Coverage Report

Created: 2024-09-06 07:53

/src/opus/celt/vq.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (c) 2007-2008 CSIRO
2
   Copyright (c) 2007-2009 Xiph.Org Foundation
3
   Written by Jean-Marc Valin */
4
/*
5
   Redistribution and use in source and binary forms, with or without
6
   modification, are permitted provided that the following conditions
7
   are met:
8
9
   - Redistributions of source code must retain the above copyright
10
   notice, this list of conditions and the following disclaimer.
11
12
   - Redistributions in binary form must reproduce the above copyright
13
   notice, this list of conditions and the following disclaimer in the
14
   documentation and/or other materials provided with the distribution.
15
16
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
20
   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
*/
28
29
#ifdef HAVE_CONFIG_H
30
#include "config.h"
31
#endif
32
33
#include "mathops.h"
34
#include "cwrs.h"
35
#include "vq.h"
36
#include "arch.h"
37
#include "os_support.h"
38
#include "bands.h"
39
#include "rate.h"
40
#include "pitch.h"
41
42
#if defined(MIPSr1_ASM)
43
#include "mips/vq_mipsr1.h"
44
#endif
45
46
#ifndef OVERRIDE_vq_exp_rotation1
47
static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_val16 s)
48
0
{
49
0
   int i;
50
0
   opus_val16 ms;
51
0
   celt_norm *Xptr;
52
0
   Xptr = X;
53
0
   ms = NEG16(s);
54
0
   for (i=0;i<len-stride;i++)
55
0
   {
56
0
      celt_norm x1, x2;
57
0
      x1 = Xptr[0];
58
0
      x2 = Xptr[stride];
59
0
      Xptr[stride] = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x2),  s, x1), 15));
60
0
      *Xptr++      = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x1), ms, x2), 15));
61
0
   }
62
0
   Xptr = &X[len-2*stride-1];
63
0
   for (i=len-2*stride-1;i>=0;i--)
64
0
   {
65
0
      celt_norm x1, x2;
66
0
      x1 = Xptr[0];
67
0
      x2 = Xptr[stride];
68
0
      Xptr[stride] = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x2),  s, x1), 15));
69
0
      *Xptr--      = EXTRACT16(PSHR32(MAC16_16(MULT16_16(c, x1), ms, x2), 15));
70
0
   }
71
0
}
72
#endif /* OVERRIDE_vq_exp_rotation1 */
73
74
void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread)
75
0
{
76
0
   static const int SPREAD_FACTOR[3]={15,10,5};
77
0
   int i;
78
0
   opus_val16 c, s;
79
0
   opus_val16 gain, theta;
80
0
   int stride2=0;
81
0
   int factor;
82
83
0
   if (2*K>=len || spread==SPREAD_NONE)
84
0
      return;
85
0
   factor = SPREAD_FACTOR[spread-1];
86
87
0
   gain = celt_div((opus_val32)MULT16_16(Q15_ONE,len),(opus_val32)(len+factor*K));
88
0
   theta = HALF16(MULT16_16_Q15(gain,gain));
89
90
0
   c = celt_cos_norm(EXTEND32(theta));
91
0
   s = celt_cos_norm(EXTEND32(SUB16(Q15ONE,theta))); /*  sin(theta) */
92
93
0
   if (len>=8*stride)
94
0
   {
95
0
      stride2 = 1;
96
      /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
97
         It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
98
0
      while ((stride2*stride2+stride2)*stride + (stride>>2) < len)
99
0
         stride2++;
100
0
   }
101
   /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
102
      extract_collapse_mask().*/
103
0
   len = celt_udiv(len, stride);
104
0
   for (i=0;i<stride;i++)
105
0
   {
106
0
      if (dir < 0)
107
0
      {
108
0
         if (stride2)
109
0
            exp_rotation1(X+i*len, len, stride2, s, c);
110
0
         exp_rotation1(X+i*len, len, 1, c, s);
111
0
      } else {
112
0
         exp_rotation1(X+i*len, len, 1, c, -s);
113
0
         if (stride2)
114
0
            exp_rotation1(X+i*len, len, stride2, s, -c);
115
0
      }
116
0
   }
117
0
}
118
119
/** Takes the pitch vector and the decoded residual vector, computes the gain
120
    that will give ||p+g*y||=1 and mixes the residual with the pitch. */
121
static void normalise_residual(int * OPUS_RESTRICT iy, celt_norm * OPUS_RESTRICT X,
122
      int N, opus_val32 Ryy, opus_val16 gain)
123
0
{
124
0
   int i;
125
#ifdef FIXED_POINT
126
   int k;
127
#endif
128
0
   opus_val32 t;
129
0
   opus_val16 g;
130
131
#ifdef FIXED_POINT
132
   k = celt_ilog2(Ryy)>>1;
133
#endif
134
0
   t = VSHR32(Ryy, 2*(k-7));
135
0
   g = MULT16_16_P15(celt_rsqrt_norm(t),gain);
136
137
0
   i=0;
138
0
   do
139
0
      X[i] = EXTRACT16(PSHR32(MULT16_16(g, iy[i]), k+1));
140
0
   while (++i < N);
141
0
}
142
143
static unsigned extract_collapse_mask(int *iy, int N, int B)
144
0
{
145
0
   unsigned collapse_mask;
146
0
   int N0;
147
0
   int i;
148
0
   if (B<=1)
149
0
      return 1;
150
   /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
151
      exp_rotation().*/
152
0
   N0 = celt_udiv(N, B);
153
0
   collapse_mask = 0;
154
0
   i=0; do {
155
0
      int j;
156
0
      unsigned tmp=0;
157
0
      j=0; do {
158
0
         tmp |= iy[i*N0+j];
159
0
      } while (++j<N0);
160
0
      collapse_mask |= (tmp!=0)<<i;
161
0
   } while (++i<B);
162
0
   return collapse_mask;
163
0
}
164
165
opus_val16 op_pvq_search_c(celt_norm *X, int *iy, int K, int N, int arch)
166
0
{
167
0
   VARDECL(celt_norm, y);
168
0
   VARDECL(int, signx);
169
0
   int i, j;
170
0
   int pulsesLeft;
171
0
   opus_val32 sum;
172
0
   opus_val32 xy;
173
0
   opus_val16 yy;
174
0
   SAVE_STACK;
175
176
0
   (void)arch;
177
0
   ALLOC(y, N, celt_norm);
178
0
   ALLOC(signx, N, int);
179
180
   /* Get rid of the sign */
181
0
   sum = 0;
182
0
   j=0; do {
183
0
      signx[j] = X[j]<0;
184
      /* OPT: Make sure the compiler doesn't use a branch on ABS16(). */
185
0
      X[j] = ABS16(X[j]);
186
0
      iy[j] = 0;
187
0
      y[j] = 0;
188
0
   } while (++j<N);
189
190
0
   xy = yy = 0;
191
192
0
   pulsesLeft = K;
193
194
   /* Do a pre-search by projecting on the pyramid */
195
0
   if (K > (N>>1))
196
0
   {
197
0
      opus_val16 rcp;
198
0
      j=0; do {
199
0
         sum += X[j];
200
0
      }  while (++j<N);
201
202
      /* If X is too small, just replace it with a pulse at 0 */
203
#ifdef FIXED_POINT
204
      if (sum <= K)
205
#else
206
      /* Prevents infinities and NaNs from causing too many pulses
207
         to be allocated. 64 is an approximation of infinity here. */
208
0
      if (!(sum > EPSILON && sum < 64))
209
0
#endif
210
0
      {
211
0
         X[0] = QCONST16(1.f,14);
212
0
         j=1; do
213
0
            X[j]=0;
214
0
         while (++j<N);
215
0
         sum = QCONST16(1.f,14);
216
0
      }
217
#ifdef FIXED_POINT
218
      rcp = EXTRACT16(MULT16_32_Q16(K, celt_rcp(sum)));
219
#else
220
      /* Using K+e with e < 1 guarantees we cannot get more than K pulses. */
221
0
      rcp = EXTRACT16(MULT16_32_Q16(K+0.8f, celt_rcp(sum)));
222
0
#endif
223
0
      j=0; do {
224
#ifdef FIXED_POINT
225
         /* It's really important to round *towards zero* here */
226
         iy[j] = MULT16_16_Q15(X[j],rcp);
227
#else
228
0
         iy[j] = (int)floor(rcp*X[j]);
229
0
#endif
230
0
         y[j] = (celt_norm)iy[j];
231
0
         yy = MAC16_16(yy, y[j],y[j]);
232
0
         xy = MAC16_16(xy, X[j],y[j]);
233
0
         y[j] *= 2;
234
0
         pulsesLeft -= iy[j];
235
0
      }  while (++j<N);
236
0
   }
237
0
   celt_sig_assert(pulsesLeft>=0);
238
239
   /* This should never happen, but just in case it does (e.g. on silence)
240
      we fill the first bin with pulses. */
241
#ifdef FIXED_POINT_DEBUG
242
   celt_sig_assert(pulsesLeft<=N+3);
243
#endif
244
0
   if (pulsesLeft > N+3)
245
0
   {
246
0
      opus_val16 tmp = (opus_val16)pulsesLeft;
247
0
      yy = MAC16_16(yy, tmp, tmp);
248
0
      yy = MAC16_16(yy, tmp, y[0]);
249
0
      iy[0] += pulsesLeft;
250
0
      pulsesLeft=0;
251
0
   }
252
253
0
   for (i=0;i<pulsesLeft;i++)
254
0
   {
255
0
      opus_val16 Rxy, Ryy;
256
0
      int best_id;
257
0
      opus_val32 best_num;
258
0
      opus_val16 best_den;
259
#ifdef FIXED_POINT
260
      int rshift;
261
#endif
262
#ifdef FIXED_POINT
263
      rshift = 1+celt_ilog2(K-pulsesLeft+i+1);
264
#endif
265
0
      best_id = 0;
266
      /* The squared magnitude term gets added anyway, so we might as well
267
         add it outside the loop */
268
0
      yy = ADD16(yy, 1);
269
270
      /* Calculations for position 0 are out of the loop, in part to reduce
271
         mispredicted branches (since the if condition is usually false)
272
         in the loop. */
273
      /* Temporary sums of the new pulse(s) */
274
0
      Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[0])),rshift));
275
      /* We're multiplying y[j] by two so we don't have to do it here */
276
0
      Ryy = ADD16(yy, y[0]);
277
278
      /* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that
279
         Rxy is positive because the sign is pre-computed) */
280
0
      Rxy = MULT16_16_Q15(Rxy,Rxy);
281
0
      best_den = Ryy;
282
0
      best_num = Rxy;
283
0
      j=1;
284
0
      do {
285
         /* Temporary sums of the new pulse(s) */
286
0
         Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[j])),rshift));
287
         /* We're multiplying y[j] by two so we don't have to do it here */
288
0
         Ryy = ADD16(yy, y[j]);
289
290
         /* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that
291
            Rxy is positive because the sign is pre-computed) */
292
0
         Rxy = MULT16_16_Q15(Rxy,Rxy);
293
         /* The idea is to check for num/den >= best_num/best_den, but that way
294
            we can do it without any division */
295
         /* OPT: It's not clear whether a cmov is faster than a branch here
296
            since the condition is more often false than true and using
297
            a cmov introduces data dependencies across iterations. The optimal
298
            choice may be architecture-dependent. */
299
0
         if (opus_unlikely(MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num)))
300
0
         {
301
0
            best_den = Ryy;
302
0
            best_num = Rxy;
303
0
            best_id = j;
304
0
         }
305
0
      } while (++j<N);
306
307
      /* Updating the sums of the new pulse(s) */
308
0
      xy = ADD32(xy, EXTEND32(X[best_id]));
309
      /* We're multiplying y[j] by two so we don't have to do it here */
310
0
      yy = ADD16(yy, y[best_id]);
311
312
      /* Only now that we've made the final choice, update y/iy */
313
      /* Multiplying y[j] by 2 so we don't have to do it everywhere else */
314
0
      y[best_id] += 2;
315
0
      iy[best_id]++;
316
0
   }
317
318
   /* Put the original sign back */
319
0
   j=0;
320
0
   do {
321
      /*iy[j] = signx[j] ? -iy[j] : iy[j];*/
322
      /* OPT: The is more likely to be compiled without a branch than the code above
323
         but has the same performance otherwise. */
324
0
      iy[j] = (iy[j]^-signx[j]) + signx[j];
325
0
   } while (++j<N);
326
0
   RESTORE_STACK;
327
0
   return yy;
328
0
}
329
330
unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc,
331
      opus_val16 gain, int resynth, int arch)
332
0
{
333
0
   VARDECL(int, iy);
334
0
   opus_val16 yy;
335
0
   unsigned collapse_mask;
336
0
   SAVE_STACK;
337
338
0
   celt_assert2(K>0, "alg_quant() needs at least one pulse");
339
0
   celt_assert2(N>1, "alg_quant() needs at least two dimensions");
340
341
   /* Covers vectorization by up to 4. */
342
0
   ALLOC(iy, N+3, int);
343
344
0
   exp_rotation(X, N, 1, B, K, spread);
345
346
0
   yy = op_pvq_search(X, iy, K, N, arch);
347
348
0
   encode_pulses(iy, N, K, enc);
349
350
0
   if (resynth)
351
0
   {
352
0
      normalise_residual(iy, X, N, yy, gain);
353
0
      exp_rotation(X, N, -1, B, K, spread);
354
0
   }
355
356
0
   collapse_mask = extract_collapse_mask(iy, N, B);
357
0
   RESTORE_STACK;
358
0
   return collapse_mask;
359
0
}
360
361
/** Decode pulse vector and combine the result with the pitch vector to produce
362
    the final normalised signal in the current band. */
363
unsigned alg_unquant(celt_norm *X, int N, int K, int spread, int B,
364
      ec_dec *dec, opus_val16 gain)
365
0
{
366
0
   opus_val32 Ryy;
367
0
   unsigned collapse_mask;
368
0
   VARDECL(int, iy);
369
0
   SAVE_STACK;
370
371
0
   celt_assert2(K>0, "alg_unquant() needs at least one pulse");
372
0
   celt_assert2(N>1, "alg_unquant() needs at least two dimensions");
373
0
   ALLOC(iy, N, int);
374
0
   Ryy = decode_pulses(iy, N, K, dec);
375
0
   normalise_residual(iy, X, N, Ryy, gain);
376
0
   exp_rotation(X, N, -1, B, K, spread);
377
0
   collapse_mask = extract_collapse_mask(iy, N, B);
378
0
   RESTORE_STACK;
379
0
   return collapse_mask;
380
0
}
381
382
#ifndef OVERRIDE_renormalise_vector
383
void renormalise_vector(celt_norm *X, int N, opus_val16 gain, int arch)
384
0
{
385
0
   int i;
386
#ifdef FIXED_POINT
387
   int k;
388
#endif
389
0
   opus_val32 E;
390
0
   opus_val16 g;
391
0
   opus_val32 t;
392
0
   celt_norm *xptr;
393
0
   E = EPSILON + celt_inner_prod(X, X, N, arch);
394
#ifdef FIXED_POINT
395
   k = celt_ilog2(E)>>1;
396
#endif
397
0
   t = VSHR32(E, 2*(k-7));
398
0
   g = MULT16_16_P15(celt_rsqrt_norm(t),gain);
399
400
0
   xptr = X;
401
0
   for (i=0;i<N;i++)
402
0
   {
403
0
      *xptr = EXTRACT16(PSHR32(MULT16_16(g, *xptr), k+1));
404
0
      xptr++;
405
0
   }
406
   /*return celt_sqrt(E);*/
407
0
}
408
#endif /* OVERRIDE_renormalise_vector */
409
410
int stereo_itheta(const celt_norm *X, const celt_norm *Y, int stereo, int N, int arch)
411
0
{
412
0
   int i;
413
0
   int itheta;
414
0
   opus_val16 mid, side;
415
0
   opus_val32 Emid, Eside;
416
417
0
   Emid = Eside = EPSILON;
418
0
   if (stereo)
419
0
   {
420
0
      for (i=0;i<N;i++)
421
0
      {
422
0
         celt_norm m, s;
423
0
         m = ADD16(SHR16(X[i],1),SHR16(Y[i],1));
424
0
         s = SUB16(SHR16(X[i],1),SHR16(Y[i],1));
425
0
         Emid = MAC16_16(Emid, m, m);
426
0
         Eside = MAC16_16(Eside, s, s);
427
0
      }
428
0
   } else {
429
0
      Emid += celt_inner_prod(X, X, N, arch);
430
0
      Eside += celt_inner_prod(Y, Y, N, arch);
431
0
   }
432
0
   mid = celt_sqrt(Emid);
433
0
   side = celt_sqrt(Eside);
434
#ifdef FIXED_POINT
435
   /* 0.63662 = 2/pi */
436
   itheta = MULT16_16_Q15(QCONST16(0.63662f,15),celt_atan2p(side, mid));
437
#else
438
0
   itheta = (int)floor(.5f+16384*0.63662f*fast_atan2f(side,mid));
439
0
#endif
440
441
0
   return itheta;
442
0
}