/src/opus/celt/kiss_fft.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*Copyright (c) 2003-2004, Mark Borgerding |
2 | | Lots of modifications by Jean-Marc Valin |
3 | | Copyright (c) 2005-2007, Xiph.Org Foundation |
4 | | Copyright (c) 2008, Xiph.Org Foundation, CSIRO |
5 | | |
6 | | All rights reserved. |
7 | | |
8 | | Redistribution and use in source and binary forms, with or without |
9 | | modification, are permitted provided that the following conditions are met: |
10 | | |
11 | | * Redistributions of source code must retain the above copyright notice, |
12 | | this list of conditions and the following disclaimer. |
13 | | * Redistributions in binary form must reproduce the above copyright notice, |
14 | | this list of conditions and the following disclaimer in the |
15 | | documentation and/or other materials provided with the distribution. |
16 | | |
17 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
18 | | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
19 | | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
20 | | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
21 | | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
22 | | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
23 | | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
24 | | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
25 | | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
26 | | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
27 | | POSSIBILITY OF SUCH DAMAGE.*/ |
28 | | |
29 | | /* This code is originally from Mark Borgerding's KISS-FFT but has been |
30 | | heavily modified to better suit Opus */ |
31 | | |
32 | | #ifndef SKIP_CONFIG_H |
33 | | # ifdef HAVE_CONFIG_H |
34 | | # include "config.h" |
35 | | # endif |
36 | | #endif |
37 | | |
38 | | #include "_kiss_fft_guts.h" |
39 | | #include "arch.h" |
40 | | #include "os_support.h" |
41 | | #include "mathops.h" |
42 | | #include "stack_alloc.h" |
43 | | |
44 | | /* The guts header contains all the multiplication and addition macros that are defined for |
45 | | complex numbers. It also delares the kf_ internal functions. |
46 | | */ |
47 | | |
48 | | static void kf_bfly2( |
49 | | kiss_fft_cpx * Fout, |
50 | | int m, |
51 | | int N |
52 | | ) |
53 | 0 | { |
54 | 0 | kiss_fft_cpx * Fout2; |
55 | 0 | int i; |
56 | 0 | (void)m; |
57 | | #ifdef CUSTOM_MODES |
58 | | if (m==1) |
59 | | { |
60 | | celt_assert(m==1); |
61 | | for (i=0;i<N;i++) |
62 | | { |
63 | | kiss_fft_cpx t; |
64 | | Fout2 = Fout + 1; |
65 | | t = *Fout2; |
66 | | C_SUB( *Fout2 , *Fout , t ); |
67 | | C_ADDTO( *Fout , t ); |
68 | | Fout += 2; |
69 | | } |
70 | | } else |
71 | | #endif |
72 | 0 | { |
73 | 0 | opus_val16 tw; |
74 | 0 | tw = QCONST16(0.7071067812f, 15); |
75 | | /* We know that m==4 here because the radix-2 is just after a radix-4 */ |
76 | 0 | celt_assert(m==4); |
77 | 0 | for (i=0;i<N;i++) |
78 | 0 | { |
79 | 0 | kiss_fft_cpx t; |
80 | 0 | Fout2 = Fout + 4; |
81 | 0 | t = Fout2[0]; |
82 | 0 | C_SUB( Fout2[0] , Fout[0] , t ); |
83 | 0 | C_ADDTO( Fout[0] , t ); |
84 | |
|
85 | 0 | t.r = S_MUL(ADD32_ovflw(Fout2[1].r, Fout2[1].i), tw); |
86 | 0 | t.i = S_MUL(SUB32_ovflw(Fout2[1].i, Fout2[1].r), tw); |
87 | 0 | C_SUB( Fout2[1] , Fout[1] , t ); |
88 | 0 | C_ADDTO( Fout[1] , t ); |
89 | |
|
90 | 0 | t.r = Fout2[2].i; |
91 | 0 | t.i = -Fout2[2].r; |
92 | 0 | C_SUB( Fout2[2] , Fout[2] , t ); |
93 | 0 | C_ADDTO( Fout[2] , t ); |
94 | |
|
95 | 0 | t.r = S_MUL(SUB32_ovflw(Fout2[3].i, Fout2[3].r), tw); |
96 | 0 | t.i = S_MUL(NEG32_ovflw(ADD32_ovflw(Fout2[3].i, Fout2[3].r)), tw); |
97 | 0 | C_SUB( Fout2[3] , Fout[3] , t ); |
98 | 0 | C_ADDTO( Fout[3] , t ); |
99 | 0 | Fout += 8; |
100 | 0 | } |
101 | 0 | } |
102 | 0 | } |
103 | | |
104 | | static void kf_bfly4( |
105 | | kiss_fft_cpx * Fout, |
106 | | const size_t fstride, |
107 | | const kiss_fft_state *st, |
108 | | int m, |
109 | | int N, |
110 | | int mm |
111 | | ) |
112 | 0 | { |
113 | 0 | int i; |
114 | |
|
115 | 0 | if (m==1) |
116 | 0 | { |
117 | | /* Degenerate case where all the twiddles are 1. */ |
118 | 0 | for (i=0;i<N;i++) |
119 | 0 | { |
120 | 0 | kiss_fft_cpx scratch0, scratch1; |
121 | |
|
122 | 0 | C_SUB( scratch0 , *Fout, Fout[2] ); |
123 | 0 | C_ADDTO(*Fout, Fout[2]); |
124 | 0 | C_ADD( scratch1 , Fout[1] , Fout[3] ); |
125 | 0 | C_SUB( Fout[2], *Fout, scratch1 ); |
126 | 0 | C_ADDTO( *Fout , scratch1 ); |
127 | 0 | C_SUB( scratch1 , Fout[1] , Fout[3] ); |
128 | |
|
129 | 0 | Fout[1].r = ADD32_ovflw(scratch0.r, scratch1.i); |
130 | 0 | Fout[1].i = SUB32_ovflw(scratch0.i, scratch1.r); |
131 | 0 | Fout[3].r = SUB32_ovflw(scratch0.r, scratch1.i); |
132 | 0 | Fout[3].i = ADD32_ovflw(scratch0.i, scratch1.r); |
133 | 0 | Fout+=4; |
134 | 0 | } |
135 | 0 | } else { |
136 | 0 | int j; |
137 | 0 | kiss_fft_cpx scratch[6]; |
138 | 0 | const kiss_twiddle_cpx *tw1,*tw2,*tw3; |
139 | 0 | const int m2=2*m; |
140 | 0 | const int m3=3*m; |
141 | 0 | kiss_fft_cpx * Fout_beg = Fout; |
142 | 0 | for (i=0;i<N;i++) |
143 | 0 | { |
144 | 0 | Fout = Fout_beg + i*mm; |
145 | 0 | tw3 = tw2 = tw1 = st->twiddles; |
146 | | /* m is guaranteed to be a multiple of 4. */ |
147 | 0 | for (j=0;j<m;j++) |
148 | 0 | { |
149 | 0 | C_MUL(scratch[0],Fout[m] , *tw1 ); |
150 | 0 | C_MUL(scratch[1],Fout[m2] , *tw2 ); |
151 | 0 | C_MUL(scratch[2],Fout[m3] , *tw3 ); |
152 | |
|
153 | 0 | C_SUB( scratch[5] , *Fout, scratch[1] ); |
154 | 0 | C_ADDTO(*Fout, scratch[1]); |
155 | 0 | C_ADD( scratch[3] , scratch[0] , scratch[2] ); |
156 | 0 | C_SUB( scratch[4] , scratch[0] , scratch[2] ); |
157 | 0 | C_SUB( Fout[m2], *Fout, scratch[3] ); |
158 | 0 | tw1 += fstride; |
159 | 0 | tw2 += fstride*2; |
160 | 0 | tw3 += fstride*3; |
161 | 0 | C_ADDTO( *Fout , scratch[3] ); |
162 | |
|
163 | 0 | Fout[m].r = ADD32_ovflw(scratch[5].r, scratch[4].i); |
164 | 0 | Fout[m].i = SUB32_ovflw(scratch[5].i, scratch[4].r); |
165 | 0 | Fout[m3].r = SUB32_ovflw(scratch[5].r, scratch[4].i); |
166 | 0 | Fout[m3].i = ADD32_ovflw(scratch[5].i, scratch[4].r); |
167 | 0 | ++Fout; |
168 | 0 | } |
169 | 0 | } |
170 | 0 | } |
171 | 0 | } |
172 | | |
173 | | |
174 | | #ifndef RADIX_TWO_ONLY |
175 | | |
176 | | static void kf_bfly3( |
177 | | kiss_fft_cpx * Fout, |
178 | | const size_t fstride, |
179 | | const kiss_fft_state *st, |
180 | | int m, |
181 | | int N, |
182 | | int mm |
183 | | ) |
184 | 0 | { |
185 | 0 | int i; |
186 | 0 | size_t k; |
187 | 0 | const size_t m2 = 2*m; |
188 | 0 | const kiss_twiddle_cpx *tw1,*tw2; |
189 | 0 | kiss_fft_cpx scratch[5]; |
190 | 0 | kiss_twiddle_cpx epi3; |
191 | |
|
192 | 0 | kiss_fft_cpx * Fout_beg = Fout; |
193 | | #ifdef FIXED_POINT |
194 | | /*epi3.r = -16384;*/ /* Unused */ |
195 | | epi3.i = -28378; |
196 | | #else |
197 | 0 | epi3 = st->twiddles[fstride*m]; |
198 | 0 | #endif |
199 | 0 | for (i=0;i<N;i++) |
200 | 0 | { |
201 | 0 | Fout = Fout_beg + i*mm; |
202 | 0 | tw1=tw2=st->twiddles; |
203 | | /* For non-custom modes, m is guaranteed to be a multiple of 4. */ |
204 | 0 | k=m; |
205 | 0 | do { |
206 | |
|
207 | 0 | C_MUL(scratch[1],Fout[m] , *tw1); |
208 | 0 | C_MUL(scratch[2],Fout[m2] , *tw2); |
209 | |
|
210 | 0 | C_ADD(scratch[3],scratch[1],scratch[2]); |
211 | 0 | C_SUB(scratch[0],scratch[1],scratch[2]); |
212 | 0 | tw1 += fstride; |
213 | 0 | tw2 += fstride*2; |
214 | |
|
215 | 0 | Fout[m].r = SUB32_ovflw(Fout->r, HALF_OF(scratch[3].r)); |
216 | 0 | Fout[m].i = SUB32_ovflw(Fout->i, HALF_OF(scratch[3].i)); |
217 | |
|
218 | 0 | C_MULBYSCALAR( scratch[0] , epi3.i ); |
219 | |
|
220 | 0 | C_ADDTO(*Fout,scratch[3]); |
221 | |
|
222 | 0 | Fout[m2].r = ADD32_ovflw(Fout[m].r, scratch[0].i); |
223 | 0 | Fout[m2].i = SUB32_ovflw(Fout[m].i, scratch[0].r); |
224 | |
|
225 | 0 | Fout[m].r = SUB32_ovflw(Fout[m].r, scratch[0].i); |
226 | 0 | Fout[m].i = ADD32_ovflw(Fout[m].i, scratch[0].r); |
227 | |
|
228 | 0 | ++Fout; |
229 | 0 | } while(--k); |
230 | 0 | } |
231 | 0 | } |
232 | | |
233 | | |
234 | | #ifndef OVERRIDE_kf_bfly5 |
235 | | static void kf_bfly5( |
236 | | kiss_fft_cpx * Fout, |
237 | | const size_t fstride, |
238 | | const kiss_fft_state *st, |
239 | | int m, |
240 | | int N, |
241 | | int mm |
242 | | ) |
243 | 0 | { |
244 | 0 | kiss_fft_cpx *Fout0,*Fout1,*Fout2,*Fout3,*Fout4; |
245 | 0 | int i, u; |
246 | 0 | kiss_fft_cpx scratch[13]; |
247 | 0 | const kiss_twiddle_cpx *tw; |
248 | 0 | kiss_twiddle_cpx ya,yb; |
249 | 0 | kiss_fft_cpx * Fout_beg = Fout; |
250 | |
|
251 | | #ifdef FIXED_POINT |
252 | | ya.r = 10126; |
253 | | ya.i = -31164; |
254 | | yb.r = -26510; |
255 | | yb.i = -19261; |
256 | | #else |
257 | 0 | ya = st->twiddles[fstride*m]; |
258 | 0 | yb = st->twiddles[fstride*2*m]; |
259 | 0 | #endif |
260 | 0 | tw=st->twiddles; |
261 | |
|
262 | 0 | for (i=0;i<N;i++) |
263 | 0 | { |
264 | 0 | Fout = Fout_beg + i*mm; |
265 | 0 | Fout0=Fout; |
266 | 0 | Fout1=Fout0+m; |
267 | 0 | Fout2=Fout0+2*m; |
268 | 0 | Fout3=Fout0+3*m; |
269 | 0 | Fout4=Fout0+4*m; |
270 | | |
271 | | /* For non-custom modes, m is guaranteed to be a multiple of 4. */ |
272 | 0 | for ( u=0; u<m; ++u ) { |
273 | 0 | scratch[0] = *Fout0; |
274 | |
|
275 | 0 | C_MUL(scratch[1] ,*Fout1, tw[u*fstride]); |
276 | 0 | C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]); |
277 | 0 | C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]); |
278 | 0 | C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]); |
279 | |
|
280 | 0 | C_ADD( scratch[7],scratch[1],scratch[4]); |
281 | 0 | C_SUB( scratch[10],scratch[1],scratch[4]); |
282 | 0 | C_ADD( scratch[8],scratch[2],scratch[3]); |
283 | 0 | C_SUB( scratch[9],scratch[2],scratch[3]); |
284 | |
|
285 | 0 | Fout0->r = ADD32_ovflw(Fout0->r, ADD32_ovflw(scratch[7].r, scratch[8].r)); |
286 | 0 | Fout0->i = ADD32_ovflw(Fout0->i, ADD32_ovflw(scratch[7].i, scratch[8].i)); |
287 | |
|
288 | 0 | scratch[5].r = ADD32_ovflw(scratch[0].r, ADD32_ovflw(S_MUL(scratch[7].r,ya.r), S_MUL(scratch[8].r,yb.r))); |
289 | 0 | scratch[5].i = ADD32_ovflw(scratch[0].i, ADD32_ovflw(S_MUL(scratch[7].i,ya.r), S_MUL(scratch[8].i,yb.r))); |
290 | |
|
291 | 0 | scratch[6].r = ADD32_ovflw(S_MUL(scratch[10].i,ya.i), S_MUL(scratch[9].i,yb.i)); |
292 | 0 | scratch[6].i = NEG32_ovflw(ADD32_ovflw(S_MUL(scratch[10].r,ya.i), S_MUL(scratch[9].r,yb.i))); |
293 | |
|
294 | 0 | C_SUB(*Fout1,scratch[5],scratch[6]); |
295 | 0 | C_ADD(*Fout4,scratch[5],scratch[6]); |
296 | |
|
297 | 0 | scratch[11].r = ADD32_ovflw(scratch[0].r, ADD32_ovflw(S_MUL(scratch[7].r,yb.r), S_MUL(scratch[8].r,ya.r))); |
298 | 0 | scratch[11].i = ADD32_ovflw(scratch[0].i, ADD32_ovflw(S_MUL(scratch[7].i,yb.r), S_MUL(scratch[8].i,ya.r))); |
299 | 0 | scratch[12].r = SUB32_ovflw(S_MUL(scratch[9].i,ya.i), S_MUL(scratch[10].i,yb.i)); |
300 | 0 | scratch[12].i = SUB32_ovflw(S_MUL(scratch[10].r,yb.i), S_MUL(scratch[9].r,ya.i)); |
301 | |
|
302 | 0 | C_ADD(*Fout2,scratch[11],scratch[12]); |
303 | 0 | C_SUB(*Fout3,scratch[11],scratch[12]); |
304 | |
|
305 | 0 | ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4; |
306 | 0 | } |
307 | 0 | } |
308 | 0 | } |
309 | | #endif /* OVERRIDE_kf_bfly5 */ |
310 | | |
311 | | |
312 | | #endif |
313 | | |
314 | | |
315 | | #ifdef CUSTOM_MODES |
316 | | |
317 | | static |
318 | | void compute_bitrev_table( |
319 | | int Fout, |
320 | | opus_int16 *f, |
321 | | const size_t fstride, |
322 | | int in_stride, |
323 | | opus_int16 * factors, |
324 | | const kiss_fft_state *st |
325 | | ) |
326 | | { |
327 | | const int p=*factors++; /* the radix */ |
328 | | const int m=*factors++; /* stage's fft length/p */ |
329 | | |
330 | | /*printf ("fft %d %d %d %d %d %d\n", p*m, m, p, s2, fstride*in_stride, N);*/ |
331 | | if (m==1) |
332 | | { |
333 | | int j; |
334 | | for (j=0;j<p;j++) |
335 | | { |
336 | | *f = Fout+j; |
337 | | f += fstride*in_stride; |
338 | | } |
339 | | } else { |
340 | | int j; |
341 | | for (j=0;j<p;j++) |
342 | | { |
343 | | compute_bitrev_table( Fout , f, fstride*p, in_stride, factors,st); |
344 | | f += fstride*in_stride; |
345 | | Fout += m; |
346 | | } |
347 | | } |
348 | | } |
349 | | |
350 | | /* facbuf is populated by p1,m1,p2,m2, ... |
351 | | where |
352 | | p[i] * m[i] = m[i-1] |
353 | | m0 = n */ |
354 | | static |
355 | | int kf_factor(int n,opus_int16 * facbuf) |
356 | | { |
357 | | int p=4; |
358 | | int i; |
359 | | int stages=0; |
360 | | int nbak = n; |
361 | | |
362 | | /*factor out powers of 4, powers of 2, then any remaining primes */ |
363 | | do { |
364 | | while (n % p) { |
365 | | switch (p) { |
366 | | case 4: p = 2; break; |
367 | | case 2: p = 3; break; |
368 | | default: p += 2; break; |
369 | | } |
370 | | if (p>32000 || (opus_int32)p*(opus_int32)p > n) |
371 | | p = n; /* no more factors, skip to end */ |
372 | | } |
373 | | n /= p; |
374 | | #ifdef RADIX_TWO_ONLY |
375 | | if (p!=2 && p != 4) |
376 | | #else |
377 | | if (p>5) |
378 | | #endif |
379 | | { |
380 | | return 0; |
381 | | } |
382 | | facbuf[2*stages] = p; |
383 | | if (p==2 && stages > 1) |
384 | | { |
385 | | facbuf[2*stages] = 4; |
386 | | facbuf[2] = 2; |
387 | | } |
388 | | stages++; |
389 | | } while (n > 1); |
390 | | n = nbak; |
391 | | /* Reverse the order to get the radix 4 at the end, so we can use the |
392 | | fast degenerate case. It turns out that reversing the order also |
393 | | improves the noise behaviour. */ |
394 | | for (i=0;i<stages/2;i++) |
395 | | { |
396 | | int tmp; |
397 | | tmp = facbuf[2*i]; |
398 | | facbuf[2*i] = facbuf[2*(stages-i-1)]; |
399 | | facbuf[2*(stages-i-1)] = tmp; |
400 | | } |
401 | | for (i=0;i<stages;i++) |
402 | | { |
403 | | n /= facbuf[2*i]; |
404 | | facbuf[2*i+1] = n; |
405 | | } |
406 | | return 1; |
407 | | } |
408 | | |
409 | | static void compute_twiddles(kiss_twiddle_cpx *twiddles, int nfft) |
410 | | { |
411 | | int i; |
412 | | #ifdef FIXED_POINT |
413 | | for (i=0;i<nfft;++i) { |
414 | | opus_val32 phase = -i; |
415 | | kf_cexp2(twiddles+i, DIV32(SHL32(phase,17),nfft)); |
416 | | } |
417 | | #else |
418 | | for (i=0;i<nfft;++i) { |
419 | | const double pi=3.14159265358979323846264338327; |
420 | | double phase = ( -2*pi /nfft ) * i; |
421 | | kf_cexp(twiddles+i, phase ); |
422 | | } |
423 | | #endif |
424 | | } |
425 | | |
426 | | int opus_fft_alloc_arch_c(kiss_fft_state *st) { |
427 | | (void)st; |
428 | | return 0; |
429 | | } |
430 | | |
431 | | /* |
432 | | * |
433 | | * Allocates all necessary storage space for the fft and ifft. |
434 | | * The return value is a contiguous block of memory. As such, |
435 | | * It can be freed with free(). |
436 | | * */ |
437 | | kiss_fft_state *opus_fft_alloc_twiddles(int nfft,void * mem,size_t * lenmem, |
438 | | const kiss_fft_state *base, int arch) |
439 | | { |
440 | | kiss_fft_state *st=NULL; |
441 | | size_t memneeded = sizeof(struct kiss_fft_state); /* twiddle factors*/ |
442 | | |
443 | | if ( lenmem==NULL ) { |
444 | | st = ( kiss_fft_state*)KISS_FFT_MALLOC( memneeded ); |
445 | | }else{ |
446 | | if (mem != NULL && *lenmem >= memneeded) |
447 | | st = (kiss_fft_state*)mem; |
448 | | *lenmem = memneeded; |
449 | | } |
450 | | if (st) { |
451 | | opus_int16 *bitrev; |
452 | | kiss_twiddle_cpx *twiddles; |
453 | | |
454 | | st->nfft=nfft; |
455 | | #ifdef FIXED_POINT |
456 | | st->scale_shift = celt_ilog2(st->nfft); |
457 | | if (st->nfft == 1<<st->scale_shift) |
458 | | st->scale = Q15ONE; |
459 | | else |
460 | | st->scale = (1073741824+st->nfft/2)/st->nfft>>(15-st->scale_shift); |
461 | | #else |
462 | | st->scale = 1.f/nfft; |
463 | | #endif |
464 | | if (base != NULL) |
465 | | { |
466 | | st->twiddles = base->twiddles; |
467 | | st->shift = 0; |
468 | | while (st->shift < 32 && nfft<<st->shift != base->nfft) |
469 | | st->shift++; |
470 | | if (st->shift>=32) |
471 | | goto fail; |
472 | | } else { |
473 | | st->twiddles = twiddles = (kiss_twiddle_cpx*)KISS_FFT_MALLOC(sizeof(kiss_twiddle_cpx)*nfft); |
474 | | compute_twiddles(twiddles, nfft); |
475 | | st->shift = -1; |
476 | | } |
477 | | if (!kf_factor(nfft,st->factors)) |
478 | | { |
479 | | goto fail; |
480 | | } |
481 | | |
482 | | /* bitrev */ |
483 | | st->bitrev = bitrev = (opus_int16*)KISS_FFT_MALLOC(sizeof(opus_int16)*nfft); |
484 | | if (st->bitrev==NULL) |
485 | | goto fail; |
486 | | compute_bitrev_table(0, bitrev, 1,1, st->factors,st); |
487 | | |
488 | | /* Initialize architecture specific fft parameters */ |
489 | | if (opus_fft_alloc_arch(st, arch)) |
490 | | goto fail; |
491 | | } |
492 | | return st; |
493 | | fail: |
494 | | opus_fft_free(st, arch); |
495 | | return NULL; |
496 | | } |
497 | | |
498 | | kiss_fft_state *opus_fft_alloc(int nfft,void * mem,size_t * lenmem, int arch) |
499 | | { |
500 | | return opus_fft_alloc_twiddles(nfft, mem, lenmem, NULL, arch); |
501 | | } |
502 | | |
503 | | void opus_fft_free_arch_c(kiss_fft_state *st) { |
504 | | (void)st; |
505 | | } |
506 | | |
507 | | void opus_fft_free(const kiss_fft_state *cfg, int arch) |
508 | | { |
509 | | if (cfg) |
510 | | { |
511 | | opus_fft_free_arch((kiss_fft_state *)cfg, arch); |
512 | | opus_free((opus_int16*)cfg->bitrev); |
513 | | if (cfg->shift < 0) |
514 | | opus_free((kiss_twiddle_cpx*)cfg->twiddles); |
515 | | opus_free((kiss_fft_state*)cfg); |
516 | | } |
517 | | } |
518 | | |
519 | | #endif /* CUSTOM_MODES */ |
520 | | |
521 | | void opus_fft_impl(const kiss_fft_state *st,kiss_fft_cpx *fout) |
522 | 0 | { |
523 | 0 | int m2, m; |
524 | 0 | int p; |
525 | 0 | int L; |
526 | 0 | int fstride[MAXFACTORS]; |
527 | 0 | int i; |
528 | 0 | int shift; |
529 | | |
530 | | /* st->shift can be -1 */ |
531 | 0 | shift = st->shift>0 ? st->shift : 0; |
532 | |
|
533 | 0 | fstride[0] = 1; |
534 | 0 | L=0; |
535 | 0 | do { |
536 | 0 | p = st->factors[2*L]; |
537 | 0 | m = st->factors[2*L+1]; |
538 | 0 | fstride[L+1] = fstride[L]*p; |
539 | 0 | L++; |
540 | 0 | } while(m!=1); |
541 | 0 | m = st->factors[2*L-1]; |
542 | 0 | for (i=L-1;i>=0;i--) |
543 | 0 | { |
544 | 0 | if (i!=0) |
545 | 0 | m2 = st->factors[2*i-1]; |
546 | 0 | else |
547 | 0 | m2 = 1; |
548 | 0 | switch (st->factors[2*i]) |
549 | 0 | { |
550 | 0 | case 2: |
551 | 0 | kf_bfly2(fout, m, fstride[i]); |
552 | 0 | break; |
553 | 0 | case 4: |
554 | 0 | kf_bfly4(fout,fstride[i]<<shift,st,m, fstride[i], m2); |
555 | 0 | break; |
556 | 0 | #ifndef RADIX_TWO_ONLY |
557 | 0 | case 3: |
558 | 0 | kf_bfly3(fout,fstride[i]<<shift,st,m, fstride[i], m2); |
559 | 0 | break; |
560 | 0 | case 5: |
561 | 0 | kf_bfly5(fout,fstride[i]<<shift,st,m, fstride[i], m2); |
562 | 0 | break; |
563 | 0 | #endif |
564 | 0 | } |
565 | 0 | m = m2; |
566 | 0 | } |
567 | 0 | } |
568 | | |
569 | | void opus_fft_c(const kiss_fft_state *st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout) |
570 | 0 | { |
571 | 0 | int i; |
572 | 0 | opus_val16 scale; |
573 | | #ifdef FIXED_POINT |
574 | | /* Allows us to scale with MULT16_32_Q16(), which is faster than |
575 | | MULT16_32_Q15() on ARM. */ |
576 | | int scale_shift = st->scale_shift-1; |
577 | | #endif |
578 | 0 | scale = st->scale; |
579 | |
|
580 | 0 | celt_assert2 (fin != fout, "In-place FFT not supported"); |
581 | | /* Bit-reverse the input */ |
582 | 0 | for (i=0;i<st->nfft;i++) |
583 | 0 | { |
584 | 0 | kiss_fft_cpx x = fin[i]; |
585 | 0 | fout[st->bitrev[i]].r = SHR32(MULT16_32_Q16(scale, x.r), scale_shift); |
586 | 0 | fout[st->bitrev[i]].i = SHR32(MULT16_32_Q16(scale, x.i), scale_shift); |
587 | 0 | } |
588 | 0 | opus_fft_impl(st, fout); |
589 | 0 | } |
590 | | |
591 | | |
592 | | void opus_ifft_c(const kiss_fft_state *st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout) |
593 | 0 | { |
594 | 0 | int i; |
595 | 0 | celt_assert2 (fin != fout, "In-place FFT not supported"); |
596 | | /* Bit-reverse the input */ |
597 | 0 | for (i=0;i<st->nfft;i++) |
598 | 0 | fout[st->bitrev[i]] = fin[i]; |
599 | 0 | for (i=0;i<st->nfft;i++) |
600 | 0 | fout[i].i = -fout[i].i; |
601 | 0 | opus_fft_impl(st, fout); |
602 | 0 | for (i=0;i<st->nfft;i++) |
603 | 0 | fout[i].i = -fout[i].i; |
604 | 0 | } |