Line | Count | Source (jump to first uncovered line) |
1 | | /*********************************************************************** |
2 | | Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
3 | | Redistribution and use in source and binary forms, with or without |
4 | | modification, are permitted provided that the following conditions |
5 | | are met: |
6 | | - Redistributions of source code must retain the above copyright notice, |
7 | | this list of conditions and the following disclaimer. |
8 | | - Redistributions in binary form must reproduce the above copyright |
9 | | notice, this list of conditions and the following disclaimer in the |
10 | | documentation and/or other materials provided with the distribution. |
11 | | - Neither the name of Internet Society, IETF or IETF Trust, nor the |
12 | | names of specific contributors, may be used to endorse or promote |
13 | | products derived from this software without specific prior written |
14 | | permission. |
15 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
16 | | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
17 | | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
18 | | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
19 | | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
20 | | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
21 | | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
22 | | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
23 | | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
24 | | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
25 | | POSSIBILITY OF SUCH DAMAGE. |
26 | | ***********************************************************************/ |
27 | | |
28 | | #ifdef HAVE_CONFIG_H |
29 | | #include "config.h" |
30 | | #endif |
31 | | |
32 | | #include "main.h" |
33 | | #include "stack_alloc.h" |
34 | | |
35 | | /* Silk VAD noise level estimation */ |
36 | | # if !defined(OPUS_X86_MAY_HAVE_SSE4_1) |
37 | | static OPUS_INLINE void silk_VAD_GetNoiseLevels( |
38 | | const opus_int32 pX[ VAD_N_BANDS ], /* I subband energies */ |
39 | | silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */ |
40 | | ); |
41 | | #endif |
42 | | |
43 | | /**********************************/ |
44 | | /* Initialization of the Silk VAD */ |
45 | | /**********************************/ |
46 | | opus_int silk_VAD_Init( /* O Return value, 0 if success */ |
47 | | silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */ |
48 | | ) |
49 | 0 | { |
50 | 0 | opus_int b, ret = 0; |
51 | | |
52 | | /* reset state memory */ |
53 | 0 | silk_memset( psSilk_VAD, 0, sizeof( silk_VAD_state ) ); |
54 | | |
55 | | /* init noise levels */ |
56 | | /* Initialize array with approx pink noise levels (psd proportional to inverse of frequency) */ |
57 | 0 | for( b = 0; b < VAD_N_BANDS; b++ ) { |
58 | 0 | psSilk_VAD->NoiseLevelBias[ b ] = silk_max_32( silk_DIV32_16( VAD_NOISE_LEVELS_BIAS, b + 1 ), 1 ); |
59 | 0 | } |
60 | | |
61 | | /* Initialize state */ |
62 | 0 | for( b = 0; b < VAD_N_BANDS; b++ ) { |
63 | 0 | psSilk_VAD->NL[ b ] = silk_MUL( 100, psSilk_VAD->NoiseLevelBias[ b ] ); |
64 | 0 | psSilk_VAD->inv_NL[ b ] = silk_DIV32( silk_int32_MAX, psSilk_VAD->NL[ b ] ); |
65 | 0 | } |
66 | 0 | psSilk_VAD->counter = 15; |
67 | | |
68 | | /* init smoothed energy-to-noise ratio*/ |
69 | 0 | for( b = 0; b < VAD_N_BANDS; b++ ) { |
70 | 0 | psSilk_VAD->NrgRatioSmth_Q8[ b ] = 100 * 256; /* 100 * 256 --> 20 dB SNR */ |
71 | 0 | } |
72 | |
|
73 | 0 | return( ret ); |
74 | 0 | } |
75 | | |
76 | | /* Weighting factors for tilt measure */ |
77 | | static const opus_int32 tiltWeights[ VAD_N_BANDS ] = { 30000, 6000, -12000, -12000 }; |
78 | | |
79 | | /***************************************/ |
80 | | /* Get the speech activity level in Q8 */ |
81 | | /***************************************/ |
82 | | opus_int silk_VAD_GetSA_Q8_c( /* O Return value, 0 if success */ |
83 | | silk_encoder_state *psEncC, /* I/O Encoder state */ |
84 | | const opus_int16 pIn[] /* I PCM input */ |
85 | | ) |
86 | 0 | { |
87 | 0 | opus_int SA_Q15, pSNR_dB_Q7, input_tilt; |
88 | 0 | opus_int decimated_framelength1, decimated_framelength2; |
89 | 0 | opus_int decimated_framelength; |
90 | 0 | opus_int dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s; |
91 | 0 | opus_int32 sumSquared, smooth_coef_Q16; |
92 | 0 | opus_int16 HPstateTmp; |
93 | 0 | VARDECL( opus_int16, X ); |
94 | 0 | opus_int32 Xnrg[ VAD_N_BANDS ]; |
95 | 0 | opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ]; |
96 | 0 | opus_int32 speech_nrg, x_tmp; |
97 | 0 | opus_int X_offset[ VAD_N_BANDS ]; |
98 | 0 | opus_int ret = 0; |
99 | 0 | silk_VAD_state *psSilk_VAD = &psEncC->sVAD; |
100 | 0 | SAVE_STACK; |
101 | | |
102 | | /* Safety checks */ |
103 | 0 | silk_assert( VAD_N_BANDS == 4 ); |
104 | 0 | celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length ); |
105 | 0 | celt_assert( psEncC->frame_length <= 512 ); |
106 | 0 | celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) ); |
107 | | |
108 | | /***********************/ |
109 | | /* Filter and Decimate */ |
110 | | /***********************/ |
111 | 0 | decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 ); |
112 | 0 | decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 ); |
113 | 0 | decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 ); |
114 | | /* Decimate into 4 bands: |
115 | | 0 L 3L L 3L 5L |
116 | | - -- - -- -- |
117 | | 8 8 2 4 4 |
118 | | |
119 | | [0-1 kHz| temp. |1-2 kHz| 2-4 kHz | 4-8 kHz | |
120 | | |
121 | | They're arranged to allow the minimal ( frame_length / 4 ) extra |
122 | | scratch space during the downsampling process */ |
123 | 0 | X_offset[ 0 ] = 0; |
124 | 0 | X_offset[ 1 ] = decimated_framelength + decimated_framelength2; |
125 | 0 | X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength; |
126 | 0 | X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2; |
127 | 0 | ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 ); |
128 | | |
129 | | /* 0-8 kHz to 0-4 kHz and 4-8 kHz */ |
130 | 0 | silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[ 0 ], |
131 | 0 | X, &X[ X_offset[ 3 ] ], psEncC->frame_length ); |
132 | | |
133 | | /* 0-4 kHz to 0-2 kHz and 2-4 kHz */ |
134 | 0 | silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ], |
135 | 0 | X, &X[ X_offset[ 2 ] ], decimated_framelength1 ); |
136 | | |
137 | | /* 0-2 kHz to 0-1 kHz and 1-2 kHz */ |
138 | 0 | silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ], |
139 | 0 | X, &X[ X_offset[ 1 ] ], decimated_framelength2 ); |
140 | | |
141 | | /*********************************************/ |
142 | | /* HP filter on lowest band (differentiator) */ |
143 | | /*********************************************/ |
144 | 0 | X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 ); |
145 | 0 | HPstateTmp = X[ decimated_framelength - 1 ]; |
146 | 0 | for( i = decimated_framelength - 1; i > 0; i-- ) { |
147 | 0 | X[ i - 1 ] = silk_RSHIFT( X[ i - 1 ], 1 ); |
148 | 0 | X[ i ] -= X[ i - 1 ]; |
149 | 0 | } |
150 | 0 | X[ 0 ] -= psSilk_VAD->HPstate; |
151 | 0 | psSilk_VAD->HPstate = HPstateTmp; |
152 | | |
153 | | /*************************************/ |
154 | | /* Calculate the energy in each band */ |
155 | | /*************************************/ |
156 | 0 | for( b = 0; b < VAD_N_BANDS; b++ ) { |
157 | | /* Find the decimated framelength in the non-uniformly divided bands */ |
158 | 0 | decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) ); |
159 | | |
160 | | /* Split length into subframe lengths */ |
161 | 0 | dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 ); |
162 | 0 | dec_subframe_offset = 0; |
163 | | |
164 | | /* Compute energy per sub-frame */ |
165 | | /* initialize with summed energy of last subframe */ |
166 | 0 | Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ]; |
167 | 0 | for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) { |
168 | 0 | sumSquared = 0; |
169 | 0 | for( i = 0; i < dec_subframe_length; i++ ) { |
170 | | /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2. */ |
171 | | /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128) */ |
172 | 0 | x_tmp = silk_RSHIFT( |
173 | 0 | X[ X_offset[ b ] + i + dec_subframe_offset ], 3 ); |
174 | 0 | sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp ); |
175 | | |
176 | | /* Safety check */ |
177 | 0 | silk_assert( sumSquared >= 0 ); |
178 | 0 | } |
179 | | |
180 | | /* Add/saturate summed energy of current subframe */ |
181 | 0 | if( s < VAD_INTERNAL_SUBFRAMES - 1 ) { |
182 | 0 | Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared ); |
183 | 0 | } else { |
184 | | /* Look-ahead subframe */ |
185 | 0 | Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) ); |
186 | 0 | } |
187 | |
|
188 | 0 | dec_subframe_offset += dec_subframe_length; |
189 | 0 | } |
190 | 0 | psSilk_VAD->XnrgSubfr[ b ] = sumSquared; |
191 | 0 | } |
192 | | |
193 | | /********************/ |
194 | | /* Noise estimation */ |
195 | | /********************/ |
196 | 0 | silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD ); |
197 | | |
198 | | /***********************************************/ |
199 | | /* Signal-plus-noise to noise ratio estimation */ |
200 | | /***********************************************/ |
201 | 0 | sumSquared = 0; |
202 | 0 | input_tilt = 0; |
203 | 0 | for( b = 0; b < VAD_N_BANDS; b++ ) { |
204 | 0 | speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ]; |
205 | 0 | if( speech_nrg > 0 ) { |
206 | | /* Divide, with sufficient resolution */ |
207 | 0 | if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) { |
208 | 0 | NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 ); |
209 | 0 | } else { |
210 | 0 | NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 ); |
211 | 0 | } |
212 | | |
213 | | /* Convert to log domain */ |
214 | 0 | SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128; |
215 | | |
216 | | /* Sum-of-squares */ |
217 | 0 | sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 ); /* Q14 */ |
218 | | |
219 | | /* Tilt measure */ |
220 | 0 | if( speech_nrg < ( (opus_int32)1 << 20 ) ) { |
221 | | /* Scale down SNR value for small subband speech energies */ |
222 | 0 | SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 ); |
223 | 0 | } |
224 | 0 | input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 ); |
225 | 0 | } else { |
226 | 0 | NrgToNoiseRatio_Q8[ b ] = 256; |
227 | 0 | } |
228 | 0 | } |
229 | | |
230 | | /* Mean-of-squares */ |
231 | 0 | sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */ |
232 | | |
233 | | /* Root-mean-square approximation, scale to dBs, and write to output pointer */ |
234 | 0 | pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */ |
235 | | |
236 | | /*********************************/ |
237 | | /* Speech Probability Estimation */ |
238 | | /*********************************/ |
239 | 0 | SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 ); |
240 | | |
241 | | /**************************/ |
242 | | /* Frequency Tilt Measure */ |
243 | | /**************************/ |
244 | 0 | psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 ); |
245 | | |
246 | | /**************************************************/ |
247 | | /* Scale the sigmoid output based on power levels */ |
248 | | /**************************************************/ |
249 | 0 | speech_nrg = 0; |
250 | 0 | for( b = 0; b < VAD_N_BANDS; b++ ) { |
251 | | /* Accumulate signal-without-noise energies, higher frequency bands have more weight */ |
252 | 0 | speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 ); |
253 | 0 | } |
254 | |
|
255 | 0 | if( psEncC->frame_length == 20 * psEncC->fs_kHz ) { |
256 | 0 | speech_nrg = silk_RSHIFT32( speech_nrg, 1 ); |
257 | 0 | } |
258 | | /* Power scaling */ |
259 | 0 | if( speech_nrg <= 0 ) { |
260 | 0 | SA_Q15 = silk_RSHIFT( SA_Q15, 1 ); |
261 | 0 | } else if( speech_nrg < 16384 ) { |
262 | 0 | speech_nrg = silk_LSHIFT32( speech_nrg, 16 ); |
263 | | |
264 | | /* square-root */ |
265 | 0 | speech_nrg = silk_SQRT_APPROX( speech_nrg ); |
266 | 0 | SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 ); |
267 | 0 | } |
268 | | |
269 | | /* Copy the resulting speech activity in Q8 */ |
270 | 0 | psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX ); |
271 | | |
272 | | /***********************************/ |
273 | | /* Energy Level and SNR estimation */ |
274 | | /***********************************/ |
275 | | /* Smoothing coefficient */ |
276 | 0 | smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) ); |
277 | |
|
278 | 0 | if( psEncC->frame_length == 10 * psEncC->fs_kHz ) { |
279 | 0 | smooth_coef_Q16 >>= 1; |
280 | 0 | } |
281 | |
|
282 | 0 | for( b = 0; b < VAD_N_BANDS; b++ ) { |
283 | | /* compute smoothed energy-to-noise ratio per band */ |
284 | 0 | psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ], |
285 | 0 | NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 ); |
286 | | |
287 | | /* signal to noise ratio in dB per band */ |
288 | 0 | SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 ); |
289 | | /* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */ |
290 | 0 | psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) ); |
291 | 0 | } |
292 | |
|
293 | 0 | RESTORE_STACK; |
294 | 0 | return( ret ); |
295 | 0 | } |
296 | | |
297 | | /**************************/ |
298 | | /* Noise level estimation */ |
299 | | /**************************/ |
300 | | # if !defined(OPUS_X86_MAY_HAVE_SSE4_1) |
301 | | static OPUS_INLINE |
302 | | #endif |
303 | | void silk_VAD_GetNoiseLevels( |
304 | | const opus_int32 pX[ VAD_N_BANDS ], /* I subband energies */ |
305 | | silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */ |
306 | | ) |
307 | 0 | { |
308 | 0 | opus_int k; |
309 | 0 | opus_int32 nl, nrg, inv_nrg; |
310 | 0 | opus_int coef, min_coef; |
311 | | |
312 | | /* Initially faster smoothing */ |
313 | 0 | if( psSilk_VAD->counter < 1000 ) { /* 1000 = 20 sec */ |
314 | 0 | min_coef = silk_DIV32_16( silk_int16_MAX, silk_RSHIFT( psSilk_VAD->counter, 4 ) + 1 ); |
315 | | /* Increment frame counter */ |
316 | 0 | psSilk_VAD->counter++; |
317 | 0 | } else { |
318 | 0 | min_coef = 0; |
319 | 0 | } |
320 | |
|
321 | 0 | for( k = 0; k < VAD_N_BANDS; k++ ) { |
322 | | /* Get old noise level estimate for current band */ |
323 | 0 | nl = psSilk_VAD->NL[ k ]; |
324 | 0 | silk_assert( nl >= 0 ); |
325 | | |
326 | | /* Add bias */ |
327 | 0 | nrg = silk_ADD_POS_SAT32( pX[ k ], psSilk_VAD->NoiseLevelBias[ k ] ); |
328 | 0 | silk_assert( nrg > 0 ); |
329 | | |
330 | | /* Invert energies */ |
331 | 0 | inv_nrg = silk_DIV32( silk_int32_MAX, nrg ); |
332 | 0 | silk_assert( inv_nrg >= 0 ); |
333 | | |
334 | | /* Less update when subband energy is high */ |
335 | 0 | if( nrg > silk_LSHIFT( nl, 3 ) ) { |
336 | 0 | coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 >> 3; |
337 | 0 | } else if( nrg < nl ) { |
338 | 0 | coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16; |
339 | 0 | } else { |
340 | 0 | coef = silk_SMULWB( silk_SMULWW( inv_nrg, nl ), VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 << 1 ); |
341 | 0 | } |
342 | | |
343 | | /* Initially faster smoothing */ |
344 | 0 | coef = silk_max_int( coef, min_coef ); |
345 | | |
346 | | /* Smooth inverse energies */ |
347 | 0 | psSilk_VAD->inv_NL[ k ] = silk_SMLAWB( psSilk_VAD->inv_NL[ k ], inv_nrg - psSilk_VAD->inv_NL[ k ], coef ); |
348 | 0 | silk_assert( psSilk_VAD->inv_NL[ k ] >= 0 ); |
349 | | |
350 | | /* Compute noise level by inverting again */ |
351 | 0 | nl = silk_DIV32( silk_int32_MAX, psSilk_VAD->inv_NL[ k ] ); |
352 | 0 | silk_assert( nl >= 0 ); |
353 | | |
354 | | /* Limit noise levels (guarantee 7 bits of head room) */ |
355 | 0 | nl = silk_min( nl, 0x00FFFFFF ); |
356 | | |
357 | | /* Store as part of state */ |
358 | 0 | psSilk_VAD->NL[ k ] = nl; |
359 | 0 | } |
360 | 0 | } |