Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (c) 2007-2008 CSIRO |
2 | | Copyright (c) 2007-2009 Xiph.Org Foundation |
3 | | Copyright (c) 2007-2009 Timothy B. Terriberry |
4 | | Written by Timothy B. Terriberry and Jean-Marc Valin */ |
5 | | /* |
6 | | Redistribution and use in source and binary forms, with or without |
7 | | modification, are permitted provided that the following conditions |
8 | | are met: |
9 | | |
10 | | - Redistributions of source code must retain the above copyright |
11 | | notice, this list of conditions and the following disclaimer. |
12 | | |
13 | | - Redistributions in binary form must reproduce the above copyright |
14 | | notice, this list of conditions and the following disclaimer in the |
15 | | documentation and/or other materials provided with the distribution. |
16 | | |
17 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
18 | | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
19 | | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
20 | | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
21 | | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
22 | | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
23 | | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
24 | | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
25 | | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
26 | | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
27 | | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | |
30 | | #ifdef HAVE_CONFIG_H |
31 | | #include "config.h" |
32 | | #endif |
33 | | |
34 | | #include "os_support.h" |
35 | | #include "cwrs.h" |
36 | | #include "mathops.h" |
37 | | #include "arch.h" |
38 | | |
39 | | #ifdef CUSTOM_MODES |
40 | | |
41 | | /*Guaranteed to return a conservatively large estimate of the binary logarithm |
42 | | with frac bits of fractional precision. |
43 | | Tested for all possible 32-bit inputs with frac=4, where the maximum |
44 | | overestimation is 0.06254243 bits.*/ |
45 | | int log2_frac(opus_uint32 val, int frac) |
46 | | { |
47 | | int l; |
48 | | l=EC_ILOG(val); |
49 | | if(val&(val-1)){ |
50 | | /*This is (val>>l-16), but guaranteed to round up, even if adding a bias |
51 | | before the shift would cause overflow (e.g., for 0xFFFFxxxx). |
52 | | Doesn't work for val=0, but that case fails the test above.*/ |
53 | | if(l>16)val=((val-1)>>(l-16))+1; |
54 | | else val<<=16-l; |
55 | | l=(l-1)<<frac; |
56 | | /*Note that we always need one iteration, since the rounding up above means |
57 | | that we might need to adjust the integer part of the logarithm.*/ |
58 | | do{ |
59 | | int b; |
60 | | b=(int)(val>>16); |
61 | | l+=b<<frac; |
62 | | val=(val+b)>>b; |
63 | | val=(val*val+0x7FFF)>>15; |
64 | | } |
65 | | while(frac-->0); |
66 | | /*If val is not exactly 0x8000, then we have to round up the remainder.*/ |
67 | | return l+(val>0x8000); |
68 | | } |
69 | | /*Exact powers of two require no rounding.*/ |
70 | | else return (l-1)<<frac; |
71 | | } |
72 | | #endif |
73 | | |
74 | | /*Although derived separately, the pulse vector coding scheme is equivalent to |
75 | | a Pyramid Vector Quantizer \cite{Fis86}. |
76 | | Some additional notes about an early version appear at |
77 | | https://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering |
78 | | and the definitions of some terms have evolved since that was written. |
79 | | |
80 | | The conversion from a pulse vector to an integer index (encoding) and back |
81 | | (decoding) is governed by two related functions, V(N,K) and U(N,K). |
82 | | |
83 | | V(N,K) = the number of combinations, with replacement, of N items, taken K |
84 | | at a time, when a sign bit is added to each item taken at least once (i.e., |
85 | | the number of N-dimensional unit pulse vectors with K pulses). |
86 | | One way to compute this is via |
87 | | V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1, |
88 | | where choose() is the binomial function. |
89 | | A table of values for N<10 and K<10 looks like: |
90 | | V[10][10] = { |
91 | | {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
92 | | {1, 2, 2, 2, 2, 2, 2, 2, 2, 2}, |
93 | | {1, 4, 8, 12, 16, 20, 24, 28, 32, 36}, |
94 | | {1, 6, 18, 38, 66, 102, 146, 198, 258, 326}, |
95 | | {1, 8, 32, 88, 192, 360, 608, 952, 1408, 1992}, |
96 | | {1, 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290}, |
97 | | {1, 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436}, |
98 | | {1, 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598}, |
99 | | {1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688}, |
100 | | {1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146} |
101 | | }; |
102 | | |
103 | | U(N,K) = the number of such combinations wherein N-1 objects are taken at |
104 | | most K-1 at a time. |
105 | | This is given by |
106 | | U(N,K) = sum(k=0...K-1,V(N-1,k)) |
107 | | = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0. |
108 | | The latter expression also makes clear that U(N,K) is half the number of such |
109 | | combinations wherein the first object is taken at least once. |
110 | | Although it may not be clear from either of these definitions, U(N,K) is the |
111 | | natural function to work with when enumerating the pulse vector codebooks, |
112 | | not V(N,K). |
113 | | U(N,K) is not well-defined for N=0, but with the extension |
114 | | U(0,K) = K>0 ? 0 : 1, |
115 | | the function becomes symmetric: U(N,K) = U(K,N), with a similar table: |
116 | | U[10][10] = { |
117 | | {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
118 | | {0, 1, 1, 1, 1, 1, 1, 1, 1, 1}, |
119 | | {0, 1, 3, 5, 7, 9, 11, 13, 15, 17}, |
120 | | {0, 1, 5, 13, 25, 41, 61, 85, 113, 145}, |
121 | | {0, 1, 7, 25, 63, 129, 231, 377, 575, 833}, |
122 | | {0, 1, 9, 41, 129, 321, 681, 1289, 2241, 3649}, |
123 | | {0, 1, 11, 61, 231, 681, 1683, 3653, 7183, 13073}, |
124 | | {0, 1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081}, |
125 | | {0, 1, 15, 113, 575, 2241, 7183, 19825, 48639, 108545}, |
126 | | {0, 1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729} |
127 | | }; |
128 | | |
129 | | With this extension, V(N,K) may be written in terms of U(N,K): |
130 | | V(N,K) = U(N,K) + U(N,K+1) |
131 | | for all N>=0, K>=0. |
132 | | Thus U(N,K+1) represents the number of combinations where the first element |
133 | | is positive or zero, and U(N,K) represents the number of combinations where |
134 | | it is negative. |
135 | | With a large enough table of U(N,K) values, we could write O(N) encoding |
136 | | and O(min(N*log(K),N+K)) decoding routines, but such a table would be |
137 | | prohibitively large for small embedded devices (K may be as large as 32767 |
138 | | for small N, and N may be as large as 200). |
139 | | |
140 | | Both functions obey the same recurrence relation: |
141 | | V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1), |
142 | | U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1), |
143 | | for all N>0, K>0, with different initial conditions at N=0 or K=0. |
144 | | This allows us to construct a row of one of the tables above given the |
145 | | previous row or the next row. |
146 | | Thus we can derive O(NK) encoding and decoding routines with O(K) memory |
147 | | using only addition and subtraction. |
148 | | |
149 | | When encoding, we build up from the U(2,K) row and work our way forwards. |
150 | | When decoding, we need to start at the U(N,K) row and work our way backwards, |
151 | | which requires a means of computing U(N,K). |
152 | | U(N,K) may be computed from two previous values with the same N: |
153 | | U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2) |
154 | | for all N>1, and since U(N,K) is symmetric, a similar relation holds for two |
155 | | previous values with the same K: |
156 | | U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K) |
157 | | for all K>1. |
158 | | This allows us to construct an arbitrary row of the U(N,K) table by starting |
159 | | with the first two values, which are constants. |
160 | | This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K) |
161 | | multiplications. |
162 | | Similar relations can be derived for V(N,K), but are not used here. |
163 | | |
164 | | For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree |
165 | | polynomial for fixed N. |
166 | | The first few are |
167 | | U(1,K) = 1, |
168 | | U(2,K) = 2*K-1, |
169 | | U(3,K) = (2*K-2)*K+1, |
170 | | U(4,K) = (((4*K-6)*K+8)*K-3)/3, |
171 | | U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3, |
172 | | and |
173 | | V(1,K) = 2, |
174 | | V(2,K) = 4*K, |
175 | | V(3,K) = 4*K*K+2, |
176 | | V(4,K) = 8*(K*K+2)*K/3, |
177 | | V(5,K) = ((4*K*K+20)*K*K+6)/3, |
178 | | for all K>0. |
179 | | This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for |
180 | | small N (and indeed decoding is also O(N) for N<3). |
181 | | |
182 | | @ARTICLE{Fis86, |
183 | | author="Thomas R. Fischer", |
184 | | title="A Pyramid Vector Quantizer", |
185 | | journal="IEEE Transactions on Information Theory", |
186 | | volume="IT-32", |
187 | | number=4, |
188 | | pages="568--583", |
189 | | month=Jul, |
190 | | year=1986 |
191 | | }*/ |
192 | | |
193 | | #if !defined(SMALL_FOOTPRINT) |
194 | | |
195 | | /*U(N,K) = U(K,N) := N>0?K>0?U(N-1,K)+U(N,K-1)+U(N-1,K-1):0:K>0?1:0*/ |
196 | 0 | # define CELT_PVQ_U(_n,_k) (CELT_PVQ_U_ROW[IMIN(_n,_k)][IMAX(_n,_k)]) |
197 | | /*V(N,K) := U(N,K)+U(N,K+1) = the number of PVQ codewords for a band of size N |
198 | | with K pulses allocated to it.*/ |
199 | 0 | # define CELT_PVQ_V(_n,_k) (CELT_PVQ_U(_n,_k)+CELT_PVQ_U(_n,(_k)+1)) |
200 | | |
201 | | /*For each V(N,K) supported, we will access element U(min(N,K+1),max(N,K+1)). |
202 | | Thus, the number of entries in row I is the larger of the maximum number of |
203 | | pulses we will ever allocate for a given N=I (K=128, or however many fit in |
204 | | 32 bits, whichever is smaller), plus one, and the maximum N for which |
205 | | K=I-1 pulses fit in 32 bits. |
206 | | The largest band size in an Opus Custom mode is 208. |
207 | | Otherwise, we can limit things to the set of N which can be achieved by |
208 | | splitting a band from a standard Opus mode: 176, 144, 96, 88, 72, 64, 48, |
209 | | 44, 36, 32, 24, 22, 18, 16, 8, 4, 2).*/ |
210 | | #if defined(CUSTOM_MODES) |
211 | | static const opus_uint32 CELT_PVQ_U_DATA[1488]={ |
212 | | #else |
213 | | static const opus_uint32 CELT_PVQ_U_DATA[1272]={ |
214 | | #endif |
215 | | /*N=0, K=0...176:*/ |
216 | | 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
217 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
218 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
219 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
220 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
221 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
222 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
223 | | #if defined(CUSTOM_MODES) |
224 | | /*...208:*/ |
225 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
226 | | 0, 0, 0, 0, 0, 0, |
227 | | #endif |
228 | | /*N=1, K=1...176:*/ |
229 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
230 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
231 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
232 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
233 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
234 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
235 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
236 | | #if defined(CUSTOM_MODES) |
237 | | /*...208:*/ |
238 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
239 | | 1, 1, 1, 1, 1, 1, |
240 | | #endif |
241 | | /*N=2, K=2...176:*/ |
242 | | 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, |
243 | | 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, |
244 | | 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, |
245 | | 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, |
246 | | 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, |
247 | | 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, |
248 | | 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, |
249 | | 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, |
250 | | 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, |
251 | | 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, |
252 | | 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, |
253 | | #if defined(CUSTOM_MODES) |
254 | | /*...208:*/ |
255 | | 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 379, 381, |
256 | | 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411, |
257 | | 413, 415, |
258 | | #endif |
259 | | /*N=3, K=3...176:*/ |
260 | | 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, |
261 | | 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, |
262 | | 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, |
263 | | 3961, 4141, 4325, 4513, 4705, 4901, 5101, 5305, 5513, 5725, 5941, 6161, 6385, |
264 | | 6613, 6845, 7081, 7321, 7565, 7813, 8065, 8321, 8581, 8845, 9113, 9385, 9661, |
265 | | 9941, 10225, 10513, 10805, 11101, 11401, 11705, 12013, 12325, 12641, 12961, |
266 | | 13285, 13613, 13945, 14281, 14621, 14965, 15313, 15665, 16021, 16381, 16745, |
267 | | 17113, 17485, 17861, 18241, 18625, 19013, 19405, 19801, 20201, 20605, 21013, |
268 | | 21425, 21841, 22261, 22685, 23113, 23545, 23981, 24421, 24865, 25313, 25765, |
269 | | 26221, 26681, 27145, 27613, 28085, 28561, 29041, 29525, 30013, 30505, 31001, |
270 | | 31501, 32005, 32513, 33025, 33541, 34061, 34585, 35113, 35645, 36181, 36721, |
271 | | 37265, 37813, 38365, 38921, 39481, 40045, 40613, 41185, 41761, 42341, 42925, |
272 | | 43513, 44105, 44701, 45301, 45905, 46513, 47125, 47741, 48361, 48985, 49613, |
273 | | 50245, 50881, 51521, 52165, 52813, 53465, 54121, 54781, 55445, 56113, 56785, |
274 | | 57461, 58141, 58825, 59513, 60205, 60901, 61601, |
275 | | #if defined(CUSTOM_MODES) |
276 | | /*...208:*/ |
277 | | 62305, 63013, 63725, 64441, 65161, 65885, 66613, 67345, 68081, 68821, 69565, |
278 | | 70313, 71065, 71821, 72581, 73345, 74113, 74885, 75661, 76441, 77225, 78013, |
279 | | 78805, 79601, 80401, 81205, 82013, 82825, 83641, 84461, 85285, 86113, |
280 | | #endif |
281 | | /*N=4, K=4...176:*/ |
282 | | 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017, |
283 | | 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775, |
284 | | 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153, |
285 | | 82239, 88641, 95367, 102425, 109823, 117569, 125671, 134137, 142975, 152193, |
286 | | 161799, 171801, 182207, 193025, 204263, 215929, 228031, 240577, 253575, |
287 | | 267033, 280959, 295361, 310247, 325625, 341503, 357889, 374791, 392217, |
288 | | 410175, 428673, 447719, 467321, 487487, 508225, 529543, 551449, 573951, |
289 | | 597057, 620775, 645113, 670079, 695681, 721927, 748825, 776383, 804609, |
290 | | 833511, 863097, 893375, 924353, 956039, 988441, 1021567, 1055425, 1090023, |
291 | | 1125369, 1161471, 1198337, 1235975, 1274393, 1313599, 1353601, 1394407, |
292 | | 1436025, 1478463, 1521729, 1565831, 1610777, 1656575, 1703233, 1750759, |
293 | | 1799161, 1848447, 1898625, 1949703, 2001689, 2054591, 2108417, 2163175, |
294 | | 2218873, 2275519, 2333121, 2391687, 2451225, 2511743, 2573249, 2635751, |
295 | | 2699257, 2763775, 2829313, 2895879, 2963481, 3032127, 3101825, 3172583, |
296 | | 3244409, 3317311, 3391297, 3466375, 3542553, 3619839, 3698241, 3777767, |
297 | | 3858425, 3940223, 4023169, 4107271, 4192537, 4278975, 4366593, 4455399, |
298 | | 4545401, 4636607, 4729025, 4822663, 4917529, 5013631, 5110977, 5209575, |
299 | | 5309433, 5410559, 5512961, 5616647, 5721625, 5827903, 5935489, 6044391, |
300 | | 6154617, 6266175, 6379073, 6493319, 6608921, 6725887, 6844225, 6963943, |
301 | | 7085049, 7207551, |
302 | | #if defined(CUSTOM_MODES) |
303 | | /*...208:*/ |
304 | | 7331457, 7456775, 7583513, 7711679, 7841281, 7972327, 8104825, 8238783, |
305 | | 8374209, 8511111, 8649497, 8789375, 8930753, 9073639, 9218041, 9363967, |
306 | | 9511425, 9660423, 9810969, 9963071, 10116737, 10271975, 10428793, 10587199, |
307 | | 10747201, 10908807, 11072025, 11236863, 11403329, 11571431, 11741177, |
308 | | 11912575, |
309 | | #endif |
310 | | /*N=5, K=5...176:*/ |
311 | | 321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041, |
312 | | 50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401, |
313 | | 330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241, |
314 | | 1061761, 1186369, 1321641, 1468169, 1626561, 1797441, 1981449, 2179241, |
315 | | 2391489, 2618881, 2862121, 3121929, 3399041, 3694209, 4008201, 4341801, |
316 | | 4695809, 5071041, 5468329, 5888521, 6332481, 6801089, 7295241, 7815849, |
317 | | 8363841, 8940161, 9545769, 10181641, 10848769, 11548161, 12280841, 13047849, |
318 | | 13850241, 14689089, 15565481, 16480521, 17435329, 18431041, 19468809, |
319 | | 20549801, 21675201, 22846209, 24064041, 25329929, 26645121, 28010881, |
320 | | 29428489, 30899241, 32424449, 34005441, 35643561, 37340169, 39096641, |
321 | | 40914369, 42794761, 44739241, 46749249, 48826241, 50971689, 53187081, |
322 | | 55473921, 57833729, 60268041, 62778409, 65366401, 68033601, 70781609, |
323 | | 73612041, 76526529, 79526721, 82614281, 85790889, 89058241, 92418049, |
324 | | 95872041, 99421961, 103069569, 106816641, 110664969, 114616361, 118672641, |
325 | | 122835649, 127107241, 131489289, 135983681, 140592321, 145317129, 150160041, |
326 | | 155123009, 160208001, 165417001, 170752009, 176215041, 181808129, 187533321, |
327 | | 193392681, 199388289, 205522241, 211796649, 218213641, 224775361, 231483969, |
328 | | 238341641, 245350569, 252512961, 259831041, 267307049, 274943241, 282741889, |
329 | | 290705281, 298835721, 307135529, 315607041, 324252609, 333074601, 342075401, |
330 | | 351257409, 360623041, 370174729, 379914921, 389846081, 399970689, 410291241, |
331 | | 420810249, 431530241, 442453761, 453583369, 464921641, 476471169, 488234561, |
332 | | 500214441, 512413449, 524834241, 537479489, 550351881, 563454121, 576788929, |
333 | | 590359041, 604167209, 618216201, 632508801, |
334 | | #if defined(CUSTOM_MODES) |
335 | | /*...208:*/ |
336 | | 647047809, 661836041, 676876329, 692171521, 707724481, 723538089, 739615241, |
337 | | 755958849, 772571841, 789457161, 806617769, 824056641, 841776769, 859781161, |
338 | | 878072841, 896654849, 915530241, 934702089, 954173481, 973947521, 994027329, |
339 | | 1014416041, 1035116809, 1056132801, 1077467201, 1099123209, 1121104041, |
340 | | 1143412929, 1166053121, 1189027881, 1212340489, 1235994241, |
341 | | #endif |
342 | | /*N=6, K=6...96:*/ |
343 | | 1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047, |
344 | | 335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409, |
345 | | 2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793, |
346 | | 11326283, 13115773, 15124775, 17372905, 19880915, 22670725, 25765455, |
347 | | 29189457, 32968347, 37129037, 41699767, 46710137, 52191139, 58175189, |
348 | | 64696159, 71789409, 79491819, 87841821, 96879431, 106646281, 117185651, |
349 | | 128542501, 140763503, 153897073, 167993403, 183104493, 199284183, 216588185, |
350 | | 235074115, 254801525, 275831935, 298228865, 322057867, 347386557, 374284647, |
351 | | 402823977, 433078547, 465124549, 499040399, 534906769, 572806619, 612825229, |
352 | | 655050231, 699571641, 746481891, 795875861, 847850911, 902506913, 959946283, |
353 | | 1020274013, 1083597703, 1150027593, 1219676595, 1292660325, 1369097135, |
354 | | 1449108145, 1532817275, 1620351277, 1711839767, 1807415257, 1907213187, |
355 | | 2011371957, 2120032959, |
356 | | #if defined(CUSTOM_MODES) |
357 | | /*...109:*/ |
358 | | 2233340609U, 2351442379U, 2474488829U, 2602633639U, 2736033641U, 2874848851U, |
359 | | 3019242501U, 3169381071U, 3325434321U, 3487575323U, 3655980493U, 3830829623U, |
360 | | 4012305913U, |
361 | | #endif |
362 | | /*N=7, K=7...54*/ |
363 | | 8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777, |
364 | | 1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233, |
365 | | 19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013, |
366 | | 88043969, 106114625, 127178701, 151620757, 179861305, 212358985, 249612805, |
367 | | 292164445, 340600625, 395555537, 457713341, 527810725, 606639529, 695049433, |
368 | | 793950709, 904317037, 1027188385, 1163673953, 1314955181, 1482288821, |
369 | | 1667010073, 1870535785, 2094367717, |
370 | | #if defined(CUSTOM_MODES) |
371 | | /*...60:*/ |
372 | | 2340095869U, 2609401873U, 2904062449U, 3225952925U, 3577050821U, 3959439497U, |
373 | | #endif |
374 | | /*N=8, K=8...37*/ |
375 | | 48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767, |
376 | | 9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017, |
377 | | 104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351, |
378 | | 638878193, 799538175, 993696769, 1226990095, 1505789553, 1837271615, |
379 | | 2229491905U, |
380 | | #if defined(CUSTOM_MODES) |
381 | | /*...40:*/ |
382 | | 2691463695U, 3233240945U, 3866006015U, |
383 | | #endif |
384 | | /*N=9, K=9...28:*/ |
385 | | 265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777, |
386 | | 39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145, |
387 | | 628496897, 872893441, 1196924561, 1621925137, 2173806145U, |
388 | | #if defined(CUSTOM_MODES) |
389 | | /*...29:*/ |
390 | | 2883810113U, |
391 | | #endif |
392 | | /*N=10, K=10...24:*/ |
393 | | 1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073, |
394 | | 254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629U, |
395 | | 3375210671U, |
396 | | /*N=11, K=11...19:*/ |
397 | | 8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585, |
398 | | 948062325, 1616336765, |
399 | | #if defined(CUSTOM_MODES) |
400 | | /*...20:*/ |
401 | | 2684641785U, |
402 | | #endif |
403 | | /*N=12, K=12...18:*/ |
404 | | 45046719, 103274625, 224298231, 464387817, 921406335, 1759885185, |
405 | | 3248227095U, |
406 | | /*N=13, K=13...16:*/ |
407 | | 251595969, 579168825, 1267854873, 2653649025U, |
408 | | /*N=14, K=14:*/ |
409 | | 1409933619 |
410 | | }; |
411 | | |
412 | | #if defined(CUSTOM_MODES) |
413 | | static const opus_uint32 *const CELT_PVQ_U_ROW[15]={ |
414 | | CELT_PVQ_U_DATA+ 0,CELT_PVQ_U_DATA+ 208,CELT_PVQ_U_DATA+ 415, |
415 | | CELT_PVQ_U_DATA+ 621,CELT_PVQ_U_DATA+ 826,CELT_PVQ_U_DATA+1030, |
416 | | CELT_PVQ_U_DATA+1233,CELT_PVQ_U_DATA+1336,CELT_PVQ_U_DATA+1389, |
417 | | CELT_PVQ_U_DATA+1421,CELT_PVQ_U_DATA+1441,CELT_PVQ_U_DATA+1455, |
418 | | CELT_PVQ_U_DATA+1464,CELT_PVQ_U_DATA+1470,CELT_PVQ_U_DATA+1473 |
419 | | }; |
420 | | #else |
421 | | static const opus_uint32 *const CELT_PVQ_U_ROW[15]={ |
422 | | CELT_PVQ_U_DATA+ 0,CELT_PVQ_U_DATA+ 176,CELT_PVQ_U_DATA+ 351, |
423 | | CELT_PVQ_U_DATA+ 525,CELT_PVQ_U_DATA+ 698,CELT_PVQ_U_DATA+ 870, |
424 | | CELT_PVQ_U_DATA+1041,CELT_PVQ_U_DATA+1131,CELT_PVQ_U_DATA+1178, |
425 | | CELT_PVQ_U_DATA+1207,CELT_PVQ_U_DATA+1226,CELT_PVQ_U_DATA+1240, |
426 | | CELT_PVQ_U_DATA+1248,CELT_PVQ_U_DATA+1254,CELT_PVQ_U_DATA+1257 |
427 | | }; |
428 | | #endif |
429 | | |
430 | | #if defined(CUSTOM_MODES) |
431 | | void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){ |
432 | | int k; |
433 | | /*_maxk==0 => there's nothing to do.*/ |
434 | | celt_assert(_maxk>0); |
435 | | _bits[0]=0; |
436 | | for(k=1;k<=_maxk;k++)_bits[k]=log2_frac(CELT_PVQ_V(_n,k),_frac); |
437 | | } |
438 | | #endif |
439 | | |
440 | 0 | static opus_uint32 icwrs(int _n,const int *_y){ |
441 | 0 | opus_uint32 i; |
442 | 0 | int j; |
443 | 0 | int k; |
444 | 0 | celt_assert(_n>=2); |
445 | 0 | j=_n-1; |
446 | 0 | i=_y[j]<0; |
447 | 0 | k=abs(_y[j]); |
448 | 0 | do{ |
449 | 0 | j--; |
450 | 0 | i+=CELT_PVQ_U(_n-j,k); |
451 | 0 | k+=abs(_y[j]); |
452 | 0 | if(_y[j]<0)i+=CELT_PVQ_U(_n-j,k+1); |
453 | 0 | } |
454 | 0 | while(j>0); |
455 | 0 | return i; |
456 | 0 | } |
457 | | |
458 | 0 | void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){ |
459 | 0 | celt_assert(_k>0); |
460 | 0 | ec_enc_uint(_enc,icwrs(_n,_y),CELT_PVQ_V(_n,_k)); |
461 | 0 | } |
462 | | |
463 | 0 | static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y){ |
464 | 0 | opus_uint32 p; |
465 | 0 | int s; |
466 | 0 | int k0; |
467 | 0 | opus_int16 val; |
468 | 0 | opus_val32 yy=0; |
469 | 0 | celt_assert(_k>0); |
470 | 0 | celt_assert(_n>1); |
471 | 0 | while(_n>2){ |
472 | 0 | opus_uint32 q; |
473 | | /*Lots of pulses case:*/ |
474 | 0 | if(_k>=_n){ |
475 | 0 | const opus_uint32 *row; |
476 | 0 | row=CELT_PVQ_U_ROW[_n]; |
477 | | /*Are the pulses in this dimension negative?*/ |
478 | 0 | p=row[_k+1]; |
479 | 0 | s=-(_i>=p); |
480 | 0 | _i-=p&s; |
481 | | /*Count how many pulses were placed in this dimension.*/ |
482 | 0 | k0=_k; |
483 | 0 | q=row[_n]; |
484 | 0 | if(q>_i){ |
485 | 0 | celt_sig_assert(p>q); |
486 | 0 | _k=_n; |
487 | 0 | do p=CELT_PVQ_U_ROW[--_k][_n]; |
488 | 0 | while(p>_i); |
489 | 0 | } |
490 | 0 | else for(p=row[_k];p>_i;p=row[_k])_k--; |
491 | 0 | _i-=p; |
492 | 0 | val=(k0-_k+s)^s; |
493 | 0 | *_y++=val; |
494 | 0 | yy=MAC16_16(yy,val,val); |
495 | 0 | } |
496 | | /*Lots of dimensions case:*/ |
497 | 0 | else{ |
498 | | /*Are there any pulses in this dimension at all?*/ |
499 | 0 | p=CELT_PVQ_U_ROW[_k][_n]; |
500 | 0 | q=CELT_PVQ_U_ROW[_k+1][_n]; |
501 | 0 | if(p<=_i&&_i<q){ |
502 | 0 | _i-=p; |
503 | 0 | *_y++=0; |
504 | 0 | } |
505 | 0 | else{ |
506 | | /*Are the pulses in this dimension negative?*/ |
507 | 0 | s=-(_i>=q); |
508 | 0 | _i-=q&s; |
509 | | /*Count how many pulses were placed in this dimension.*/ |
510 | 0 | k0=_k; |
511 | 0 | do p=CELT_PVQ_U_ROW[--_k][_n]; |
512 | 0 | while(p>_i); |
513 | 0 | _i-=p; |
514 | 0 | val=(k0-_k+s)^s; |
515 | 0 | *_y++=val; |
516 | 0 | yy=MAC16_16(yy,val,val); |
517 | 0 | } |
518 | 0 | } |
519 | 0 | _n--; |
520 | 0 | } |
521 | | /*_n==2*/ |
522 | 0 | p=2*_k+1; |
523 | 0 | s=-(_i>=p); |
524 | 0 | _i-=p&s; |
525 | 0 | k0=_k; |
526 | 0 | _k=(_i+1)>>1; |
527 | 0 | if(_k)_i-=2*_k-1; |
528 | 0 | val=(k0-_k+s)^s; |
529 | 0 | *_y++=val; |
530 | 0 | yy=MAC16_16(yy,val,val); |
531 | | /*_n==1*/ |
532 | 0 | s=-(int)_i; |
533 | 0 | val=(_k+s)^s; |
534 | 0 | *_y=val; |
535 | 0 | yy=MAC16_16(yy,val,val); |
536 | 0 | return yy; |
537 | 0 | } |
538 | | |
539 | 0 | opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){ |
540 | 0 | return cwrsi(_n,_k,ec_dec_uint(_dec,CELT_PVQ_V(_n,_k)),_y); |
541 | 0 | } |
542 | | |
543 | | #else /* SMALL_FOOTPRINT */ |
544 | | |
545 | | /*Computes the next row/column of any recurrence that obeys the relation |
546 | | u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1]. |
547 | | _ui0 is the base case for the new row/column.*/ |
548 | | static OPUS_INLINE void unext(opus_uint32 *_ui,unsigned _len,opus_uint32 _ui0){ |
549 | | opus_uint32 ui1; |
550 | | unsigned j; |
551 | | /*This do-while will overrun the array if we don't have storage for at least |
552 | | 2 values.*/ |
553 | | j=1; do { |
554 | | ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0); |
555 | | _ui[j-1]=_ui0; |
556 | | _ui0=ui1; |
557 | | } while (++j<_len); |
558 | | _ui[j-1]=_ui0; |
559 | | } |
560 | | |
561 | | /*Computes the previous row/column of any recurrence that obeys the relation |
562 | | u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1]. |
563 | | _ui0 is the base case for the new row/column.*/ |
564 | | static OPUS_INLINE void uprev(opus_uint32 *_ui,unsigned _n,opus_uint32 _ui0){ |
565 | | opus_uint32 ui1; |
566 | | unsigned j; |
567 | | /*This do-while will overrun the array if we don't have storage for at least |
568 | | 2 values.*/ |
569 | | j=1; do { |
570 | | ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0); |
571 | | _ui[j-1]=_ui0; |
572 | | _ui0=ui1; |
573 | | } while (++j<_n); |
574 | | _ui[j-1]=_ui0; |
575 | | } |
576 | | |
577 | | /*Compute V(_n,_k), as well as U(_n,0..._k+1). |
578 | | _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/ |
579 | | static opus_uint32 ncwrs_urow(unsigned _n,unsigned _k,opus_uint32 *_u){ |
580 | | opus_uint32 um2; |
581 | | unsigned len; |
582 | | unsigned k; |
583 | | len=_k+2; |
584 | | /*We require storage at least 3 values (e.g., _k>0).*/ |
585 | | celt_assert(len>=3); |
586 | | _u[0]=0; |
587 | | _u[1]=um2=1; |
588 | | /*If _n==0, _u[0] should be 1 and the rest should be 0.*/ |
589 | | /*If _n==1, _u[i] should be 1 for i>1.*/ |
590 | | celt_assert(_n>=2); |
591 | | /*If _k==0, the following do-while loop will overflow the buffer.*/ |
592 | | celt_assert(_k>0); |
593 | | k=2; |
594 | | do _u[k]=(k<<1)-1; |
595 | | while(++k<len); |
596 | | for(k=2;k<_n;k++)unext(_u+1,_k+1,1); |
597 | | return _u[_k]+_u[_k+1]; |
598 | | } |
599 | | |
600 | | /*Returns the _i'th combination of _k elements chosen from a set of size _n |
601 | | with associated sign bits. |
602 | | _y: Returns the vector of pulses. |
603 | | _u: Must contain entries [0..._k+1] of row _n of U() on input. |
604 | | Its contents will be destructively modified.*/ |
605 | | static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y,opus_uint32 *_u){ |
606 | | int j; |
607 | | opus_int16 val; |
608 | | opus_val32 yy=0; |
609 | | celt_assert(_n>0); |
610 | | j=0; |
611 | | do{ |
612 | | opus_uint32 p; |
613 | | int s; |
614 | | int yj; |
615 | | p=_u[_k+1]; |
616 | | s=-(_i>=p); |
617 | | _i-=p&s; |
618 | | yj=_k; |
619 | | p=_u[_k]; |
620 | | while(p>_i)p=_u[--_k]; |
621 | | _i-=p; |
622 | | yj-=_k; |
623 | | val=(yj+s)^s; |
624 | | _y[j]=val; |
625 | | yy=MAC16_16(yy,val,val); |
626 | | uprev(_u,_k+2,0); |
627 | | } |
628 | | while(++j<_n); |
629 | | return yy; |
630 | | } |
631 | | |
632 | | /*Returns the index of the given combination of K elements chosen from a set |
633 | | of size 1 with associated sign bits. |
634 | | _y: The vector of pulses, whose sum of absolute values is K. |
635 | | _k: Returns K.*/ |
636 | | static OPUS_INLINE opus_uint32 icwrs1(const int *_y,int *_k){ |
637 | | *_k=abs(_y[0]); |
638 | | return _y[0]<0; |
639 | | } |
640 | | |
641 | | /*Returns the index of the given combination of K elements chosen from a set |
642 | | of size _n with associated sign bits. |
643 | | _y: The vector of pulses, whose sum of absolute values must be _k. |
644 | | _nc: Returns V(_n,_k).*/ |
645 | | static OPUS_INLINE opus_uint32 icwrs(int _n,int _k,opus_uint32 *_nc,const int *_y, |
646 | | opus_uint32 *_u){ |
647 | | opus_uint32 i; |
648 | | int j; |
649 | | int k; |
650 | | /*We can't unroll the first two iterations of the loop unless _n>=2.*/ |
651 | | celt_assert(_n>=2); |
652 | | _u[0]=0; |
653 | | for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1; |
654 | | i=icwrs1(_y+_n-1,&k); |
655 | | j=_n-2; |
656 | | i+=_u[k]; |
657 | | k+=abs(_y[j]); |
658 | | if(_y[j]<0)i+=_u[k+1]; |
659 | | while(j-->0){ |
660 | | unext(_u,_k+2,0); |
661 | | i+=_u[k]; |
662 | | k+=abs(_y[j]); |
663 | | if(_y[j]<0)i+=_u[k+1]; |
664 | | } |
665 | | *_nc=_u[k]+_u[k+1]; |
666 | | return i; |
667 | | } |
668 | | |
669 | | #ifdef CUSTOM_MODES |
670 | | void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){ |
671 | | int k; |
672 | | /*_maxk==0 => there's nothing to do.*/ |
673 | | celt_assert(_maxk>0); |
674 | | _bits[0]=0; |
675 | | if (_n==1) |
676 | | { |
677 | | for (k=1;k<=_maxk;k++) |
678 | | _bits[k] = 1<<_frac; |
679 | | } |
680 | | else { |
681 | | VARDECL(opus_uint32,u); |
682 | | SAVE_STACK; |
683 | | ALLOC(u,_maxk+2U,opus_uint32); |
684 | | ncwrs_urow(_n,_maxk,u); |
685 | | for(k=1;k<=_maxk;k++) |
686 | | _bits[k]=log2_frac(u[k]+u[k+1],_frac); |
687 | | RESTORE_STACK; |
688 | | } |
689 | | } |
690 | | #endif /* CUSTOM_MODES */ |
691 | | |
692 | | void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){ |
693 | | opus_uint32 i; |
694 | | VARDECL(opus_uint32,u); |
695 | | opus_uint32 nc; |
696 | | SAVE_STACK; |
697 | | celt_assert(_k>0); |
698 | | ALLOC(u,_k+2U,opus_uint32); |
699 | | i=icwrs(_n,_k,&nc,_y,u); |
700 | | ec_enc_uint(_enc,i,nc); |
701 | | RESTORE_STACK; |
702 | | } |
703 | | |
704 | | opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){ |
705 | | VARDECL(opus_uint32,u); |
706 | | int ret; |
707 | | SAVE_STACK; |
708 | | celt_assert(_k>0); |
709 | | ALLOC(u,_k+2U,opus_uint32); |
710 | | ret = cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u); |
711 | | RESTORE_STACK; |
712 | | return ret; |
713 | | } |
714 | | |
715 | | #endif /* SMALL_FOOTPRINT */ |