/src/opus/silk/NLSF_del_dec_quant.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*********************************************************************** |
2 | | Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
3 | | Redistribution and use in source and binary forms, with or without |
4 | | modification, are permitted provided that the following conditions |
5 | | are met: |
6 | | - Redistributions of source code must retain the above copyright notice, |
7 | | this list of conditions and the following disclaimer. |
8 | | - Redistributions in binary form must reproduce the above copyright |
9 | | notice, this list of conditions and the following disclaimer in the |
10 | | documentation and/or other materials provided with the distribution. |
11 | | - Neither the name of Internet Society, IETF or IETF Trust, nor the |
12 | | names of specific contributors, may be used to endorse or promote |
13 | | products derived from this software without specific prior written |
14 | | permission. |
15 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
16 | | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
17 | | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
18 | | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
19 | | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
20 | | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
21 | | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
22 | | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
23 | | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
24 | | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
25 | | POSSIBILITY OF SUCH DAMAGE. |
26 | | ***********************************************************************/ |
27 | | |
28 | | #ifdef HAVE_CONFIG_H |
29 | | #include "config.h" |
30 | | #endif |
31 | | |
32 | | #include "main.h" |
33 | | |
34 | | /* Delayed-decision quantizer for NLSF residuals */ |
35 | | opus_int32 silk_NLSF_del_dec_quant( /* O Returns RD value in Q25 */ |
36 | | opus_int8 indices[], /* O Quantization indices [ order ] */ |
37 | | const opus_int16 x_Q10[], /* I Input [ order ] */ |
38 | | const opus_int16 w_Q5[], /* I Weights [ order ] */ |
39 | | const opus_uint8 pred_coef_Q8[], /* I Backward predictor coefs [ order ] */ |
40 | | const opus_int16 ec_ix[], /* I Indices to entropy coding tables [ order ] */ |
41 | | const opus_uint8 ec_rates_Q5[], /* I Rates [] */ |
42 | | const opus_int quant_step_size_Q16, /* I Quantization step size */ |
43 | | const opus_int16 inv_quant_step_size_Q6, /* I Inverse quantization step size */ |
44 | | const opus_int32 mu_Q20, /* I R/D tradeoff */ |
45 | | const opus_int16 order /* I Number of input values */ |
46 | | ) |
47 | 0 | { |
48 | 0 | opus_int i, j, nStates, ind_tmp, ind_min_max, ind_max_min, in_Q10, res_Q10; |
49 | 0 | opus_int pred_Q10, diff_Q10, rate0_Q5, rate1_Q5; |
50 | 0 | opus_int16 out0_Q10, out1_Q10; |
51 | 0 | opus_int32 RD_tmp_Q25, min_Q25, min_max_Q25, max_min_Q25; |
52 | 0 | opus_int ind_sort[ NLSF_QUANT_DEL_DEC_STATES ]; |
53 | 0 | opus_int8 ind[ NLSF_QUANT_DEL_DEC_STATES ][ MAX_LPC_ORDER ]; |
54 | 0 | opus_int16 prev_out_Q10[ 2 * NLSF_QUANT_DEL_DEC_STATES ]; |
55 | 0 | opus_int32 RD_Q25[ 2 * NLSF_QUANT_DEL_DEC_STATES ]; |
56 | 0 | opus_int32 RD_min_Q25[ NLSF_QUANT_DEL_DEC_STATES ]; |
57 | 0 | opus_int32 RD_max_Q25[ NLSF_QUANT_DEL_DEC_STATES ]; |
58 | 0 | const opus_uint8 *rates_Q5; |
59 | |
|
60 | 0 | opus_int out0_Q10_table[2 * NLSF_QUANT_MAX_AMPLITUDE_EXT]; |
61 | 0 | opus_int out1_Q10_table[2 * NLSF_QUANT_MAX_AMPLITUDE_EXT]; |
62 | |
|
63 | 0 | for (i = -NLSF_QUANT_MAX_AMPLITUDE_EXT; i <= NLSF_QUANT_MAX_AMPLITUDE_EXT-1; i++) |
64 | 0 | { |
65 | 0 | out0_Q10 = silk_LSHIFT( i, 10 ); |
66 | 0 | out1_Q10 = silk_ADD16( out0_Q10, 1024 ); |
67 | 0 | if( i > 0 ) { |
68 | 0 | out0_Q10 = silk_SUB16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); |
69 | 0 | out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); |
70 | 0 | } else if( i == 0 ) { |
71 | 0 | out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); |
72 | 0 | } else if( i == -1 ) { |
73 | 0 | out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); |
74 | 0 | } else { |
75 | 0 | out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); |
76 | 0 | out1_Q10 = silk_ADD16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); |
77 | 0 | } |
78 | 0 | out0_Q10_table[ i + NLSF_QUANT_MAX_AMPLITUDE_EXT ] = silk_RSHIFT( silk_SMULBB( out0_Q10, quant_step_size_Q16 ), 16 ); |
79 | 0 | out1_Q10_table[ i + NLSF_QUANT_MAX_AMPLITUDE_EXT ] = silk_RSHIFT( silk_SMULBB( out1_Q10, quant_step_size_Q16 ), 16 ); |
80 | 0 | } |
81 | |
|
82 | 0 | silk_assert( (NLSF_QUANT_DEL_DEC_STATES & (NLSF_QUANT_DEL_DEC_STATES-1)) == 0 ); /* must be power of two */ |
83 | |
|
84 | 0 | nStates = 1; |
85 | 0 | RD_Q25[ 0 ] = 0; |
86 | 0 | prev_out_Q10[ 0 ] = 0; |
87 | 0 | for( i = order - 1; i >= 0; i-- ) { |
88 | 0 | rates_Q5 = &ec_rates_Q5[ ec_ix[ i ] ]; |
89 | 0 | in_Q10 = x_Q10[ i ]; |
90 | 0 | for( j = 0; j < nStates; j++ ) { |
91 | 0 | pred_Q10 = silk_RSHIFT( silk_SMULBB( (opus_int16)pred_coef_Q8[ i ], prev_out_Q10[ j ] ), 8 ); |
92 | 0 | res_Q10 = silk_SUB16( in_Q10, pred_Q10 ); |
93 | 0 | ind_tmp = silk_RSHIFT( silk_SMULBB( inv_quant_step_size_Q6, res_Q10 ), 16 ); |
94 | 0 | ind_tmp = silk_LIMIT( ind_tmp, -NLSF_QUANT_MAX_AMPLITUDE_EXT, NLSF_QUANT_MAX_AMPLITUDE_EXT-1 ); |
95 | 0 | ind[ j ][ i ] = (opus_int8)ind_tmp; |
96 | | |
97 | | /* compute outputs for ind_tmp and ind_tmp + 1 */ |
98 | 0 | out0_Q10 = out0_Q10_table[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE_EXT ]; |
99 | 0 | out1_Q10 = out1_Q10_table[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE_EXT ]; |
100 | |
|
101 | 0 | out0_Q10 = silk_ADD16( out0_Q10, pred_Q10 ); |
102 | 0 | out1_Q10 = silk_ADD16( out1_Q10, pred_Q10 ); |
103 | 0 | prev_out_Q10[ j ] = out0_Q10; |
104 | 0 | prev_out_Q10[ j + nStates ] = out1_Q10; |
105 | | |
106 | | /* compute RD for ind_tmp and ind_tmp + 1 */ |
107 | 0 | if( ind_tmp + 1 >= NLSF_QUANT_MAX_AMPLITUDE ) { |
108 | 0 | if( ind_tmp + 1 == NLSF_QUANT_MAX_AMPLITUDE ) { |
109 | 0 | rate0_Q5 = rates_Q5[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE ]; |
110 | 0 | rate1_Q5 = 280; |
111 | 0 | } else { |
112 | 0 | rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, 43, ind_tmp ); |
113 | 0 | rate1_Q5 = silk_ADD16( rate0_Q5, 43 ); |
114 | 0 | } |
115 | 0 | } else if( ind_tmp <= -NLSF_QUANT_MAX_AMPLITUDE ) { |
116 | 0 | if( ind_tmp == -NLSF_QUANT_MAX_AMPLITUDE ) { |
117 | 0 | rate0_Q5 = 280; |
118 | 0 | rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ]; |
119 | 0 | } else { |
120 | 0 | rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, -43, ind_tmp ); |
121 | 0 | rate1_Q5 = silk_SUB16( rate0_Q5, 43 ); |
122 | 0 | } |
123 | 0 | } else { |
124 | 0 | rate0_Q5 = rates_Q5[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE ]; |
125 | 0 | rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ]; |
126 | 0 | } |
127 | 0 | RD_tmp_Q25 = RD_Q25[ j ]; |
128 | 0 | diff_Q10 = silk_SUB16( in_Q10, out0_Q10 ); |
129 | 0 | RD_Q25[ j ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate0_Q5 ); |
130 | 0 | diff_Q10 = silk_SUB16( in_Q10, out1_Q10 ); |
131 | 0 | RD_Q25[ j + nStates ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate1_Q5 ); |
132 | 0 | } |
133 | |
|
134 | 0 | if( nStates <= NLSF_QUANT_DEL_DEC_STATES/2 ) { |
135 | | /* double number of states and copy */ |
136 | 0 | for( j = 0; j < nStates; j++ ) { |
137 | 0 | ind[ j + nStates ][ i ] = ind[ j ][ i ] + 1; |
138 | 0 | } |
139 | 0 | nStates = silk_LSHIFT( nStates, 1 ); |
140 | 0 | for( j = nStates; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { |
141 | 0 | ind[ j ][ i ] = ind[ j - nStates ][ i ]; |
142 | 0 | } |
143 | 0 | } else { |
144 | | /* sort lower and upper half of RD_Q25, pairwise */ |
145 | 0 | for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { |
146 | 0 | if( RD_Q25[ j ] > RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] ) { |
147 | 0 | RD_max_Q25[ j ] = RD_Q25[ j ]; |
148 | 0 | RD_min_Q25[ j ] = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ]; |
149 | 0 | RD_Q25[ j ] = RD_min_Q25[ j ]; |
150 | 0 | RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] = RD_max_Q25[ j ]; |
151 | | /* swap prev_out values */ |
152 | 0 | out0_Q10 = prev_out_Q10[ j ]; |
153 | 0 | prev_out_Q10[ j ] = prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ]; |
154 | 0 | prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ] = out0_Q10; |
155 | 0 | ind_sort[ j ] = j + NLSF_QUANT_DEL_DEC_STATES; |
156 | 0 | } else { |
157 | 0 | RD_min_Q25[ j ] = RD_Q25[ j ]; |
158 | 0 | RD_max_Q25[ j ] = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ]; |
159 | 0 | ind_sort[ j ] = j; |
160 | 0 | } |
161 | 0 | } |
162 | | /* compare the highest RD values of the winning half with the lowest one in the losing half, and copy if necessary */ |
163 | | /* afterwards ind_sort[] will contain the indices of the NLSF_QUANT_DEL_DEC_STATES winning RD values */ |
164 | 0 | while( 1 ) { |
165 | 0 | min_max_Q25 = silk_int32_MAX; |
166 | 0 | max_min_Q25 = 0; |
167 | 0 | ind_min_max = 0; |
168 | 0 | ind_max_min = 0; |
169 | 0 | for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { |
170 | 0 | if( min_max_Q25 > RD_max_Q25[ j ] ) { |
171 | 0 | min_max_Q25 = RD_max_Q25[ j ]; |
172 | 0 | ind_min_max = j; |
173 | 0 | } |
174 | 0 | if( max_min_Q25 < RD_min_Q25[ j ] ) { |
175 | 0 | max_min_Q25 = RD_min_Q25[ j ]; |
176 | 0 | ind_max_min = j; |
177 | 0 | } |
178 | 0 | } |
179 | 0 | if( min_max_Q25 >= max_min_Q25 ) { |
180 | 0 | break; |
181 | 0 | } |
182 | | /* copy ind_min_max to ind_max_min */ |
183 | 0 | ind_sort[ ind_max_min ] = ind_sort[ ind_min_max ] ^ NLSF_QUANT_DEL_DEC_STATES; |
184 | 0 | RD_Q25[ ind_max_min ] = RD_Q25[ ind_min_max + NLSF_QUANT_DEL_DEC_STATES ]; |
185 | 0 | prev_out_Q10[ ind_max_min ] = prev_out_Q10[ ind_min_max + NLSF_QUANT_DEL_DEC_STATES ]; |
186 | 0 | RD_min_Q25[ ind_max_min ] = 0; |
187 | 0 | RD_max_Q25[ ind_min_max ] = silk_int32_MAX; |
188 | 0 | silk_memcpy( ind[ ind_max_min ], ind[ ind_min_max ], MAX_LPC_ORDER * sizeof( opus_int8 ) ); |
189 | 0 | } |
190 | | /* increment index if it comes from the upper half */ |
191 | 0 | for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { |
192 | 0 | ind[ j ][ i ] += silk_RSHIFT( ind_sort[ j ], NLSF_QUANT_DEL_DEC_STATES_LOG2 ); |
193 | 0 | } |
194 | 0 | } |
195 | 0 | } |
196 | | |
197 | | /* last sample: find winner, copy indices and return RD value */ |
198 | 0 | ind_tmp = 0; |
199 | 0 | min_Q25 = silk_int32_MAX; |
200 | 0 | for( j = 0; j < 2 * NLSF_QUANT_DEL_DEC_STATES; j++ ) { |
201 | 0 | if( min_Q25 > RD_Q25[ j ] ) { |
202 | 0 | min_Q25 = RD_Q25[ j ]; |
203 | 0 | ind_tmp = j; |
204 | 0 | } |
205 | 0 | } |
206 | 0 | for( j = 0; j < order; j++ ) { |
207 | 0 | indices[ j ] = ind[ ind_tmp & ( NLSF_QUANT_DEL_DEC_STATES - 1 ) ][ j ]; |
208 | 0 | silk_assert( indices[ j ] >= -NLSF_QUANT_MAX_AMPLITUDE_EXT ); |
209 | 0 | silk_assert( indices[ j ] <= NLSF_QUANT_MAX_AMPLITUDE_EXT ); |
210 | 0 | } |
211 | 0 | indices[ 0 ] += silk_RSHIFT( ind_tmp, NLSF_QUANT_DEL_DEC_STATES_LOG2 ); |
212 | 0 | silk_assert( indices[ 0 ] <= NLSF_QUANT_MAX_AMPLITUDE_EXT ); |
213 | 0 | silk_assert( min_Q25 >= 0 ); |
214 | 0 | return min_Q25; |
215 | 0 | } |