result to compensate for the fact that this is an IIR */ |
247 | 0 | y[i+ord ] = -SROUND16(sum[0],SIG_SHIFT); |
248 | 0 | _y[i ] = sum[0]; |
249 | 0 | sum[1] = MAC16_16(sum[1], y[i+ord ], den[0]); |
250 | 0 | y[i+ord+1] = -SROUND16(sum[1],SIG_SHIFT); |
251 | 0 | _y[i+1] = sum[1]; |
252 | 0 | sum[2] = MAC16_16(sum[2], y[i+ord+1], den[0]); |
253 | 0 | sum[2] = MAC16_16(sum[2], y[i+ord ], den[1]); |
254 | 0 | y[i+ord+2] = -SROUND16(sum[2],SIG_SHIFT); |
255 | 0 | _y[i+2] = sum[2]; |
256 | |
|
257 | 0 | sum[3] = MAC16_16(sum[3], y[i+ord+2], den[0]); |
258 | 0 | sum[3] = MAC16_16(sum[3], y[i+ord+1], den[1]); |
259 | 0 | sum[3] = MAC16_16(sum[3], y[i+ord ], den[2]); |
260 | 0 | y[i+ord+3] = -SROUND16(sum[3],SIG_SHIFT); |
261 | 0 | _y[i+3] = sum[3]; |
262 | 0 | } |
263 | 0 | for (;i<N;i++) |
264 | 0 | { |
265 | 0 | opus_val32 sum = _x[i]; |
266 | 0 | for (j=0;j<ord;j++) |
267 | 0 | sum -= MULT16_16(rden[j],y[i+j]); |
268 | 0 | y[i+ord] = SROUND16(sum,SIG_SHIFT); |
269 | 0 | _y[i] = sum; |
270 | 0 | } |
271 | 0 | for(i=0;i<ord;i++) |
272 | 0 | mem[i] = _y[N-i-1]; |
273 | 0 | RESTORE_STACK; |
274 | 0 | #endif |
275 | 0 | } |
276 | | |
277 | | int _celt_autocorr( |
278 | | const opus_val16 *x, /* in: [0...n-1] samples x */ |
279 | | opus_val32 *ac, /* out: [0...lag-1] ac values */ |
280 | | const opus_val16 *window, |
281 | | int overlap, |
282 | | int lag, |
283 | | int n, |
284 | | int arch |
285 | | ) |
286 | 0 | { |
287 | 0 | opus_val32 d; |
288 | 0 | int i, k; |
289 | 0 | int fastN=n-lag; |
290 | 0 | int shift; |
291 | 0 | const opus_val16 *xptr; |
292 | 0 | VARDECL(opus_val16, xx); |
293 | 0 | SAVE_STACK; |
294 | 0 | ALLOC(xx, n, opus_val16); |
295 | 0 | celt_assert(n>0); |
296 | 0 | celt_assert(overlap>=0); |
297 | 0 | if (overlap == 0) |
298 | 0 | { |
299 | 0 | xptr = x; |
300 | 0 | } else { |
301 | 0 | for (i=0;i<n;i++) |
302 | 0 | xx[i] = x[i]; |
303 | 0 | for (i=0;i<overlap;i++) |
304 | 0 | { |
305 | 0 | xx[i] = MULT16_16_Q15(x[i],window[i]); |
306 | 0 | xx[n-i-1] = MULT16_16_Q15(x[n-i-1],window[i]); |
307 | 0 | } |
308 | 0 | xptr = xx; |
309 | 0 | } |
310 | 0 | shift=0; |
311 | | #ifdef FIXED_POINT |
312 | | { |
313 | | opus_val32 ac0; |
314 | | ac0 = 1+(n<<7); |
315 | | if (n&1) ac0 += SHR32(MULT16_16(xptr[0],xptr[0]),9); |
316 | | for(i=(n&1);i<n;i+=2) |
317 | | { |
318 | | ac0 += SHR32(MULT16_16(xptr[i],xptr[i]),9); |
319 | | ac0 += SHR32(MULT16_16(xptr[i+1],xptr[i+1]),9); |
320 | | } |
321 | | |
322 | | shift = celt_ilog2(ac0)-30+10; |
323 | | shift = (shift)/2; |
324 | | if (shift>0) |
325 | | { |
326 | | for(i=0;i<n;i++) |
327 | | xx[i] = PSHR32(xptr[i], shift); |
328 | | xptr = xx; |
329 | | } else |
330 | | shift = 0; |
331 | | } |
332 | | #endif |
333 | 0 | celt_pitch_xcorr(xptr, xptr, ac, fastN, lag+1, arch); |
334 | 0 | for (k=0;k<=lag;k++) |
335 | 0 | { |
336 | 0 | for (i = k+fastN, d = 0; i < n; i++) |
337 | 0 | d = MAC16_16(d, xptr[i], xptr[i-k]); |
338 | 0 | ac[k] += d; |
339 | 0 | } |
340 | | #ifdef FIXED_POINT |
341 | | shift = 2*shift; |
342 | | if (shift<=0) |
343 | | ac[0] += SHL32((opus_int32)1, -shift); |
344 | | if (ac[0] < 268435456) |
345 | | { |
346 | | int shift2 = 29 - EC_ILOG(ac[0]); |
347 | | for (i=0;i<=lag;i++) |
348 | | ac[i] = SHL32(ac[i], shift2); |
349 | | shift -= shift2; |
350 | | } else if (ac[0] >= 536870912) |
351 | | { |
352 | | int shift2=1; |
353 | | if (ac[0] >= 1073741824) |
354 | | shift2++; |
355 | | for (i=0;i<=lag;i++) |
356 | | ac[i] = SHR32(ac[i], shift2); |
357 | | shift += shift2; |
358 | | } |
359 | | #endif |
360 | |
|
361 | 0 | RESTORE_STACK; |
362 | 0 | return shift; |
363 | 0 | } |