Coverage Report

Created: 2024-09-06 07:53

/src/opus/celt/mathops.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (c) 2002-2008 Jean-Marc Valin
2
   Copyright (c) 2007-2008 CSIRO
3
   Copyright (c) 2007-2009 Xiph.Org Foundation
4
   Written by Jean-Marc Valin */
5
/**
6
   @file mathops.h
7
   @brief Various math functions
8
*/
9
/*
10
   Redistribution and use in source and binary forms, with or without
11
   modification, are permitted provided that the following conditions
12
   are met:
13
14
   - Redistributions of source code must retain the above copyright
15
   notice, this list of conditions and the following disclaimer.
16
17
   - Redistributions in binary form must reproduce the above copyright
18
   notice, this list of conditions and the following disclaimer in the
19
   documentation and/or other materials provided with the distribution.
20
21
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
25
   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
28
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
29
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
31
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
*/
33
34
#ifdef HAVE_CONFIG_H
35
#include "config.h"
36
#endif
37
38
#include "mathops.h"
39
40
/*Compute floor(sqrt(_val)) with exact arithmetic.
41
  _val must be greater than 0.
42
  This has been tested on all possible 32-bit inputs greater than 0.*/
43
0
unsigned isqrt32(opus_uint32 _val){
44
0
  unsigned b;
45
0
  unsigned g;
46
0
  int      bshift;
47
  /*Uses the second method from
48
     http://www.azillionmonkeys.com/qed/sqroot.html
49
    The main idea is to search for the largest binary digit b such that
50
     (g+b)*(g+b) <= _val, and add it to the solution g.*/
51
0
  g=0;
52
0
  bshift=(EC_ILOG(_val)-1)>>1;
53
0
  b=1U<<bshift;
54
0
  do{
55
0
    opus_uint32 t;
56
0
    t=(((opus_uint32)g<<1)+b)<<bshift;
57
0
    if(t<=_val){
58
0
      g+=b;
59
0
      _val-=t;
60
0
    }
61
0
    b>>=1;
62
0
    bshift--;
63
0
  }
64
0
  while(bshift>=0);
65
0
  return g;
66
0
}
67
68
#ifdef FIXED_POINT
69
70
opus_val32 frac_div32(opus_val32 a, opus_val32 b)
71
{
72
   opus_val16 rcp;
73
   opus_val32 result, rem;
74
   int shift = celt_ilog2(b)-29;
75
   a = VSHR32(a,shift);
76
   b = VSHR32(b,shift);
77
   /* 16-bit reciprocal */
78
   rcp = ROUND16(celt_rcp(ROUND16(b,16)),3);
79
   result = MULT16_32_Q15(rcp, a);
80
   rem = PSHR32(a,2)-MULT32_32_Q31(result, b);
81
   result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2));
82
   if (result >= 536870912)       /*  2^29 */
83
      return 2147483647;          /*  2^31 - 1 */
84
   else if (result <= -536870912) /* -2^29 */
85
      return -2147483647;         /* -2^31 */
86
   else
87
      return SHL32(result, 2);
88
}
89
90
/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
91
opus_val16 celt_rsqrt_norm(opus_val32 x)
92
{
93
   opus_val16 n;
94
   opus_val16 r;
95
   opus_val16 r2;
96
   opus_val16 y;
97
   /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
98
   n = x-32768;
99
   /* Get a rough initial guess for the root.
100
      The optimal minimax quadratic approximation (using relative error) is
101
       r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
102
      Coefficients here, and the final result r, are Q14.*/
103
   r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
104
   /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
105
      We can compute the result from n and r using Q15 multiplies with some
106
       adjustment, carefully done to avoid overflow.
107
      Range of y is [-1564,1594]. */
108
   r2 = MULT16_16_Q15(r, r);
109
   y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
110
   /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
111
      This yields the Q14 reciprocal square root of the Q16 x, with a maximum
112
       relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
113
       peak absolute error of 2.26591/16384. */
114
   return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
115
              SUB16(MULT16_16_Q15(y, 12288), 16384))));
116
}
117
118
/** Sqrt approximation (QX input, QX/2 output) */
119
opus_val32 celt_sqrt(opus_val32 x)
120
{
121
   int k;
122
   opus_val16 n;
123
   opus_val32 rt;
124
   static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664};
125
   if (x==0)
126
      return 0;
127
   else if (x>=1073741824)
128
      return 32767;
129
   k = (celt_ilog2(x)>>1)-7;
130
   x = VSHR32(x, 2*k);
131
   n = x-32768;
132
   rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
133
              MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
134
   rt = VSHR32(rt,7-k);
135
   return rt;
136
}
137
138
#define L1 32767
139
#define L2 -7651
140
#define L3 8277
141
#define L4 -626
142
143
static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x)
144
{
145
   opus_val16 x2;
146
147
   x2 = MULT16_16_P15(x,x);
148
   return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
149
                                                                                ))))))));
150
}
151
152
#undef L1
153
#undef L2
154
#undef L3
155
#undef L4
156
157
opus_val16 celt_cos_norm(opus_val32 x)
158
{
159
   x = x&0x0001ffff;
160
   if (x>SHL32(EXTEND32(1), 16))
161
      x = SUB32(SHL32(EXTEND32(1), 17),x);
162
   if (x&0x00007fff)
163
   {
164
      if (x<SHL32(EXTEND32(1), 15))
165
      {
166
         return _celt_cos_pi_2(EXTRACT16(x));
167
      } else {
168
         return NEG16(_celt_cos_pi_2(EXTRACT16(65536-x)));
169
      }
170
   } else {
171
      if (x&0x0000ffff)
172
         return 0;
173
      else if (x&0x0001ffff)
174
         return -32767;
175
      else
176
         return 32767;
177
   }
178
}
179
180
/** Reciprocal approximation (Q15 input, Q16 output) */
181
opus_val32 celt_rcp(opus_val32 x)
182
{
183
   int i;
184
   opus_val16 n;
185
   opus_val16 r;
186
   celt_sig_assert(x>0);
187
   i = celt_ilog2(x);
188
   /* n is Q15 with range [0,1). */
189
   n = VSHR32(x,i-15)-32768;
190
   /* Start with a linear approximation:
191
      r = 1.8823529411764706-0.9411764705882353*n.
192
      The coefficients and the result are Q14 in the range [15420,30840].*/
193
   r = ADD16(30840, MULT16_16_Q15(-15420, n));
194
   /* Perform two Newton iterations:
195
      r -= r*((r*n)-1.Q15)
196
         = r*((r*n)+(r-1.Q15)). */
197
   r = SUB16(r, MULT16_16_Q15(r,
198
             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
199
   /* We subtract an extra 1 in the second iteration to avoid overflow; it also
200
       neatly compensates for truncation error in the rest of the process. */
201
   r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
202
             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
203
   /* r is now the Q15 solution to 2/(n+1), with a maximum relative error
204
       of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
205
       error of 1.24665/32768. */
206
   return VSHR32(EXTEND32(r),i-16);
207
}
208
209
#endif