Coverage Report

Created: 2024-09-06 07:53

/src/opus/silk/NSQ.c
Line
Count
Source (jump to first uncovered line)
1
/***********************************************************************
2
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3
Redistribution and use in source and binary forms, with or without
4
modification, are permitted provided that the following conditions
5
are met:
6
- Redistributions of source code must retain the above copyright notice,
7
this list of conditions and the following disclaimer.
8
- Redistributions in binary form must reproduce the above copyright
9
notice, this list of conditions and the following disclaimer in the
10
documentation and/or other materials provided with the distribution.
11
- Neither the name of Internet Society, IETF or IETF Trust, nor the
12
names of specific contributors, may be used to endorse or promote
13
products derived from this software without specific prior written
14
permission.
15
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25
POSSIBILITY OF SUCH DAMAGE.
26
***********************************************************************/
27
28
#ifdef HAVE_CONFIG_H
29
#include "config.h"
30
#endif
31
32
#include "main.h"
33
#include "stack_alloc.h"
34
#include "NSQ.h"
35
36
37
static OPUS_INLINE void silk_nsq_scale_states(
38
    const silk_encoder_state *psEncC,           /* I    Encoder State                   */
39
    silk_nsq_state      *NSQ,                   /* I/O  NSQ state                       */
40
    const opus_int16    x16[],                  /* I    input                           */
41
    opus_int32          x_sc_Q10[],             /* O    input scaled with 1/Gain        */
42
    const opus_int16    sLTP[],                 /* I    re-whitened LTP state in Q0     */
43
    opus_int32          sLTP_Q15[],             /* O    LTP state matching scaled input */
44
    opus_int            subfr,                  /* I    subframe number                 */
45
    const opus_int      LTP_scale_Q14,          /* I                                    */
46
    const opus_int32    Gains_Q16[ MAX_NB_SUBFR ], /* I                                 */
47
    const opus_int      pitchL[ MAX_NB_SUBFR ], /* I    Pitch lag                       */
48
    const opus_int      signal_type             /* I    Signal type                     */
49
);
50
51
#if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
52
static OPUS_INLINE void silk_noise_shape_quantizer(
53
    silk_nsq_state      *NSQ,                   /* I/O  NSQ state                       */
54
    opus_int            signalType,             /* I    Signal type                     */
55
    const opus_int32    x_sc_Q10[],             /* I                                    */
56
    opus_int8           pulses[],               /* O                                    */
57
    opus_int16          xq[],                   /* O                                    */
58
    opus_int32          sLTP_Q15[],             /* I/O  LTP state                       */
59
    const opus_int16    a_Q12[],                /* I    Short term prediction coefs     */
60
    const opus_int16    b_Q14[],                /* I    Long term prediction coefs      */
61
    const opus_int16    AR_shp_Q13[],           /* I    Noise shaping AR coefs          */
62
    opus_int            lag,                    /* I    Pitch lag                       */
63
    opus_int32          HarmShapeFIRPacked_Q14, /* I                                    */
64
    opus_int            Tilt_Q14,               /* I    Spectral tilt                   */
65
    opus_int32          LF_shp_Q14,             /* I                                    */
66
    opus_int32          Gain_Q16,               /* I                                    */
67
    opus_int            Lambda_Q10,             /* I                                    */
68
    opus_int            offset_Q10,             /* I                                    */
69
    opus_int            length,                 /* I    Input length                    */
70
    opus_int            shapingLPCOrder,        /* I    Noise shaping AR filter order   */
71
    opus_int            predictLPCOrder,        /* I    Prediction filter order         */
72
    int                 arch                    /* I    Architecture                    */
73
);
74
#endif
75
76
void silk_NSQ_c
77
(
78
    const silk_encoder_state    *psEncC,                                      /* I    Encoder State                   */
79
    silk_nsq_state              *NSQ,                                         /* I/O  NSQ state                       */
80
    SideInfoIndices             *psIndices,                                   /* I/O  Quantization Indices            */
81
    const opus_int16            x16[],                                        /* I    Input                           */
82
    opus_int8                   pulses[],                                     /* O    Quantized pulse signal          */
83
    const opus_int16            *PredCoef_Q12,                                /* I    Short term prediction coefs     */
84
    const opus_int16            LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ],      /* I    Long term prediction coefs      */
85
    const opus_int16            AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I    Noise shaping coefs             */
86
    const opus_int              HarmShapeGain_Q14[ MAX_NB_SUBFR ],            /* I    Long term shaping coefs         */
87
    const opus_int              Tilt_Q14[ MAX_NB_SUBFR ],                     /* I    Spectral tilt                   */
88
    const opus_int32            LF_shp_Q14[ MAX_NB_SUBFR ],                   /* I    Low frequency shaping coefs     */
89
    const opus_int32            Gains_Q16[ MAX_NB_SUBFR ],                    /* I    Quantization step sizes         */
90
    const opus_int              pitchL[ MAX_NB_SUBFR ],                       /* I    Pitch lags                      */
91
    const opus_int              Lambda_Q10,                                   /* I    Rate/distortion tradeoff        */
92
    const opus_int              LTP_scale_Q14                                 /* I    LTP state scaling               */
93
)
94
0
{
95
0
    opus_int            k, lag, start_idx, LSF_interpolation_flag;
96
0
    const opus_int16    *A_Q12, *B_Q14, *AR_shp_Q13;
97
0
    opus_int16          *pxq;
98
0
    VARDECL( opus_int32, sLTP_Q15 );
99
0
    VARDECL( opus_int16, sLTP );
100
0
    opus_int32          HarmShapeFIRPacked_Q14;
101
0
    opus_int            offset_Q10;
102
0
    VARDECL( opus_int32, x_sc_Q10 );
103
0
    SAVE_STACK;
104
105
0
    NSQ->rand_seed = psIndices->Seed;
106
107
    /* Set unvoiced lag to the previous one, overwrite later for voiced */
108
0
    lag = NSQ->lagPrev;
109
110
0
    silk_assert( NSQ->prev_gain_Q16 != 0 );
111
112
0
    offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ];
113
114
0
    if( psIndices->NLSFInterpCoef_Q2 == 4 ) {
115
0
        LSF_interpolation_flag = 0;
116
0
    } else {
117
0
        LSF_interpolation_flag = 1;
118
0
    }
119
120
0
    ALLOC( sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 );
121
0
    ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 );
122
0
    ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 );
123
    /* Set up pointers to start of sub frame */
124
0
    NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length;
125
0
    NSQ->sLTP_buf_idx     = psEncC->ltp_mem_length;
126
0
    pxq                   = &NSQ->xq[ psEncC->ltp_mem_length ];
127
0
    for( k = 0; k < psEncC->nb_subfr; k++ ) {
128
0
        A_Q12      = &PredCoef_Q12[ (( k >> 1 ) | ( 1 - LSF_interpolation_flag )) * MAX_LPC_ORDER ];
129
0
        B_Q14      = &LTPCoef_Q14[ k * LTP_ORDER ];
130
0
        AR_shp_Q13 = &AR_Q13[ k * MAX_SHAPE_LPC_ORDER ];
131
132
        /* Noise shape parameters */
133
0
        silk_assert( HarmShapeGain_Q14[ k ] >= 0 );
134
0
        HarmShapeFIRPacked_Q14  =                          silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
135
0
        HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );
136
137
0
        NSQ->rewhite_flag = 0;
138
0
        if( psIndices->signalType == TYPE_VOICED ) {
139
            /* Voiced */
140
0
            lag = pitchL[ k ];
141
142
            /* Re-whitening */
143
0
            if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) {
144
                /* Rewhiten with new A coefs */
145
0
                start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
146
0
                celt_assert( start_idx > 0 );
147
148
0
                silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ],
149
0
                    A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch );
150
151
0
                NSQ->rewhite_flag = 1;
152
0
                NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
153
0
            }
154
0
        }
155
156
0
        silk_nsq_scale_states( psEncC, NSQ, x16, x_sc_Q10, sLTP, sLTP_Q15, k, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType );
157
158
0
        silk_noise_shape_quantizer( NSQ, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15, A_Q12, B_Q14,
159
0
            AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], Gains_Q16[ k ], Lambda_Q10,
160
0
            offset_Q10, psEncC->subfr_length, psEncC->shapingLPCOrder, psEncC->predictLPCOrder, psEncC->arch );
161
162
0
        x16    += psEncC->subfr_length;
163
0
        pulses += psEncC->subfr_length;
164
0
        pxq    += psEncC->subfr_length;
165
0
    }
166
167
    /* Update lagPrev for next frame */
168
0
    NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ];
169
170
    /* Save quantized speech and noise shaping signals */
171
0
    silk_memmove( NSQ->xq,           &NSQ->xq[           psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) );
172
0
    silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) );
173
0
    RESTORE_STACK;
174
0
}
175
176
/******************************/
177
/* silk_noise_shape_quantizer */
178
/******************************/
179
180
#if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
181
static OPUS_INLINE
182
#endif
183
void silk_noise_shape_quantizer(
184
    silk_nsq_state      *NSQ,                   /* I/O  NSQ state                       */
185
    opus_int            signalType,             /* I    Signal type                     */
186
    const opus_int32    x_sc_Q10[],             /* I                                    */
187
    opus_int8           pulses[],               /* O                                    */
188
    opus_int16          xq[],                   /* O                                    */
189
    opus_int32          sLTP_Q15[],             /* I/O  LTP state                       */
190
    const opus_int16    a_Q12[],                /* I    Short term prediction coefs     */
191
    const opus_int16    b_Q14[],                /* I    Long term prediction coefs      */
192
    const opus_int16    AR_shp_Q13[],           /* I    Noise shaping AR coefs          */
193
    opus_int            lag,                    /* I    Pitch lag                       */
194
    opus_int32          HarmShapeFIRPacked_Q14, /* I                                    */
195
    opus_int            Tilt_Q14,               /* I    Spectral tilt                   */
196
    opus_int32          LF_shp_Q14,             /* I                                    */
197
    opus_int32          Gain_Q16,               /* I                                    */
198
    opus_int            Lambda_Q10,             /* I                                    */
199
    opus_int            offset_Q10,             /* I                                    */
200
    opus_int            length,                 /* I    Input length                    */
201
    opus_int            shapingLPCOrder,        /* I    Noise shaping AR filter order   */
202
    opus_int            predictLPCOrder,        /* I    Prediction filter order         */
203
    int                 arch                    /* I    Architecture                    */
204
)
205
0
{
206
0
    opus_int     i;
207
0
    opus_int32   LTP_pred_Q13, LPC_pred_Q10, n_AR_Q12, n_LTP_Q13;
208
0
    opus_int32   n_LF_Q12, r_Q10, rr_Q10, q1_Q0, q1_Q10, q2_Q10, rd1_Q20, rd2_Q20;
209
0
    opus_int32   exc_Q14, LPC_exc_Q14, xq_Q14, Gain_Q10;
210
0
    opus_int32   tmp1, tmp2, sLF_AR_shp_Q14;
211
0
    opus_int32   *psLPC_Q14, *shp_lag_ptr, *pred_lag_ptr;
212
#ifdef silk_short_prediction_create_arch_coef
213
    opus_int32   a_Q12_arch[MAX_LPC_ORDER];
214
#endif
215
216
0
    shp_lag_ptr  = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ];
217
0
    pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ];
218
0
    Gain_Q10     = silk_RSHIFT( Gain_Q16, 6 );
219
220
    /* Set up short term AR state */
221
0
    psLPC_Q14 = &NSQ->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 ];
222
223
#ifdef silk_short_prediction_create_arch_coef
224
    silk_short_prediction_create_arch_coef(a_Q12_arch, a_Q12, predictLPCOrder);
225
#endif
226
227
0
    for( i = 0; i < length; i++ ) {
228
        /* Generate dither */
229
0
        NSQ->rand_seed = silk_RAND( NSQ->rand_seed );
230
231
        /* Short-term prediction */
232
0
        LPC_pred_Q10 = silk_noise_shape_quantizer_short_prediction(psLPC_Q14, a_Q12, a_Q12_arch, predictLPCOrder, arch);
233
234
        /* Long-term prediction */
235
0
        if( signalType == TYPE_VOICED ) {
236
            /* Unrolled loop */
237
            /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
238
0
            LTP_pred_Q13 = 2;
239
0
            LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[  0 ], b_Q14[ 0 ] );
240
0
            LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -1 ], b_Q14[ 1 ] );
241
0
            LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -2 ], b_Q14[ 2 ] );
242
0
            LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -3 ], b_Q14[ 3 ] );
243
0
            LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -4 ], b_Q14[ 4 ] );
244
0
            pred_lag_ptr++;
245
0
        } else {
246
0
            LTP_pred_Q13 = 0;
247
0
        }
248
249
        /* Noise shape feedback */
250
0
        celt_assert( ( shapingLPCOrder & 1 ) == 0 );   /* check that order is even */
251
0
        n_AR_Q12 = silk_NSQ_noise_shape_feedback_loop(&NSQ->sDiff_shp_Q14, NSQ->sAR2_Q14, AR_shp_Q13, shapingLPCOrder, arch);
252
253
0
        n_AR_Q12 = silk_SMLAWB( n_AR_Q12, NSQ->sLF_AR_shp_Q14, Tilt_Q14 );
254
255
0
        n_LF_Q12 = silk_SMULWB( NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - 1 ], LF_shp_Q14 );
256
0
        n_LF_Q12 = silk_SMLAWT( n_LF_Q12, NSQ->sLF_AR_shp_Q14, LF_shp_Q14 );
257
258
0
        celt_assert( lag > 0 || signalType != TYPE_VOICED );
259
260
        /* Combine prediction and noise shaping signals */
261
0
        tmp1 = silk_SUB32_ovflw( silk_LSHIFT32( LPC_pred_Q10, 2 ), n_AR_Q12 );  /* Q12 */
262
0
        tmp1 = silk_SUB32_ovflw( tmp1, n_LF_Q12 );                              /* Q12 */
263
0
        if( lag > 0 ) {
264
            /* Symmetric, packed FIR coefficients */
265
0
            n_LTP_Q13 = silk_SMULWB( silk_ADD_SAT32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 );
266
0
            n_LTP_Q13 = silk_SMLAWT( n_LTP_Q13, shp_lag_ptr[ -1 ],                      HarmShapeFIRPacked_Q14 );
267
0
            n_LTP_Q13 = silk_LSHIFT( n_LTP_Q13, 1 );
268
0
            shp_lag_ptr++;
269
270
0
            tmp2 = silk_SUB32( LTP_pred_Q13, n_LTP_Q13 );                       /* Q13 */
271
0
            tmp1 = silk_ADD32_ovflw( tmp2, silk_LSHIFT32( tmp1, 1 ) );          /* Q13 */
272
0
            tmp1 = silk_RSHIFT_ROUND( tmp1, 3 );                                /* Q10 */
273
0
        } else {
274
0
            tmp1 = silk_RSHIFT_ROUND( tmp1, 2 );                                /* Q10 */
275
0
        }
276
277
0
        r_Q10 = silk_SUB32( x_sc_Q10[ i ], tmp1 );                              /* residual error Q10 */
278
279
        /* Flip sign depending on dither */
280
0
        if( NSQ->rand_seed < 0 ) {
281
0
            r_Q10 = -r_Q10;
282
0
        }
283
0
        r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 );
284
285
        /* Find two quantization level candidates and measure their rate-distortion */
286
0
        q1_Q10 = silk_SUB32( r_Q10, offset_Q10 );
287
0
        q1_Q0 = silk_RSHIFT( q1_Q10, 10 );
288
0
        if (Lambda_Q10 > 2048) {
289
            /* For aggressive RDO, the bias becomes more than one pulse. */
290
0
            int rdo_offset = Lambda_Q10/2 - 512;
291
0
            if (q1_Q10 > rdo_offset) {
292
0
                q1_Q0 = silk_RSHIFT( q1_Q10 - rdo_offset, 10 );
293
0
            } else if (q1_Q10 < -rdo_offset) {
294
0
                q1_Q0 = silk_RSHIFT( q1_Q10 + rdo_offset, 10 );
295
0
            } else if (q1_Q10 < 0) {
296
0
                q1_Q0 = -1;
297
0
            } else {
298
0
                q1_Q0 = 0;
299
0
            }
300
0
        }
301
0
        if( q1_Q0 > 0 ) {
302
0
            q1_Q10  = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
303
0
            q1_Q10  = silk_ADD32( q1_Q10, offset_Q10 );
304
0
            q2_Q10  = silk_ADD32( q1_Q10, 1024 );
305
0
            rd1_Q20 = silk_SMULBB( q1_Q10, Lambda_Q10 );
306
0
            rd2_Q20 = silk_SMULBB( q2_Q10, Lambda_Q10 );
307
0
        } else if( q1_Q0 == 0 ) {
308
0
            q1_Q10  = offset_Q10;
309
0
            q2_Q10  = silk_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
310
0
            rd1_Q20 = silk_SMULBB( q1_Q10, Lambda_Q10 );
311
0
            rd2_Q20 = silk_SMULBB( q2_Q10, Lambda_Q10 );
312
0
        } else if( q1_Q0 == -1 ) {
313
0
            q2_Q10  = offset_Q10;
314
0
            q1_Q10  = silk_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
315
0
            rd1_Q20 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
316
0
            rd2_Q20 = silk_SMULBB(  q2_Q10, Lambda_Q10 );
317
0
        } else {            /* Q1_Q0 < -1 */
318
0
            q1_Q10  = silk_ADD32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
319
0
            q1_Q10  = silk_ADD32( q1_Q10, offset_Q10 );
320
0
            q2_Q10  = silk_ADD32( q1_Q10, 1024 );
321
0
            rd1_Q20 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
322
0
            rd2_Q20 = silk_SMULBB( -q2_Q10, Lambda_Q10 );
323
0
        }
324
0
        rr_Q10  = silk_SUB32( r_Q10, q1_Q10 );
325
0
        rd1_Q20 = silk_SMLABB( rd1_Q20, rr_Q10, rr_Q10 );
326
0
        rr_Q10  = silk_SUB32( r_Q10, q2_Q10 );
327
0
        rd2_Q20 = silk_SMLABB( rd2_Q20, rr_Q10, rr_Q10 );
328
329
0
        if( rd2_Q20 < rd1_Q20 ) {
330
0
            q1_Q10 = q2_Q10;
331
0
        }
332
333
0
        pulses[ i ] = (opus_int8)silk_RSHIFT_ROUND( q1_Q10, 10 );
334
335
        /* Excitation */
336
0
        exc_Q14 = silk_LSHIFT( q1_Q10, 4 );
337
0
        if ( NSQ->rand_seed < 0 ) {
338
0
           exc_Q14 = -exc_Q14;
339
0
        }
340
341
        /* Add predictions */
342
0
        LPC_exc_Q14 = silk_ADD_LSHIFT32( exc_Q14, LTP_pred_Q13, 1 );
343
0
        xq_Q14      = silk_ADD32_ovflw( LPC_exc_Q14, silk_LSHIFT32( LPC_pred_Q10, 4 ) );
344
345
        /* Scale XQ back to normal level before saving */
346
0
        xq[ i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( xq_Q14, Gain_Q10 ), 8 ) );
347
348
        /* Update states */
349
0
        psLPC_Q14++;
350
0
        *psLPC_Q14 = xq_Q14;
351
0
        NSQ->sDiff_shp_Q14 = silk_SUB_LSHIFT32( xq_Q14, x_sc_Q10[ i ], 4 );
352
0
        sLF_AR_shp_Q14 = silk_SUB32_ovflw( NSQ->sDiff_shp_Q14, silk_LSHIFT32( n_AR_Q12, 2 ) );
353
0
        NSQ->sLF_AR_shp_Q14 = sLF_AR_shp_Q14;
354
355
0
        NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx ] = silk_SUB32_ovflw(sLF_AR_shp_Q14, silk_LSHIFT32(n_LF_Q12, 2));
356
0
        sLTP_Q15[ NSQ->sLTP_buf_idx ] = silk_LSHIFT( LPC_exc_Q14, 1 );
357
0
        NSQ->sLTP_shp_buf_idx++;
358
0
        NSQ->sLTP_buf_idx++;
359
360
        /* Make dither dependent on quantized signal */
361
0
        NSQ->rand_seed = silk_ADD32_ovflw( NSQ->rand_seed, pulses[ i ] );
362
0
    }
363
364
    /* Update LPC synth buffer */
365
0
    silk_memcpy( NSQ->sLPC_Q14, &NSQ->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
366
0
}
367
368
static OPUS_INLINE void silk_nsq_scale_states(
369
    const silk_encoder_state *psEncC,           /* I    Encoder State                   */
370
    silk_nsq_state      *NSQ,                   /* I/O  NSQ state                       */
371
    const opus_int16    x16[],                  /* I    input                           */
372
    opus_int32          x_sc_Q10[],             /* O    input scaled with 1/Gain        */
373
    const opus_int16    sLTP[],                 /* I    re-whitened LTP state in Q0     */
374
    opus_int32          sLTP_Q15[],             /* O    LTP state matching scaled input */
375
    opus_int            subfr,                  /* I    subframe number                 */
376
    const opus_int      LTP_scale_Q14,          /* I                                    */
377
    const opus_int32    Gains_Q16[ MAX_NB_SUBFR ], /* I                                 */
378
    const opus_int      pitchL[ MAX_NB_SUBFR ], /* I    Pitch lag                       */
379
    const opus_int      signal_type             /* I    Signal type                     */
380
)
381
0
{
382
0
    opus_int   i, lag;
383
0
    opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26;
384
385
0
    lag          = pitchL[ subfr ];
386
0
    inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 );
387
0
    silk_assert( inv_gain_Q31 != 0 );
388
389
    /* Scale input */
390
0
    inv_gain_Q26 = silk_RSHIFT_ROUND( inv_gain_Q31, 5 );
391
0
    for( i = 0; i < psEncC->subfr_length; i++ ) {
392
0
        x_sc_Q10[ i ] = silk_SMULWW( x16[ i ], inv_gain_Q26 );
393
0
    }
394
395
    /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */
396
0
    if( NSQ->rewhite_flag ) {
397
0
        if( subfr == 0 ) {
398
            /* Do LTP downscaling */
399
0
            inv_gain_Q31 = silk_LSHIFT( silk_SMULWB( inv_gain_Q31, LTP_scale_Q14 ), 2 );
400
0
        }
401
0
        for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
402
0
            silk_assert( i < MAX_FRAME_LENGTH );
403
0
            sLTP_Q15[ i ] = silk_SMULWB( inv_gain_Q31, sLTP[ i ] );
404
0
        }
405
0
    }
406
407
    /* Adjust for changing gain */
408
0
    if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) {
409
0
        gain_adj_Q16 =  silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 );
410
411
        /* Scale long-term shaping state */
412
0
        for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i++ ) {
413
0
            NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] );
414
0
        }
415
416
        /* Scale long-term prediction state */
417
0
        if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) {
418
0
            for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
419
0
                sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] );
420
0
            }
421
0
        }
422
423
0
        NSQ->sLF_AR_shp_Q14 = silk_SMULWW( gain_adj_Q16, NSQ->sLF_AR_shp_Q14 );
424
0
        NSQ->sDiff_shp_Q14 = silk_SMULWW( gain_adj_Q16, NSQ->sDiff_shp_Q14 );
425
426
        /* Scale short-term prediction and shaping states */
427
0
        for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) {
428
0
            NSQ->sLPC_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLPC_Q14[ i ] );
429
0
        }
430
0
        for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) {
431
0
            NSQ->sAR2_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sAR2_Q14[ i ] );
432
0
        }
433
434
        /* Save inverse gain */
435
0
        NSQ->prev_gain_Q16 = Gains_Q16[ subfr ];
436
0
    }
437
0
}