Line | Count | Source (jump to first uncovered line) |
1 | | /*********************************************************************** |
2 | | Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
3 | | Redistribution and use in source and binary forms, with or without |
4 | | modification, are permitted provided that the following conditions |
5 | | are met: |
6 | | - Redistributions of source code must retain the above copyright notice, |
7 | | this list of conditions and the following disclaimer. |
8 | | - Redistributions in binary form must reproduce the above copyright |
9 | | notice, this list of conditions and the following disclaimer in the |
10 | | documentation and/or other materials provided with the distribution. |
11 | | - Neither the name of Internet Society, IETF or IETF Trust, nor the |
12 | | names of specific contributors, may be used to endorse or promote |
13 | | products derived from this software without specific prior written |
14 | | permission. |
15 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
16 | | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
17 | | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
18 | | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
19 | | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
20 | | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
21 | | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
22 | | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
23 | | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
24 | | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
25 | | POSSIBILITY OF SUCH DAMAGE. |
26 | | ***********************************************************************/ |
27 | | |
28 | | #ifdef HAVE_CONFIG_H |
29 | | #include "config.h" |
30 | | #endif |
31 | | |
32 | | /* conversion between prediction filter coefficients and LSFs */ |
33 | | /* order should be even */ |
34 | | /* a piecewise linear approximation maps LSF <-> cos(LSF) */ |
35 | | /* therefore the result is not accurate LSFs, but the two */ |
36 | | /* functions are accurate inverses of each other */ |
37 | | |
38 | | #include "SigProc_FIX.h" |
39 | | #include "tables.h" |
40 | | |
41 | 0 | #define QA 16 |
42 | | |
43 | | /* helper function for NLSF2A(..) */ |
44 | | static OPUS_INLINE void silk_NLSF2A_find_poly( |
45 | | opus_int32 *out, /* O intermediate polynomial, QA [dd+1] */ |
46 | | const opus_int32 *cLSF, /* I vector of interleaved 2*cos(LSFs), QA [d] */ |
47 | | opus_int dd /* I polynomial order (= 1/2 * filter order) */ |
48 | | ) |
49 | 0 | { |
50 | 0 | opus_int k, n; |
51 | 0 | opus_int32 ftmp; |
52 | |
|
53 | 0 | out[0] = silk_LSHIFT( 1, QA ); |
54 | 0 | out[1] = -cLSF[0]; |
55 | 0 | for( k = 1; k < dd; k++ ) { |
56 | 0 | ftmp = cLSF[2*k]; /* QA*/ |
57 | 0 | out[k+1] = silk_LSHIFT( out[k-1], 1 ) - (opus_int32)silk_RSHIFT_ROUND64( silk_SMULL( ftmp, out[k] ), QA ); |
58 | 0 | for( n = k; n > 1; n-- ) { |
59 | 0 | out[n] += out[n-2] - (opus_int32)silk_RSHIFT_ROUND64( silk_SMULL( ftmp, out[n-1] ), QA ); |
60 | 0 | } |
61 | 0 | out[1] -= ftmp; |
62 | 0 | } |
63 | 0 | } |
64 | | |
65 | | /* compute whitening filter coefficients from normalized line spectral frequencies */ |
66 | | void silk_NLSF2A( |
67 | | opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */ |
68 | | const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */ |
69 | | const opus_int d, /* I filter order (should be even) */ |
70 | | int arch /* I Run-time architecture */ |
71 | | ) |
72 | 0 | { |
73 | | /* This ordering was found to maximize quality. It improves numerical accuracy of |
74 | | silk_NLSF2A_find_poly() compared to "standard" ordering. */ |
75 | 0 | static const unsigned char ordering16[16] = { |
76 | 0 | 0, 15, 8, 7, 4, 11, 12, 3, 2, 13, 10, 5, 6, 9, 14, 1 |
77 | 0 | }; |
78 | 0 | static const unsigned char ordering10[10] = { |
79 | 0 | 0, 9, 6, 3, 4, 5, 8, 1, 2, 7 |
80 | 0 | }; |
81 | 0 | const unsigned char *ordering; |
82 | 0 | opus_int k, i, dd; |
83 | 0 | opus_int32 cos_LSF_QA[ SILK_MAX_ORDER_LPC ]; |
84 | 0 | opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ], Q[ SILK_MAX_ORDER_LPC / 2 + 1 ]; |
85 | 0 | opus_int32 Ptmp, Qtmp, f_int, f_frac, cos_val, delta; |
86 | 0 | opus_int32 a32_QA1[ SILK_MAX_ORDER_LPC ]; |
87 | |
|
88 | 0 | silk_assert( LSF_COS_TAB_SZ_FIX == 128 ); |
89 | 0 | celt_assert( d==10 || d==16 ); |
90 | | |
91 | | /* convert LSFs to 2*cos(LSF), using piecewise linear curve from table */ |
92 | 0 | ordering = d == 16 ? ordering16 : ordering10; |
93 | 0 | for( k = 0; k < d; k++ ) { |
94 | 0 | silk_assert( NLSF[k] >= 0 ); |
95 | | |
96 | | /* f_int on a scale 0-127 (rounded down) */ |
97 | 0 | f_int = silk_RSHIFT( NLSF[k], 15 - 7 ); |
98 | | |
99 | | /* f_frac, range: 0..255 */ |
100 | 0 | f_frac = NLSF[k] - silk_LSHIFT( f_int, 15 - 7 ); |
101 | |
|
102 | 0 | silk_assert(f_int >= 0); |
103 | 0 | silk_assert(f_int < LSF_COS_TAB_SZ_FIX ); |
104 | | |
105 | | /* Read start and end value from table */ |
106 | 0 | cos_val = silk_LSFCosTab_FIX_Q12[ f_int ]; /* Q12 */ |
107 | 0 | delta = silk_LSFCosTab_FIX_Q12[ f_int + 1 ] - cos_val; /* Q12, with a range of 0..200 */ |
108 | | |
109 | | /* Linear interpolation */ |
110 | 0 | cos_LSF_QA[ordering[k]] = silk_RSHIFT_ROUND( silk_LSHIFT( cos_val, 8 ) + silk_MUL( delta, f_frac ), 20 - QA ); /* QA */ |
111 | 0 | } |
112 | |
|
113 | 0 | dd = silk_RSHIFT( d, 1 ); |
114 | | |
115 | | /* generate even and odd polynomials using convolution */ |
116 | 0 | silk_NLSF2A_find_poly( P, &cos_LSF_QA[ 0 ], dd ); |
117 | 0 | silk_NLSF2A_find_poly( Q, &cos_LSF_QA[ 1 ], dd ); |
118 | | |
119 | | /* convert even and odd polynomials to opus_int32 Q12 filter coefs */ |
120 | 0 | for( k = 0; k < dd; k++ ) { |
121 | 0 | Ptmp = P[ k+1 ] + P[ k ]; |
122 | 0 | Qtmp = Q[ k+1 ] - Q[ k ]; |
123 | | |
124 | | /* the Ptmp and Qtmp values at this stage need to fit in int32 */ |
125 | 0 | a32_QA1[ k ] = -Qtmp - Ptmp; /* QA+1 */ |
126 | 0 | a32_QA1[ d-k-1 ] = Qtmp - Ptmp; /* QA+1 */ |
127 | 0 | } |
128 | | |
129 | | /* Convert int32 coefficients to Q12 int16 coefs */ |
130 | 0 | silk_LPC_fit( a_Q12, a32_QA1, 12, QA + 1, d ); |
131 | |
|
132 | 0 | for( i = 0; silk_LPC_inverse_pred_gain( a_Q12, d, arch ) == 0 && i < MAX_LPC_STABILIZE_ITERATIONS; i++ ) { |
133 | | /* Prediction coefficients are (too close to) unstable; apply bandwidth expansion */ |
134 | | /* on the unscaled coefficients, convert to Q12 and measure again */ |
135 | 0 | silk_bwexpander_32( a32_QA1, d, 65536 - silk_LSHIFT( 2, i ) ); |
136 | 0 | for( k = 0; k < d; k++ ) { |
137 | 0 | a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */ |
138 | 0 | } |
139 | 0 | } |
140 | 0 | } |
141 | | |