/src/opus/silk/NSQ_del_dec.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*********************************************************************** |
2 | | Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
3 | | Redistribution and use in source and binary forms, with or without |
4 | | modification, are permitted provided that the following conditions |
5 | | are met: |
6 | | - Redistributions of source code must retain the above copyright notice, |
7 | | this list of conditions and the following disclaimer. |
8 | | - Redistributions in binary form must reproduce the above copyright |
9 | | notice, this list of conditions and the following disclaimer in the |
10 | | documentation and/or other materials provided with the distribution. |
11 | | - Neither the name of Internet Society, IETF or IETF Trust, nor the |
12 | | names of specific contributors, may be used to endorse or promote |
13 | | products derived from this software without specific prior written |
14 | | permission. |
15 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
16 | | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
17 | | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
18 | | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
19 | | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
20 | | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
21 | | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
22 | | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
23 | | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
24 | | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
25 | | POSSIBILITY OF SUCH DAMAGE. |
26 | | ***********************************************************************/ |
27 | | |
28 | | #ifdef HAVE_CONFIG_H |
29 | | #include "config.h" |
30 | | #endif |
31 | | |
32 | | #include "main.h" |
33 | | #include "stack_alloc.h" |
34 | | #include "NSQ.h" |
35 | | |
36 | | |
37 | | typedef struct { |
38 | | opus_int32 sLPC_Q14[ MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH ]; |
39 | | opus_int32 RandState[ DECISION_DELAY ]; |
40 | | opus_int32 Q_Q10[ DECISION_DELAY ]; |
41 | | opus_int32 Xq_Q14[ DECISION_DELAY ]; |
42 | | opus_int32 Pred_Q15[ DECISION_DELAY ]; |
43 | | opus_int32 Shape_Q14[ DECISION_DELAY ]; |
44 | | opus_int32 sAR2_Q14[ MAX_SHAPE_LPC_ORDER ]; |
45 | | opus_int32 LF_AR_Q14; |
46 | | opus_int32 Diff_Q14; |
47 | | opus_int32 Seed; |
48 | | opus_int32 SeedInit; |
49 | | opus_int32 RD_Q10; |
50 | | } NSQ_del_dec_struct; |
51 | | |
52 | | typedef struct { |
53 | | opus_int32 Q_Q10; |
54 | | opus_int32 RD_Q10; |
55 | | opus_int32 xq_Q14; |
56 | | opus_int32 LF_AR_Q14; |
57 | | opus_int32 Diff_Q14; |
58 | | opus_int32 sLTP_shp_Q14; |
59 | | opus_int32 LPC_exc_Q14; |
60 | | } NSQ_sample_struct; |
61 | | |
62 | | typedef NSQ_sample_struct NSQ_sample_pair[ 2 ]; |
63 | | |
64 | | #if defined(MIPSr1_ASM) |
65 | | #include "mips/NSQ_del_dec_mipsr1.h" |
66 | | #endif |
67 | | static OPUS_INLINE void silk_nsq_del_dec_scale_states( |
68 | | const silk_encoder_state *psEncC, /* I Encoder State */ |
69 | | silk_nsq_state *NSQ, /* I/O NSQ state */ |
70 | | NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ |
71 | | const opus_int16 x16[], /* I Input */ |
72 | | opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */ |
73 | | const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */ |
74 | | opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */ |
75 | | opus_int subfr, /* I Subframe number */ |
76 | | opus_int nStatesDelayedDecision, /* I Number of del dec states */ |
77 | | const opus_int LTP_scale_Q14, /* I LTP state scaling */ |
78 | | const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ |
79 | | const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */ |
80 | | const opus_int signal_type, /* I Signal type */ |
81 | | const opus_int decisionDelay /* I Decision delay */ |
82 | | ); |
83 | | |
84 | | /******************************************/ |
85 | | /* Noise shape quantizer for one subframe */ |
86 | | /******************************************/ |
87 | | static OPUS_INLINE void silk_noise_shape_quantizer_del_dec( |
88 | | silk_nsq_state *NSQ, /* I/O NSQ state */ |
89 | | NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ |
90 | | opus_int signalType, /* I Signal type */ |
91 | | const opus_int32 x_Q10[], /* I */ |
92 | | opus_int8 pulses[], /* O */ |
93 | | opus_int16 xq[], /* O */ |
94 | | opus_int32 sLTP_Q15[], /* I/O LTP filter state */ |
95 | | opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */ |
96 | | const opus_int16 a_Q12[], /* I Short term prediction coefs */ |
97 | | const opus_int16 b_Q14[], /* I Long term prediction coefs */ |
98 | | const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */ |
99 | | opus_int lag, /* I Pitch lag */ |
100 | | opus_int32 HarmShapeFIRPacked_Q14, /* I */ |
101 | | opus_int Tilt_Q14, /* I Spectral tilt */ |
102 | | opus_int32 LF_shp_Q14, /* I */ |
103 | | opus_int32 Gain_Q16, /* I */ |
104 | | opus_int Lambda_Q10, /* I */ |
105 | | opus_int offset_Q10, /* I */ |
106 | | opus_int length, /* I Input length */ |
107 | | opus_int subfr, /* I Subframe number */ |
108 | | opus_int shapingLPCOrder, /* I Shaping LPC filter order */ |
109 | | opus_int predictLPCOrder, /* I Prediction filter order */ |
110 | | opus_int warping_Q16, /* I */ |
111 | | opus_int nStatesDelayedDecision, /* I Number of states in decision tree */ |
112 | | opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */ |
113 | | opus_int decisionDelay, /* I */ |
114 | | int arch /* I */ |
115 | | ); |
116 | | |
117 | | void silk_NSQ_del_dec_c( |
118 | | const silk_encoder_state *psEncC, /* I Encoder State */ |
119 | | silk_nsq_state *NSQ, /* I/O NSQ state */ |
120 | | SideInfoIndices *psIndices, /* I/O Quantization Indices */ |
121 | | const opus_int16 x16[], /* I Input */ |
122 | | opus_int8 pulses[], /* O Quantized pulse signal */ |
123 | | const opus_int16 *PredCoef_Q12, /* I Short term prediction coefs */ |
124 | | const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */ |
125 | | const opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */ |
126 | | const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */ |
127 | | const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */ |
128 | | const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */ |
129 | | const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */ |
130 | | const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */ |
131 | | const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */ |
132 | | const opus_int LTP_scale_Q14 /* I LTP state scaling */ |
133 | | ) |
134 | 0 | { |
135 | 0 | opus_int i, k, lag, start_idx, LSF_interpolation_flag, Winner_ind, subfr; |
136 | 0 | opus_int last_smple_idx, smpl_buf_idx, decisionDelay; |
137 | 0 | const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13; |
138 | 0 | opus_int16 *pxq; |
139 | 0 | VARDECL( opus_int32, sLTP_Q15 ); |
140 | 0 | VARDECL( opus_int16, sLTP ); |
141 | 0 | opus_int32 HarmShapeFIRPacked_Q14; |
142 | 0 | opus_int offset_Q10; |
143 | 0 | opus_int32 RDmin_Q10, Gain_Q10; |
144 | 0 | VARDECL( opus_int32, x_sc_Q10 ); |
145 | 0 | VARDECL( opus_int32, delayedGain_Q10 ); |
146 | 0 | VARDECL( NSQ_del_dec_struct, psDelDec ); |
147 | 0 | NSQ_del_dec_struct *psDD; |
148 | 0 | SAVE_STACK; |
149 | | |
150 | | /* Set unvoiced lag to the previous one, overwrite later for voiced */ |
151 | 0 | lag = NSQ->lagPrev; |
152 | |
|
153 | 0 | silk_assert( NSQ->prev_gain_Q16 != 0 ); |
154 | | |
155 | | /* Initialize delayed decision states */ |
156 | 0 | ALLOC( psDelDec, psEncC->nStatesDelayedDecision, NSQ_del_dec_struct ); |
157 | 0 | silk_memset( psDelDec, 0, psEncC->nStatesDelayedDecision * sizeof( NSQ_del_dec_struct ) ); |
158 | 0 | for( k = 0; k < psEncC->nStatesDelayedDecision; k++ ) { |
159 | 0 | psDD = &psDelDec[ k ]; |
160 | 0 | psDD->Seed = ( k + psIndices->Seed ) & 3; |
161 | 0 | psDD->SeedInit = psDD->Seed; |
162 | 0 | psDD->RD_Q10 = 0; |
163 | 0 | psDD->LF_AR_Q14 = NSQ->sLF_AR_shp_Q14; |
164 | 0 | psDD->Diff_Q14 = NSQ->sDiff_shp_Q14; |
165 | 0 | psDD->Shape_Q14[ 0 ] = NSQ->sLTP_shp_Q14[ psEncC->ltp_mem_length - 1 ]; |
166 | 0 | silk_memcpy( psDD->sLPC_Q14, NSQ->sLPC_Q14, NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) ); |
167 | 0 | silk_memcpy( psDD->sAR2_Q14, NSQ->sAR2_Q14, sizeof( NSQ->sAR2_Q14 ) ); |
168 | 0 | } |
169 | |
|
170 | 0 | offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ]; |
171 | 0 | smpl_buf_idx = 0; /* index of oldest samples */ |
172 | |
|
173 | 0 | decisionDelay = silk_min_int( DECISION_DELAY, psEncC->subfr_length ); |
174 | | |
175 | | /* For voiced frames limit the decision delay to lower than the pitch lag */ |
176 | 0 | if( psIndices->signalType == TYPE_VOICED ) { |
177 | 0 | for( k = 0; k < psEncC->nb_subfr; k++ ) { |
178 | 0 | decisionDelay = silk_min_int( decisionDelay, pitchL[ k ] - LTP_ORDER / 2 - 1 ); |
179 | 0 | } |
180 | 0 | } else { |
181 | 0 | if( lag > 0 ) { |
182 | 0 | decisionDelay = silk_min_int( decisionDelay, lag - LTP_ORDER / 2 - 1 ); |
183 | 0 | } |
184 | 0 | } |
185 | |
|
186 | 0 | if( psIndices->NLSFInterpCoef_Q2 == 4 ) { |
187 | 0 | LSF_interpolation_flag = 0; |
188 | 0 | } else { |
189 | 0 | LSF_interpolation_flag = 1; |
190 | 0 | } |
191 | |
|
192 | 0 | ALLOC( sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 ); |
193 | 0 | ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 ); |
194 | 0 | ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 ); |
195 | 0 | ALLOC( delayedGain_Q10, DECISION_DELAY, opus_int32 ); |
196 | | /* Set up pointers to start of sub frame */ |
197 | 0 | pxq = &NSQ->xq[ psEncC->ltp_mem_length ]; |
198 | 0 | NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length; |
199 | 0 | NSQ->sLTP_buf_idx = psEncC->ltp_mem_length; |
200 | 0 | subfr = 0; |
201 | 0 | for( k = 0; k < psEncC->nb_subfr; k++ ) { |
202 | 0 | A_Q12 = &PredCoef_Q12[ ( ( k >> 1 ) | ( 1 - LSF_interpolation_flag ) ) * MAX_LPC_ORDER ]; |
203 | 0 | B_Q14 = <PCoef_Q14[ k * LTP_ORDER ]; |
204 | 0 | AR_shp_Q13 = &AR_Q13[ k * MAX_SHAPE_LPC_ORDER ]; |
205 | | |
206 | | /* Noise shape parameters */ |
207 | 0 | silk_assert( HarmShapeGain_Q14[ k ] >= 0 ); |
208 | 0 | HarmShapeFIRPacked_Q14 = silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 ); |
209 | 0 | HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 ); |
210 | |
|
211 | 0 | NSQ->rewhite_flag = 0; |
212 | 0 | if( psIndices->signalType == TYPE_VOICED ) { |
213 | | /* Voiced */ |
214 | 0 | lag = pitchL[ k ]; |
215 | | |
216 | | /* Re-whitening */ |
217 | 0 | if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) { |
218 | 0 | if( k == 2 ) { |
219 | | /* RESET DELAYED DECISIONS */ |
220 | | /* Find winner */ |
221 | 0 | RDmin_Q10 = psDelDec[ 0 ].RD_Q10; |
222 | 0 | Winner_ind = 0; |
223 | 0 | for( i = 1; i < psEncC->nStatesDelayedDecision; i++ ) { |
224 | 0 | if( psDelDec[ i ].RD_Q10 < RDmin_Q10 ) { |
225 | 0 | RDmin_Q10 = psDelDec[ i ].RD_Q10; |
226 | 0 | Winner_ind = i; |
227 | 0 | } |
228 | 0 | } |
229 | 0 | for( i = 0; i < psEncC->nStatesDelayedDecision; i++ ) { |
230 | 0 | if( i != Winner_ind ) { |
231 | 0 | psDelDec[ i ].RD_Q10 += ( silk_int32_MAX >> 4 ); |
232 | 0 | silk_assert( psDelDec[ i ].RD_Q10 >= 0 ); |
233 | 0 | } |
234 | 0 | } |
235 | | |
236 | | /* Copy final part of signals from winner state to output and long-term filter states */ |
237 | 0 | psDD = &psDelDec[ Winner_ind ]; |
238 | 0 | last_smple_idx = smpl_buf_idx + decisionDelay; |
239 | 0 | for( i = 0; i < decisionDelay; i++ ) { |
240 | 0 | last_smple_idx = ( last_smple_idx - 1 ) % DECISION_DELAY; |
241 | 0 | if( last_smple_idx < 0 ) last_smple_idx += DECISION_DELAY; |
242 | 0 | pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 ); |
243 | 0 | pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( |
244 | 0 | silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gains_Q16[ 1 ] ), 14 ) ); |
245 | 0 | NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q14[ last_smple_idx ]; |
246 | 0 | } |
247 | |
|
248 | 0 | subfr = 0; |
249 | 0 | } |
250 | | |
251 | | /* Rewhiten with new A coefs */ |
252 | 0 | start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2; |
253 | 0 | celt_assert( start_idx > 0 ); |
254 | |
|
255 | 0 | silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ], |
256 | 0 | A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch ); |
257 | |
|
258 | 0 | NSQ->sLTP_buf_idx = psEncC->ltp_mem_length; |
259 | 0 | NSQ->rewhite_flag = 1; |
260 | 0 | } |
261 | 0 | } |
262 | | |
263 | 0 | silk_nsq_del_dec_scale_states( psEncC, NSQ, psDelDec, x16, x_sc_Q10, sLTP, sLTP_Q15, k, |
264 | 0 | psEncC->nStatesDelayedDecision, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType, decisionDelay ); |
265 | |
|
266 | 0 | silk_noise_shape_quantizer_del_dec( NSQ, psDelDec, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15, |
267 | 0 | delayedGain_Q10, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], |
268 | 0 | Gains_Q16[ k ], Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder, |
269 | 0 | psEncC->predictLPCOrder, psEncC->warping_Q16, psEncC->nStatesDelayedDecision, &smpl_buf_idx, decisionDelay, psEncC->arch ); |
270 | |
|
271 | 0 | x16 += psEncC->subfr_length; |
272 | 0 | pulses += psEncC->subfr_length; |
273 | 0 | pxq += psEncC->subfr_length; |
274 | 0 | } |
275 | | |
276 | | /* Find winner */ |
277 | 0 | RDmin_Q10 = psDelDec[ 0 ].RD_Q10; |
278 | 0 | Winner_ind = 0; |
279 | 0 | for( k = 1; k < psEncC->nStatesDelayedDecision; k++ ) { |
280 | 0 | if( psDelDec[ k ].RD_Q10 < RDmin_Q10 ) { |
281 | 0 | RDmin_Q10 = psDelDec[ k ].RD_Q10; |
282 | 0 | Winner_ind = k; |
283 | 0 | } |
284 | 0 | } |
285 | | |
286 | | /* Copy final part of signals from winner state to output and long-term filter states */ |
287 | 0 | psDD = &psDelDec[ Winner_ind ]; |
288 | 0 | psIndices->Seed = psDD->SeedInit; |
289 | 0 | last_smple_idx = smpl_buf_idx + decisionDelay; |
290 | 0 | Gain_Q10 = silk_RSHIFT32( Gains_Q16[ psEncC->nb_subfr - 1 ], 6 ); |
291 | 0 | for( i = 0; i < decisionDelay; i++ ) { |
292 | 0 | last_smple_idx = ( last_smple_idx - 1 ) % DECISION_DELAY; |
293 | 0 | if( last_smple_idx < 0 ) last_smple_idx += DECISION_DELAY; |
294 | |
|
295 | 0 | pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 ); |
296 | 0 | pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( |
297 | 0 | silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gain_Q10 ), 8 ) ); |
298 | 0 | NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q14[ last_smple_idx ]; |
299 | 0 | } |
300 | 0 | silk_memcpy( NSQ->sLPC_Q14, &psDD->sLPC_Q14[ psEncC->subfr_length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) ); |
301 | 0 | silk_memcpy( NSQ->sAR2_Q14, psDD->sAR2_Q14, sizeof( psDD->sAR2_Q14 ) ); |
302 | | |
303 | | /* Update states */ |
304 | 0 | NSQ->sLF_AR_shp_Q14 = psDD->LF_AR_Q14; |
305 | 0 | NSQ->sDiff_shp_Q14 = psDD->Diff_Q14; |
306 | 0 | NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ]; |
307 | | |
308 | | /* Save quantized speech signal */ |
309 | 0 | silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) ); |
310 | 0 | silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) ); |
311 | 0 | RESTORE_STACK; |
312 | 0 | } |
313 | | |
314 | | /******************************************/ |
315 | | /* Noise shape quantizer for one subframe */ |
316 | | /******************************************/ |
317 | | #ifndef OVERRIDE_silk_noise_shape_quantizer_del_dec |
318 | | static OPUS_INLINE void silk_noise_shape_quantizer_del_dec( |
319 | | silk_nsq_state *NSQ, /* I/O NSQ state */ |
320 | | NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ |
321 | | opus_int signalType, /* I Signal type */ |
322 | | const opus_int32 x_Q10[], /* I */ |
323 | | opus_int8 pulses[], /* O */ |
324 | | opus_int16 xq[], /* O */ |
325 | | opus_int32 sLTP_Q15[], /* I/O LTP filter state */ |
326 | | opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */ |
327 | | const opus_int16 a_Q12[], /* I Short term prediction coefs */ |
328 | | const opus_int16 b_Q14[], /* I Long term prediction coefs */ |
329 | | const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */ |
330 | | opus_int lag, /* I Pitch lag */ |
331 | | opus_int32 HarmShapeFIRPacked_Q14, /* I */ |
332 | | opus_int Tilt_Q14, /* I Spectral tilt */ |
333 | | opus_int32 LF_shp_Q14, /* I */ |
334 | | opus_int32 Gain_Q16, /* I */ |
335 | | opus_int Lambda_Q10, /* I */ |
336 | | opus_int offset_Q10, /* I */ |
337 | | opus_int length, /* I Input length */ |
338 | | opus_int subfr, /* I Subframe number */ |
339 | | opus_int shapingLPCOrder, /* I Shaping LPC filter order */ |
340 | | opus_int predictLPCOrder, /* I Prediction filter order */ |
341 | | opus_int warping_Q16, /* I */ |
342 | | opus_int nStatesDelayedDecision, /* I Number of states in decision tree */ |
343 | | opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */ |
344 | | opus_int decisionDelay, /* I */ |
345 | | int arch /* I */ |
346 | | ) |
347 | 0 | { |
348 | 0 | opus_int i, j, k, Winner_ind, RDmin_ind, RDmax_ind, last_smple_idx; |
349 | 0 | opus_int32 Winner_rand_state; |
350 | 0 | opus_int32 LTP_pred_Q14, LPC_pred_Q14, n_AR_Q14, n_LTP_Q14; |
351 | 0 | opus_int32 n_LF_Q14, r_Q10, rr_Q10, rd1_Q10, rd2_Q10, RDmin_Q10, RDmax_Q10; |
352 | 0 | opus_int32 q1_Q0, q1_Q10, q2_Q10, exc_Q14, LPC_exc_Q14, xq_Q14, Gain_Q10; |
353 | 0 | opus_int32 tmp1, tmp2, sLF_AR_shp_Q14; |
354 | 0 | opus_int32 *pred_lag_ptr, *shp_lag_ptr, *psLPC_Q14; |
355 | | #ifdef silk_short_prediction_create_arch_coef |
356 | | opus_int32 a_Q12_arch[MAX_LPC_ORDER]; |
357 | | #endif |
358 | |
|
359 | 0 | VARDECL( NSQ_sample_pair, psSampleState ); |
360 | 0 | NSQ_del_dec_struct *psDD; |
361 | 0 | NSQ_sample_struct *psSS; |
362 | 0 | SAVE_STACK; |
363 | |
|
364 | 0 | celt_assert( nStatesDelayedDecision > 0 ); |
365 | 0 | ALLOC( psSampleState, nStatesDelayedDecision, NSQ_sample_pair ); |
366 | |
|
367 | 0 | shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ]; |
368 | 0 | pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ]; |
369 | 0 | Gain_Q10 = silk_RSHIFT( Gain_Q16, 6 ); |
370 | |
|
371 | | #ifdef silk_short_prediction_create_arch_coef |
372 | | silk_short_prediction_create_arch_coef(a_Q12_arch, a_Q12, predictLPCOrder); |
373 | | #endif |
374 | |
|
375 | 0 | for( i = 0; i < length; i++ ) { |
376 | | /* Perform common calculations used in all states */ |
377 | | |
378 | | /* Long-term prediction */ |
379 | 0 | if( signalType == TYPE_VOICED ) { |
380 | | /* Unrolled loop */ |
381 | | /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */ |
382 | 0 | LTP_pred_Q14 = 2; |
383 | 0 | LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ 0 ], b_Q14[ 0 ] ); |
384 | 0 | LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], b_Q14[ 1 ] ); |
385 | 0 | LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], b_Q14[ 2 ] ); |
386 | 0 | LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], b_Q14[ 3 ] ); |
387 | 0 | LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], b_Q14[ 4 ] ); |
388 | 0 | LTP_pred_Q14 = silk_LSHIFT( LTP_pred_Q14, 1 ); /* Q13 -> Q14 */ |
389 | 0 | pred_lag_ptr++; |
390 | 0 | } else { |
391 | 0 | LTP_pred_Q14 = 0; |
392 | 0 | } |
393 | | |
394 | | /* Long-term shaping */ |
395 | 0 | if( lag > 0 ) { |
396 | | /* Symmetric, packed FIR coefficients */ |
397 | 0 | n_LTP_Q14 = silk_SMULWB( silk_ADD_SAT32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 ); |
398 | 0 | n_LTP_Q14 = silk_SMLAWT( n_LTP_Q14, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 ); |
399 | 0 | n_LTP_Q14 = silk_SUB_LSHIFT32( LTP_pred_Q14, n_LTP_Q14, 2 ); /* Q12 -> Q14 */ |
400 | 0 | shp_lag_ptr++; |
401 | 0 | } else { |
402 | 0 | n_LTP_Q14 = 0; |
403 | 0 | } |
404 | |
|
405 | 0 | for( k = 0; k < nStatesDelayedDecision; k++ ) { |
406 | | /* Delayed decision state */ |
407 | 0 | psDD = &psDelDec[ k ]; |
408 | | |
409 | | /* Sample state */ |
410 | 0 | psSS = psSampleState[ k ]; |
411 | | |
412 | | /* Generate dither */ |
413 | 0 | psDD->Seed = silk_RAND( psDD->Seed ); |
414 | | |
415 | | /* Pointer used in short term prediction and shaping */ |
416 | 0 | psLPC_Q14 = &psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 + i ]; |
417 | | /* Short-term prediction */ |
418 | 0 | LPC_pred_Q14 = silk_noise_shape_quantizer_short_prediction(psLPC_Q14, a_Q12, a_Q12_arch, predictLPCOrder, arch); |
419 | 0 | LPC_pred_Q14 = silk_LSHIFT( LPC_pred_Q14, 4 ); /* Q10 -> Q14 */ |
420 | | |
421 | | /* Noise shape feedback */ |
422 | 0 | celt_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */ |
423 | | /* Output of lowpass section */ |
424 | 0 | tmp2 = silk_SMLAWB( psDD->Diff_Q14, psDD->sAR2_Q14[ 0 ], warping_Q16 ); |
425 | | /* Output of allpass section */ |
426 | 0 | tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ 0 ], silk_SUB32_ovflw(psDD->sAR2_Q14[ 1 ], tmp2), warping_Q16 ); |
427 | 0 | psDD->sAR2_Q14[ 0 ] = tmp2; |
428 | 0 | n_AR_Q14 = silk_RSHIFT( shapingLPCOrder, 1 ); |
429 | 0 | n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp2, AR_shp_Q13[ 0 ] ); |
430 | | /* Loop over allpass sections */ |
431 | 0 | for( j = 2; j < shapingLPCOrder; j += 2 ) { |
432 | | /* Output of allpass section */ |
433 | 0 | tmp2 = silk_SMLAWB( psDD->sAR2_Q14[ j - 1 ], silk_SUB32_ovflw(psDD->sAR2_Q14[ j + 0 ], tmp1), warping_Q16 ); |
434 | 0 | psDD->sAR2_Q14[ j - 1 ] = tmp1; |
435 | 0 | n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp1, AR_shp_Q13[ j - 1 ] ); |
436 | | /* Output of allpass section */ |
437 | 0 | tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ j + 0 ], silk_SUB32_ovflw(psDD->sAR2_Q14[ j + 1 ], tmp2), warping_Q16 ); |
438 | 0 | psDD->sAR2_Q14[ j + 0 ] = tmp2; |
439 | 0 | n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp2, AR_shp_Q13[ j ] ); |
440 | 0 | } |
441 | 0 | psDD->sAR2_Q14[ shapingLPCOrder - 1 ] = tmp1; |
442 | 0 | n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp1, AR_shp_Q13[ shapingLPCOrder - 1 ] ); |
443 | |
|
444 | 0 | n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 1 ); /* Q11 -> Q12 */ |
445 | 0 | n_AR_Q14 = silk_SMLAWB( n_AR_Q14, psDD->LF_AR_Q14, Tilt_Q14 ); /* Q12 */ |
446 | 0 | n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 2 ); /* Q12 -> Q14 */ |
447 | |
|
448 | 0 | n_LF_Q14 = silk_SMULWB( psDD->Shape_Q14[ *smpl_buf_idx ], LF_shp_Q14 ); /* Q12 */ |
449 | 0 | n_LF_Q14 = silk_SMLAWT( n_LF_Q14, psDD->LF_AR_Q14, LF_shp_Q14 ); /* Q12 */ |
450 | 0 | n_LF_Q14 = silk_LSHIFT( n_LF_Q14, 2 ); /* Q12 -> Q14 */ |
451 | | |
452 | | /* Input minus prediction plus noise feedback */ |
453 | | /* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP */ |
454 | 0 | tmp1 = silk_ADD_SAT32( n_AR_Q14, n_LF_Q14 ); /* Q14 */ |
455 | 0 | tmp2 = silk_ADD32_ovflw( n_LTP_Q14, LPC_pred_Q14 ); /* Q13 */ |
456 | 0 | tmp1 = silk_SUB_SAT32( tmp2, tmp1 ); /* Q13 */ |
457 | 0 | tmp1 = silk_RSHIFT_ROUND( tmp1, 4 ); /* Q10 */ |
458 | |
|
459 | 0 | r_Q10 = silk_SUB32( x_Q10[ i ], tmp1 ); /* residual error Q10 */ |
460 | | |
461 | | /* Flip sign depending on dither */ |
462 | 0 | if ( psDD->Seed < 0 ) { |
463 | 0 | r_Q10 = -r_Q10; |
464 | 0 | } |
465 | 0 | r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 ); |
466 | | |
467 | | /* Find two quantization level candidates and measure their rate-distortion */ |
468 | 0 | q1_Q10 = silk_SUB32( r_Q10, offset_Q10 ); |
469 | 0 | q1_Q0 = silk_RSHIFT( q1_Q10, 10 ); |
470 | 0 | if (Lambda_Q10 > 2048) { |
471 | | /* For aggressive RDO, the bias becomes more than one pulse. */ |
472 | 0 | int rdo_offset = Lambda_Q10/2 - 512; |
473 | 0 | if (q1_Q10 > rdo_offset) { |
474 | 0 | q1_Q0 = silk_RSHIFT( q1_Q10 - rdo_offset, 10 ); |
475 | 0 | } else if (q1_Q10 < -rdo_offset) { |
476 | 0 | q1_Q0 = silk_RSHIFT( q1_Q10 + rdo_offset, 10 ); |
477 | 0 | } else if (q1_Q10 < 0) { |
478 | 0 | q1_Q0 = -1; |
479 | 0 | } else { |
480 | 0 | q1_Q0 = 0; |
481 | 0 | } |
482 | 0 | } |
483 | 0 | if( q1_Q0 > 0 ) { |
484 | 0 | q1_Q10 = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 ); |
485 | 0 | q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 ); |
486 | 0 | q2_Q10 = silk_ADD32( q1_Q10, 1024 ); |
487 | 0 | rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 ); |
488 | 0 | rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 ); |
489 | 0 | } else if( q1_Q0 == 0 ) { |
490 | 0 | q1_Q10 = offset_Q10; |
491 | 0 | q2_Q10 = silk_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 ); |
492 | 0 | rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 ); |
493 | 0 | rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 ); |
494 | 0 | } else if( q1_Q0 == -1 ) { |
495 | 0 | q2_Q10 = offset_Q10; |
496 | 0 | q1_Q10 = silk_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 ); |
497 | 0 | rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 ); |
498 | 0 | rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 ); |
499 | 0 | } else { /* q1_Q0 < -1 */ |
500 | 0 | q1_Q10 = silk_ADD32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 ); |
501 | 0 | q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 ); |
502 | 0 | q2_Q10 = silk_ADD32( q1_Q10, 1024 ); |
503 | 0 | rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 ); |
504 | 0 | rd2_Q10 = silk_SMULBB( -q2_Q10, Lambda_Q10 ); |
505 | 0 | } |
506 | 0 | rr_Q10 = silk_SUB32( r_Q10, q1_Q10 ); |
507 | 0 | rd1_Q10 = silk_RSHIFT( silk_SMLABB( rd1_Q10, rr_Q10, rr_Q10 ), 10 ); |
508 | 0 | rr_Q10 = silk_SUB32( r_Q10, q2_Q10 ); |
509 | 0 | rd2_Q10 = silk_RSHIFT( silk_SMLABB( rd2_Q10, rr_Q10, rr_Q10 ), 10 ); |
510 | |
|
511 | 0 | if( rd1_Q10 < rd2_Q10 ) { |
512 | 0 | psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 ); |
513 | 0 | psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 ); |
514 | 0 | psSS[ 0 ].Q_Q10 = q1_Q10; |
515 | 0 | psSS[ 1 ].Q_Q10 = q2_Q10; |
516 | 0 | } else { |
517 | 0 | psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 ); |
518 | 0 | psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 ); |
519 | 0 | psSS[ 0 ].Q_Q10 = q2_Q10; |
520 | 0 | psSS[ 1 ].Q_Q10 = q1_Q10; |
521 | 0 | } |
522 | | |
523 | | /* Update states for best quantization */ |
524 | | |
525 | | /* Quantized excitation */ |
526 | 0 | exc_Q14 = silk_LSHIFT32( psSS[ 0 ].Q_Q10, 4 ); |
527 | 0 | if ( psDD->Seed < 0 ) { |
528 | 0 | exc_Q14 = -exc_Q14; |
529 | 0 | } |
530 | | |
531 | | /* Add predictions */ |
532 | 0 | LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 ); |
533 | 0 | xq_Q14 = silk_ADD32_ovflw( LPC_exc_Q14, LPC_pred_Q14 ); |
534 | | |
535 | | /* Update states */ |
536 | 0 | psSS[ 0 ].Diff_Q14 = silk_SUB32_ovflw( xq_Q14, silk_LSHIFT32( x_Q10[ i ], 4 ) ); |
537 | 0 | sLF_AR_shp_Q14 = silk_SUB32_ovflw( psSS[ 0 ].Diff_Q14, n_AR_Q14 ); |
538 | 0 | psSS[ 0 ].sLTP_shp_Q14 = silk_SUB_SAT32( sLF_AR_shp_Q14, n_LF_Q14 ); |
539 | 0 | psSS[ 0 ].LF_AR_Q14 = sLF_AR_shp_Q14; |
540 | 0 | psSS[ 0 ].LPC_exc_Q14 = LPC_exc_Q14; |
541 | 0 | psSS[ 0 ].xq_Q14 = xq_Q14; |
542 | | |
543 | | /* Update states for second best quantization */ |
544 | | |
545 | | /* Quantized excitation */ |
546 | 0 | exc_Q14 = silk_LSHIFT32( psSS[ 1 ].Q_Q10, 4 ); |
547 | 0 | if ( psDD->Seed < 0 ) { |
548 | 0 | exc_Q14 = -exc_Q14; |
549 | 0 | } |
550 | | |
551 | | /* Add predictions */ |
552 | 0 | LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 ); |
553 | 0 | xq_Q14 = silk_ADD32_ovflw( LPC_exc_Q14, LPC_pred_Q14 ); |
554 | | |
555 | | /* Update states */ |
556 | 0 | psSS[ 1 ].Diff_Q14 = silk_SUB32_ovflw( xq_Q14, silk_LSHIFT32( x_Q10[ i ], 4 ) ); |
557 | 0 | sLF_AR_shp_Q14 = silk_SUB32_ovflw( psSS[ 1 ].Diff_Q14, n_AR_Q14 ); |
558 | 0 | psSS[ 1 ].sLTP_shp_Q14 = silk_SUB_SAT32( sLF_AR_shp_Q14, n_LF_Q14 ); |
559 | 0 | psSS[ 1 ].LF_AR_Q14 = sLF_AR_shp_Q14; |
560 | 0 | psSS[ 1 ].LPC_exc_Q14 = LPC_exc_Q14; |
561 | 0 | psSS[ 1 ].xq_Q14 = xq_Q14; |
562 | 0 | } |
563 | | |
564 | 0 | *smpl_buf_idx = ( *smpl_buf_idx - 1 ) % DECISION_DELAY; |
565 | 0 | if( *smpl_buf_idx < 0 ) *smpl_buf_idx += DECISION_DELAY; |
566 | 0 | last_smple_idx = ( *smpl_buf_idx + decisionDelay ) % DECISION_DELAY; |
567 | | |
568 | | /* Find winner */ |
569 | 0 | RDmin_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10; |
570 | 0 | Winner_ind = 0; |
571 | 0 | for( k = 1; k < nStatesDelayedDecision; k++ ) { |
572 | 0 | if( psSampleState[ k ][ 0 ].RD_Q10 < RDmin_Q10 ) { |
573 | 0 | RDmin_Q10 = psSampleState[ k ][ 0 ].RD_Q10; |
574 | 0 | Winner_ind = k; |
575 | 0 | } |
576 | 0 | } |
577 | | |
578 | | /* Increase RD values of expired states */ |
579 | 0 | Winner_rand_state = psDelDec[ Winner_ind ].RandState[ last_smple_idx ]; |
580 | 0 | for( k = 0; k < nStatesDelayedDecision; k++ ) { |
581 | 0 | if( psDelDec[ k ].RandState[ last_smple_idx ] != Winner_rand_state ) { |
582 | 0 | psSampleState[ k ][ 0 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 0 ].RD_Q10, silk_int32_MAX >> 4 ); |
583 | 0 | psSampleState[ k ][ 1 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 1 ].RD_Q10, silk_int32_MAX >> 4 ); |
584 | 0 | silk_assert( psSampleState[ k ][ 0 ].RD_Q10 >= 0 ); |
585 | 0 | } |
586 | 0 | } |
587 | | |
588 | | /* Find worst in first set and best in second set */ |
589 | 0 | RDmax_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10; |
590 | 0 | RDmin_Q10 = psSampleState[ 0 ][ 1 ].RD_Q10; |
591 | 0 | RDmax_ind = 0; |
592 | 0 | RDmin_ind = 0; |
593 | 0 | for( k = 1; k < nStatesDelayedDecision; k++ ) { |
594 | | /* find worst in first set */ |
595 | 0 | if( psSampleState[ k ][ 0 ].RD_Q10 > RDmax_Q10 ) { |
596 | 0 | RDmax_Q10 = psSampleState[ k ][ 0 ].RD_Q10; |
597 | 0 | RDmax_ind = k; |
598 | 0 | } |
599 | | /* find best in second set */ |
600 | 0 | if( psSampleState[ k ][ 1 ].RD_Q10 < RDmin_Q10 ) { |
601 | 0 | RDmin_Q10 = psSampleState[ k ][ 1 ].RD_Q10; |
602 | 0 | RDmin_ind = k; |
603 | 0 | } |
604 | 0 | } |
605 | | |
606 | | /* Replace a state if best from second set outperforms worst in first set */ |
607 | 0 | if( RDmin_Q10 < RDmax_Q10 ) { |
608 | 0 | silk_memcpy( ( (opus_int32 *)&psDelDec[ RDmax_ind ] ) + i, |
609 | 0 | ( (opus_int32 *)&psDelDec[ RDmin_ind ] ) + i, sizeof( NSQ_del_dec_struct ) - i * sizeof( opus_int32) ); |
610 | 0 | silk_memcpy( &psSampleState[ RDmax_ind ][ 0 ], &psSampleState[ RDmin_ind ][ 1 ], sizeof( NSQ_sample_struct ) ); |
611 | 0 | } |
612 | | |
613 | | /* Write samples from winner to output and long-term filter states */ |
614 | 0 | psDD = &psDelDec[ Winner_ind ]; |
615 | 0 | if( subfr > 0 || i >= decisionDelay ) { |
616 | 0 | pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 ); |
617 | 0 | xq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( |
618 | 0 | silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], delayedGain_Q10[ last_smple_idx ] ), 8 ) ); |
619 | 0 | NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay ] = psDD->Shape_Q14[ last_smple_idx ]; |
620 | 0 | sLTP_Q15[ NSQ->sLTP_buf_idx - decisionDelay ] = psDD->Pred_Q15[ last_smple_idx ]; |
621 | 0 | } |
622 | 0 | NSQ->sLTP_shp_buf_idx++; |
623 | 0 | NSQ->sLTP_buf_idx++; |
624 | | |
625 | | /* Update states */ |
626 | 0 | for( k = 0; k < nStatesDelayedDecision; k++ ) { |
627 | 0 | psDD = &psDelDec[ k ]; |
628 | 0 | psSS = &psSampleState[ k ][ 0 ]; |
629 | 0 | psDD->LF_AR_Q14 = psSS->LF_AR_Q14; |
630 | 0 | psDD->Diff_Q14 = psSS->Diff_Q14; |
631 | 0 | psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH + i ] = psSS->xq_Q14; |
632 | 0 | psDD->Xq_Q14[ *smpl_buf_idx ] = psSS->xq_Q14; |
633 | 0 | psDD->Q_Q10[ *smpl_buf_idx ] = psSS->Q_Q10; |
634 | 0 | psDD->Pred_Q15[ *smpl_buf_idx ] = silk_LSHIFT32( psSS->LPC_exc_Q14, 1 ); |
635 | 0 | psDD->Shape_Q14[ *smpl_buf_idx ] = psSS->sLTP_shp_Q14; |
636 | 0 | psDD->Seed = silk_ADD32_ovflw( psDD->Seed, silk_RSHIFT_ROUND( psSS->Q_Q10, 10 ) ); |
637 | 0 | psDD->RandState[ *smpl_buf_idx ] = psDD->Seed; |
638 | 0 | psDD->RD_Q10 = psSS->RD_Q10; |
639 | 0 | } |
640 | 0 | delayedGain_Q10[ *smpl_buf_idx ] = Gain_Q10; |
641 | 0 | } |
642 | | /* Update LPC states */ |
643 | 0 | for( k = 0; k < nStatesDelayedDecision; k++ ) { |
644 | 0 | psDD = &psDelDec[ k ]; |
645 | 0 | silk_memcpy( psDD->sLPC_Q14, &psDD->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) ); |
646 | 0 | } |
647 | 0 | RESTORE_STACK; |
648 | 0 | } |
649 | | #endif /* OVERRIDE_silk_noise_shape_quantizer_del_dec */ |
650 | | |
651 | | static OPUS_INLINE void silk_nsq_del_dec_scale_states( |
652 | | const silk_encoder_state *psEncC, /* I Encoder State */ |
653 | | silk_nsq_state *NSQ, /* I/O NSQ state */ |
654 | | NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ |
655 | | const opus_int16 x16[], /* I Input */ |
656 | | opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */ |
657 | | const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */ |
658 | | opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */ |
659 | | opus_int subfr, /* I Subframe number */ |
660 | | opus_int nStatesDelayedDecision, /* I Number of del dec states */ |
661 | | const opus_int LTP_scale_Q14, /* I LTP state scaling */ |
662 | | const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ |
663 | | const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */ |
664 | | const opus_int signal_type, /* I Signal type */ |
665 | | const opus_int decisionDelay /* I Decision delay */ |
666 | | ) |
667 | 0 | { |
668 | 0 | opus_int i, k, lag; |
669 | 0 | opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26; |
670 | 0 | NSQ_del_dec_struct *psDD; |
671 | |
|
672 | 0 | lag = pitchL[ subfr ]; |
673 | 0 | inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 ); |
674 | 0 | silk_assert( inv_gain_Q31 != 0 ); |
675 | | |
676 | | /* Scale input */ |
677 | 0 | inv_gain_Q26 = silk_RSHIFT_ROUND( inv_gain_Q31, 5 ); |
678 | 0 | for( i = 0; i < psEncC->subfr_length; i++ ) { |
679 | 0 | x_sc_Q10[ i ] = silk_SMULWW( x16[ i ], inv_gain_Q26 ); |
680 | 0 | } |
681 | | |
682 | | /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */ |
683 | 0 | if( NSQ->rewhite_flag ) { |
684 | 0 | if( subfr == 0 ) { |
685 | | /* Do LTP downscaling */ |
686 | 0 | inv_gain_Q31 = silk_LSHIFT( silk_SMULWB( inv_gain_Q31, LTP_scale_Q14 ), 2 ); |
687 | 0 | } |
688 | 0 | for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) { |
689 | 0 | silk_assert( i < MAX_FRAME_LENGTH ); |
690 | 0 | sLTP_Q15[ i ] = silk_SMULWB( inv_gain_Q31, sLTP[ i ] ); |
691 | 0 | } |
692 | 0 | } |
693 | | |
694 | | /* Adjust for changing gain */ |
695 | 0 | if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) { |
696 | 0 | gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 ); |
697 | | |
698 | | /* Scale long-term shaping state */ |
699 | 0 | for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i++ ) { |
700 | 0 | NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] ); |
701 | 0 | } |
702 | | |
703 | | /* Scale long-term prediction state */ |
704 | 0 | if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) { |
705 | 0 | for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx - decisionDelay; i++ ) { |
706 | 0 | sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] ); |
707 | 0 | } |
708 | 0 | } |
709 | |
|
710 | 0 | for( k = 0; k < nStatesDelayedDecision; k++ ) { |
711 | 0 | psDD = &psDelDec[ k ]; |
712 | | |
713 | | /* Scale scalar states */ |
714 | 0 | psDD->LF_AR_Q14 = silk_SMULWW( gain_adj_Q16, psDD->LF_AR_Q14 ); |
715 | 0 | psDD->Diff_Q14 = silk_SMULWW( gain_adj_Q16, psDD->Diff_Q14 ); |
716 | | |
717 | | /* Scale short-term prediction and shaping states */ |
718 | 0 | for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) { |
719 | 0 | psDD->sLPC_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->sLPC_Q14[ i ] ); |
720 | 0 | } |
721 | 0 | for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) { |
722 | 0 | psDD->sAR2_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->sAR2_Q14[ i ] ); |
723 | 0 | } |
724 | 0 | for( i = 0; i < DECISION_DELAY; i++ ) { |
725 | 0 | psDD->Pred_Q15[ i ] = silk_SMULWW( gain_adj_Q16, psDD->Pred_Q15[ i ] ); |
726 | 0 | psDD->Shape_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->Shape_Q14[ i ] ); |
727 | 0 | } |
728 | 0 | } |
729 | | |
730 | | /* Save inverse gain */ |
731 | 0 | NSQ->prev_gain_Q16 = Gains_Q16[ subfr ]; |
732 | 0 | } |
733 | 0 | } |