Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (c) 2002-2008 Jean-Marc Valin |
2 | | Copyright (c) 2007-2008 CSIRO |
3 | | Copyright (c) 2007-2009 Xiph.Org Foundation |
4 | | Written by Jean-Marc Valin */ |
5 | | /** |
6 | | @file mathops.h |
7 | | @brief Various math functions |
8 | | */ |
9 | | /* |
10 | | Redistribution and use in source and binary forms, with or without |
11 | | modification, are permitted provided that the following conditions |
12 | | are met: |
13 | | |
14 | | - Redistributions of source code must retain the above copyright |
15 | | notice, this list of conditions and the following disclaimer. |
16 | | |
17 | | - Redistributions in binary form must reproduce the above copyright |
18 | | notice, this list of conditions and the following disclaimer in the |
19 | | documentation and/or other materials provided with the distribution. |
20 | | |
21 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
22 | | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
23 | | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
24 | | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
25 | | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
26 | | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
27 | | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
28 | | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
29 | | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
30 | | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
31 | | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
32 | | */ |
33 | | |
34 | | #ifndef MATHOPS_H |
35 | | #define MATHOPS_H |
36 | | |
37 | | #include "arch.h" |
38 | | #include "entcode.h" |
39 | | #include "os_support.h" |
40 | | |
41 | 0 | #define PI 3.141592653f |
42 | | |
43 | | /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */ |
44 | 0 | #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15) |
45 | | |
46 | | unsigned isqrt32(opus_uint32 _val); |
47 | | |
48 | | /* CELT doesn't need it for fixed-point, by analysis.c does. */ |
49 | | #if !defined(FIXED_POINT) || defined(ANALYSIS_C) |
50 | 0 | #define cA 0.43157974f |
51 | 0 | #define cB 0.67848403f |
52 | 0 | #define cC 0.08595542f |
53 | 0 | #define cE ((float)PI/2) |
54 | 0 | static OPUS_INLINE float fast_atan2f(float y, float x) { |
55 | 0 | float x2, y2; |
56 | 0 | x2 = x*x; |
57 | 0 | y2 = y*y; |
58 | | /* For very small values, we don't care about the answer, so |
59 | | we can just return 0. */ |
60 | 0 | if (x2 + y2 < 1e-18f) |
61 | 0 | { |
62 | 0 | return 0; |
63 | 0 | } |
64 | 0 | if(x2<y2){ |
65 | 0 | float den = (y2 + cB*x2) * (y2 + cC*x2); |
66 | 0 | return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE); |
67 | 0 | }else{ |
68 | 0 | float den = (x2 + cB*y2) * (x2 + cC*y2); |
69 | 0 | return x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE); |
70 | 0 | } |
71 | 0 | } Unexecuted instantiation: celt.c:fast_atan2f Unexecuted instantiation: pitch_sse.c:fast_atan2f Unexecuted instantiation: opus_multistream_encoder.c:fast_atan2f Unexecuted instantiation: bands.c:fast_atan2f Unexecuted instantiation: celt_encoder.c:fast_atan2f Unexecuted instantiation: mathops.c:fast_atan2f Unexecuted instantiation: mdct.c:fast_atan2f Unexecuted instantiation: modes.c:fast_atan2f Unexecuted instantiation: pitch.c:fast_atan2f Unexecuted instantiation: celt_lpc.c:fast_atan2f Unexecuted instantiation: quant_bands.c:fast_atan2f Unexecuted instantiation: vq.c:fast_atan2f Unexecuted instantiation: vq_sse2.c:fast_atan2f Unexecuted instantiation: opus_decoder.c:fast_atan2f Unexecuted instantiation: opus_encoder.c:fast_atan2f Unexecuted instantiation: analysis.c:fast_atan2f Unexecuted instantiation: celt_decoder.c:fast_atan2f Unexecuted instantiation: cwrs.c:fast_atan2f Unexecuted instantiation: kiss_fft.c:fast_atan2f Unexecuted instantiation: laplace.c:fast_atan2f |
72 | | #undef cA |
73 | | #undef cB |
74 | | #undef cC |
75 | | #undef cE |
76 | | #endif |
77 | | |
78 | | |
79 | | #ifndef OVERRIDE_CELT_MAXABS16 |
80 | | static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len) |
81 | 0 | { |
82 | 0 | int i; |
83 | 0 | opus_val16 maxval = 0; |
84 | 0 | opus_val16 minval = 0; |
85 | 0 | for (i=0;i<len;i++) |
86 | 0 | { |
87 | 0 | maxval = MAX16(maxval, x[i]); |
88 | 0 | minval = MIN16(minval, x[i]); |
89 | 0 | } |
90 | 0 | return MAX32(EXTEND32(maxval),-EXTEND32(minval)); |
91 | 0 | } Unexecuted instantiation: celt.c:celt_maxabs16 Unexecuted instantiation: pitch_sse.c:celt_maxabs16 Unexecuted instantiation: opus_multistream_encoder.c:celt_maxabs16 Unexecuted instantiation: bands.c:celt_maxabs16 Unexecuted instantiation: celt_encoder.c:celt_maxabs16 Unexecuted instantiation: mathops.c:celt_maxabs16 Unexecuted instantiation: mdct.c:celt_maxabs16 Unexecuted instantiation: modes.c:celt_maxabs16 Unexecuted instantiation: pitch.c:celt_maxabs16 Unexecuted instantiation: celt_lpc.c:celt_maxabs16 Unexecuted instantiation: quant_bands.c:celt_maxabs16 Unexecuted instantiation: vq.c:celt_maxabs16 Unexecuted instantiation: vq_sse2.c:celt_maxabs16 Unexecuted instantiation: opus_decoder.c:celt_maxabs16 Unexecuted instantiation: opus_encoder.c:celt_maxabs16 Unexecuted instantiation: analysis.c:celt_maxabs16 Unexecuted instantiation: celt_decoder.c:celt_maxabs16 Unexecuted instantiation: cwrs.c:celt_maxabs16 Unexecuted instantiation: kiss_fft.c:celt_maxabs16 Unexecuted instantiation: laplace.c:celt_maxabs16 |
92 | | #endif |
93 | | |
94 | | #ifndef OVERRIDE_CELT_MAXABS32 |
95 | | #ifdef FIXED_POINT |
96 | | static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len) |
97 | | { |
98 | | int i; |
99 | | opus_val32 maxval = 0; |
100 | | opus_val32 minval = 0; |
101 | | for (i=0;i<len;i++) |
102 | | { |
103 | | maxval = MAX32(maxval, x[i]); |
104 | | minval = MIN32(minval, x[i]); |
105 | | } |
106 | | return MAX32(maxval, -minval); |
107 | | } |
108 | | #else |
109 | | #define celt_maxabs32(x,len) celt_maxabs16(x,len) |
110 | | #endif |
111 | | #endif |
112 | | |
113 | | |
114 | | #ifndef FIXED_POINT |
115 | | |
116 | 0 | #define celt_sqrt(x) ((float)sqrt(x)) |
117 | 0 | #define celt_rsqrt(x) (1.f/celt_sqrt(x)) |
118 | 0 | #define celt_rsqrt_norm(x) (celt_rsqrt(x)) |
119 | 0 | #define celt_cos_norm(x) ((float)cos((.5f*PI)*(x))) |
120 | 0 | #define celt_rcp(x) (1.f/(x)) |
121 | 0 | #define celt_div(a,b) ((a)/(b)) |
122 | 0 | #define frac_div32(a,b) ((float)(a)/(b)) |
123 | | |
124 | | #ifdef FLOAT_APPROX |
125 | | |
126 | | /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127 |
127 | | denorm, +/- inf and NaN are *not* handled */ |
128 | | |
129 | | /** Base-2 log approximation (log2(x)). */ |
130 | | static OPUS_INLINE float celt_log2(float x) |
131 | 0 | { |
132 | 0 | int integer; |
133 | 0 | float frac; |
134 | 0 | union { |
135 | 0 | float f; |
136 | 0 | opus_uint32 i; |
137 | 0 | } in; |
138 | 0 | in.f = x; |
139 | 0 | integer = (in.i>>23)-127; |
140 | 0 | in.i -= (opus_uint32)integer<<23; |
141 | 0 | frac = in.f - 1.5f; |
142 | 0 | frac = -0.41445418f + frac*(0.95909232f |
143 | 0 | + frac*(-0.33951290f + frac*0.16541097f)); |
144 | 0 | return 1+integer+frac; |
145 | 0 | } Unexecuted instantiation: celt.c:celt_log2 Unexecuted instantiation: pitch_sse.c:celt_log2 Unexecuted instantiation: opus_multistream_encoder.c:celt_log2 Unexecuted instantiation: bands.c:celt_log2 Unexecuted instantiation: celt_encoder.c:celt_log2 Unexecuted instantiation: mathops.c:celt_log2 Unexecuted instantiation: mdct.c:celt_log2 Unexecuted instantiation: modes.c:celt_log2 Unexecuted instantiation: pitch.c:celt_log2 Unexecuted instantiation: celt_lpc.c:celt_log2 Unexecuted instantiation: quant_bands.c:celt_log2 Unexecuted instantiation: vq.c:celt_log2 Unexecuted instantiation: vq_sse2.c:celt_log2 Unexecuted instantiation: opus_decoder.c:celt_log2 Unexecuted instantiation: opus_encoder.c:celt_log2 Unexecuted instantiation: analysis.c:celt_log2 Unexecuted instantiation: celt_decoder.c:celt_log2 Unexecuted instantiation: cwrs.c:celt_log2 Unexecuted instantiation: kiss_fft.c:celt_log2 Unexecuted instantiation: laplace.c:celt_log2 |
146 | | |
147 | | /** Base-2 exponential approximation (2^x). */ |
148 | | static OPUS_INLINE float celt_exp2(float x) |
149 | 0 | { |
150 | 0 | int integer; |
151 | 0 | float frac; |
152 | 0 | union { |
153 | 0 | float f; |
154 | 0 | opus_uint32 i; |
155 | 0 | } res; |
156 | 0 | integer = (int)floor(x); |
157 | 0 | if (integer < -50) |
158 | 0 | return 0; |
159 | 0 | frac = x-integer; |
160 | | /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */ |
161 | 0 | res.f = 0.99992522f + frac * (0.69583354f |
162 | 0 | + frac * (0.22606716f + 0.078024523f*frac)); |
163 | 0 | res.i = (res.i + ((opus_uint32)integer<<23)) & 0x7fffffff; |
164 | 0 | return res.f; |
165 | 0 | } Unexecuted instantiation: celt.c:celt_exp2 Unexecuted instantiation: pitch_sse.c:celt_exp2 Unexecuted instantiation: opus_multistream_encoder.c:celt_exp2 Unexecuted instantiation: bands.c:celt_exp2 Unexecuted instantiation: celt_encoder.c:celt_exp2 Unexecuted instantiation: mathops.c:celt_exp2 Unexecuted instantiation: mdct.c:celt_exp2 Unexecuted instantiation: modes.c:celt_exp2 Unexecuted instantiation: pitch.c:celt_exp2 Unexecuted instantiation: celt_lpc.c:celt_exp2 Unexecuted instantiation: quant_bands.c:celt_exp2 Unexecuted instantiation: vq.c:celt_exp2 Unexecuted instantiation: vq_sse2.c:celt_exp2 Unexecuted instantiation: opus_decoder.c:celt_exp2 Unexecuted instantiation: opus_encoder.c:celt_exp2 Unexecuted instantiation: analysis.c:celt_exp2 Unexecuted instantiation: celt_decoder.c:celt_exp2 Unexecuted instantiation: cwrs.c:celt_exp2 Unexecuted instantiation: kiss_fft.c:celt_exp2 Unexecuted instantiation: laplace.c:celt_exp2 |
166 | | |
167 | | #else |
168 | | #define celt_log2(x) ((float)(1.442695040888963387*log(x))) |
169 | | #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x))) |
170 | | #endif |
171 | | |
172 | | #endif |
173 | | |
174 | | #ifdef FIXED_POINT |
175 | | |
176 | | #include "os_support.h" |
177 | | |
178 | | #ifndef OVERRIDE_CELT_ILOG2 |
179 | | /** Integer log in base2. Undefined for zero and negative numbers */ |
180 | | static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x) |
181 | | { |
182 | | celt_sig_assert(x>0); |
183 | | return EC_ILOG(x)-1; |
184 | | } |
185 | | #endif |
186 | | |
187 | | |
188 | | /** Integer log in base2. Defined for zero, but not for negative numbers */ |
189 | | static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x) |
190 | | { |
191 | | return x <= 0 ? 0 : celt_ilog2(x); |
192 | | } |
193 | | |
194 | | opus_val16 celt_rsqrt_norm(opus_val32 x); |
195 | | |
196 | | opus_val32 celt_sqrt(opus_val32 x); |
197 | | |
198 | | opus_val16 celt_cos_norm(opus_val32 x); |
199 | | |
200 | | /** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */ |
201 | | static OPUS_INLINE opus_val16 celt_log2(opus_val32 x) |
202 | | { |
203 | | int i; |
204 | | opus_val16 n, frac; |
205 | | /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605, |
206 | | 0.15530808010959576, -0.08556153059057618 */ |
207 | | static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401}; |
208 | | if (x==0) |
209 | | return -32767; |
210 | | i = celt_ilog2(x); |
211 | | n = VSHR32(x,i-15)-32768-16384; |
212 | | frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4])))))))); |
213 | | return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT); |
214 | | } |
215 | | |
216 | | /* |
217 | | K0 = 1 |
218 | | K1 = log(2) |
219 | | K2 = 3-4*log(2) |
220 | | K3 = 3*log(2) - 2 |
221 | | */ |
222 | | #define D0 16383 |
223 | | #define D1 22804 |
224 | | #define D2 14819 |
225 | | #define D3 10204 |
226 | | |
227 | | static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x) |
228 | | { |
229 | | opus_val16 frac; |
230 | | frac = SHL16(x, 4); |
231 | | return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac)))))); |
232 | | } |
233 | | |
234 | | #undef D0 |
235 | | #undef D1 |
236 | | #undef D2 |
237 | | #undef D3 |
238 | | |
239 | | /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */ |
240 | | static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x) |
241 | | { |
242 | | int integer; |
243 | | opus_val16 frac; |
244 | | integer = SHR16(x,10); |
245 | | if (integer>14) |
246 | | return 0x7f000000; |
247 | | else if (integer < -15) |
248 | | return 0; |
249 | | frac = celt_exp2_frac(x-SHL16(integer,10)); |
250 | | return VSHR32(EXTEND32(frac), -integer-2); |
251 | | } |
252 | | |
253 | | opus_val32 celt_rcp(opus_val32 x); |
254 | | |
255 | | #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b)) |
256 | | |
257 | | opus_val32 frac_div32(opus_val32 a, opus_val32 b); |
258 | | |
259 | | #define M1 32767 |
260 | | #define M2 -21 |
261 | | #define M3 -11943 |
262 | | #define M4 4936 |
263 | | |
264 | | /* Atan approximation using a 4th order polynomial. Input is in Q15 format |
265 | | and normalized by pi/4. Output is in Q15 format */ |
266 | | static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x) |
267 | | { |
268 | | return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x))))))); |
269 | | } |
270 | | |
271 | | #undef M1 |
272 | | #undef M2 |
273 | | #undef M3 |
274 | | #undef M4 |
275 | | |
276 | | /* atan2() approximation valid for positive input values */ |
277 | | static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x) |
278 | | { |
279 | | if (y < x) |
280 | | { |
281 | | opus_val32 arg; |
282 | | arg = celt_div(SHL32(EXTEND32(y),15),x); |
283 | | if (arg >= 32767) |
284 | | arg = 32767; |
285 | | return SHR16(celt_atan01(EXTRACT16(arg)),1); |
286 | | } else { |
287 | | opus_val32 arg; |
288 | | arg = celt_div(SHL32(EXTEND32(x),15),y); |
289 | | if (arg >= 32767) |
290 | | arg = 32767; |
291 | | return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1); |
292 | | } |
293 | | } |
294 | | |
295 | | #endif /* FIXED_POINT */ |
296 | | #endif /* MATHOPS_H */ |