/src/opus/silk/encode_pulses.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*********************************************************************** |
2 | | Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
3 | | Redistribution and use in source and binary forms, with or without |
4 | | modification, are permitted provided that the following conditions |
5 | | are met: |
6 | | - Redistributions of source code must retain the above copyright notice, |
7 | | this list of conditions and the following disclaimer. |
8 | | - Redistributions in binary form must reproduce the above copyright |
9 | | notice, this list of conditions and the following disclaimer in the |
10 | | documentation and/or other materials provided with the distribution. |
11 | | - Neither the name of Internet Society, IETF or IETF Trust, nor the |
12 | | names of specific contributors, may be used to endorse or promote |
13 | | products derived from this software without specific prior written |
14 | | permission. |
15 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
16 | | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
17 | | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
18 | | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
19 | | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
20 | | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
21 | | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
22 | | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
23 | | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
24 | | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
25 | | POSSIBILITY OF SUCH DAMAGE. |
26 | | ***********************************************************************/ |
27 | | |
28 | | #ifdef HAVE_CONFIG_H |
29 | | #include "config.h" |
30 | | #endif |
31 | | |
32 | | #include "main.h" |
33 | | #include "stack_alloc.h" |
34 | | |
35 | | /*********************************************/ |
36 | | /* Encode quantization indices of excitation */ |
37 | | /*********************************************/ |
38 | | |
39 | | static OPUS_INLINE opus_int combine_and_check( /* return ok */ |
40 | | opus_int *pulses_comb, /* O */ |
41 | | const opus_int *pulses_in, /* I */ |
42 | | opus_int max_pulses, /* I max value for sum of pulses */ |
43 | | opus_int len /* I number of output values */ |
44 | | ) |
45 | 0 | { |
46 | 0 | opus_int k, sum; |
47 | |
|
48 | 0 | for( k = 0; k < len; k++ ) { |
49 | 0 | sum = pulses_in[ 2 * k ] + pulses_in[ 2 * k + 1 ]; |
50 | 0 | if( sum > max_pulses ) { |
51 | 0 | return 1; |
52 | 0 | } |
53 | 0 | pulses_comb[ k ] = sum; |
54 | 0 | } |
55 | | |
56 | 0 | return 0; |
57 | 0 | } |
58 | | |
59 | | /* Encode quantization indices of excitation */ |
60 | | void silk_encode_pulses( |
61 | | ec_enc *psRangeEnc, /* I/O compressor data structure */ |
62 | | const opus_int signalType, /* I Signal type */ |
63 | | const opus_int quantOffsetType, /* I quantOffsetType */ |
64 | | opus_int8 pulses[], /* I quantization indices */ |
65 | | const opus_int frame_length /* I Frame length */ |
66 | | ) |
67 | 0 | { |
68 | 0 | opus_int i, k, j, iter, bit, nLS, scale_down, RateLevelIndex = 0; |
69 | 0 | opus_int32 abs_q, minSumBits_Q5, sumBits_Q5; |
70 | 0 | VARDECL( opus_int, abs_pulses ); |
71 | 0 | VARDECL( opus_int, sum_pulses ); |
72 | 0 | VARDECL( opus_int, nRshifts ); |
73 | 0 | opus_int pulses_comb[ 8 ]; |
74 | 0 | opus_int *abs_pulses_ptr; |
75 | 0 | const opus_int8 *pulses_ptr; |
76 | 0 | const opus_uint8 *cdf_ptr; |
77 | 0 | const opus_uint8 *nBits_ptr; |
78 | 0 | SAVE_STACK; |
79 | |
|
80 | 0 | silk_memset( pulses_comb, 0, 8 * sizeof( opus_int ) ); /* Fixing Valgrind reported problem*/ |
81 | | |
82 | | /****************************/ |
83 | | /* Prepare for shell coding */ |
84 | | /****************************/ |
85 | | /* Calculate number of shell blocks */ |
86 | 0 | silk_assert( 1 << LOG2_SHELL_CODEC_FRAME_LENGTH == SHELL_CODEC_FRAME_LENGTH ); |
87 | 0 | iter = silk_RSHIFT( frame_length, LOG2_SHELL_CODEC_FRAME_LENGTH ); |
88 | 0 | if( iter * SHELL_CODEC_FRAME_LENGTH < frame_length ) { |
89 | 0 | celt_assert( frame_length == 12 * 10 ); /* Make sure only happens for 10 ms @ 12 kHz */ |
90 | 0 | iter++; |
91 | 0 | silk_memset( &pulses[ frame_length ], 0, SHELL_CODEC_FRAME_LENGTH * sizeof(opus_int8)); |
92 | 0 | } |
93 | | |
94 | | /* Take the absolute value of the pulses */ |
95 | 0 | ALLOC( abs_pulses, iter * SHELL_CODEC_FRAME_LENGTH, opus_int ); |
96 | 0 | silk_assert( !( SHELL_CODEC_FRAME_LENGTH & 3 ) ); |
97 | 0 | for( i = 0; i < iter * SHELL_CODEC_FRAME_LENGTH; i+=4 ) { |
98 | 0 | abs_pulses[i+0] = ( opus_int )silk_abs( pulses[ i + 0 ] ); |
99 | 0 | abs_pulses[i+1] = ( opus_int )silk_abs( pulses[ i + 1 ] ); |
100 | 0 | abs_pulses[i+2] = ( opus_int )silk_abs( pulses[ i + 2 ] ); |
101 | 0 | abs_pulses[i+3] = ( opus_int )silk_abs( pulses[ i + 3 ] ); |
102 | 0 | } |
103 | | |
104 | | /* Calc sum pulses per shell code frame */ |
105 | 0 | ALLOC( sum_pulses, iter, opus_int ); |
106 | 0 | ALLOC( nRshifts, iter, opus_int ); |
107 | 0 | abs_pulses_ptr = abs_pulses; |
108 | 0 | for( i = 0; i < iter; i++ ) { |
109 | 0 | nRshifts[ i ] = 0; |
110 | |
|
111 | 0 | while( 1 ) { |
112 | | /* 1+1 -> 2 */ |
113 | 0 | scale_down = combine_and_check( pulses_comb, abs_pulses_ptr, silk_max_pulses_table[ 0 ], 8 ); |
114 | | /* 2+2 -> 4 */ |
115 | 0 | scale_down += combine_and_check( pulses_comb, pulses_comb, silk_max_pulses_table[ 1 ], 4 ); |
116 | | /* 4+4 -> 8 */ |
117 | 0 | scale_down += combine_and_check( pulses_comb, pulses_comb, silk_max_pulses_table[ 2 ], 2 ); |
118 | | /* 8+8 -> 16 */ |
119 | 0 | scale_down += combine_and_check( &sum_pulses[ i ], pulses_comb, silk_max_pulses_table[ 3 ], 1 ); |
120 | |
|
121 | 0 | if( scale_down ) { |
122 | | /* We need to downscale the quantization signal */ |
123 | 0 | nRshifts[ i ]++; |
124 | 0 | for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) { |
125 | 0 | abs_pulses_ptr[ k ] = silk_RSHIFT( abs_pulses_ptr[ k ], 1 ); |
126 | 0 | } |
127 | 0 | } else { |
128 | | /* Jump out of while(1) loop and go to next shell coding frame */ |
129 | 0 | break; |
130 | 0 | } |
131 | 0 | } |
132 | 0 | abs_pulses_ptr += SHELL_CODEC_FRAME_LENGTH; |
133 | 0 | } |
134 | | |
135 | | /**************/ |
136 | | /* Rate level */ |
137 | | /**************/ |
138 | | /* find rate level that leads to fewest bits for coding of pulses per block info */ |
139 | 0 | minSumBits_Q5 = silk_int32_MAX; |
140 | 0 | for( k = 0; k < N_RATE_LEVELS - 1; k++ ) { |
141 | 0 | nBits_ptr = silk_pulses_per_block_BITS_Q5[ k ]; |
142 | 0 | sumBits_Q5 = silk_rate_levels_BITS_Q5[ signalType >> 1 ][ k ]; |
143 | 0 | for( i = 0; i < iter; i++ ) { |
144 | 0 | if( nRshifts[ i ] > 0 ) { |
145 | 0 | sumBits_Q5 += nBits_ptr[ SILK_MAX_PULSES + 1 ]; |
146 | 0 | } else { |
147 | 0 | sumBits_Q5 += nBits_ptr[ sum_pulses[ i ] ]; |
148 | 0 | } |
149 | 0 | } |
150 | 0 | if( sumBits_Q5 < minSumBits_Q5 ) { |
151 | 0 | minSumBits_Q5 = sumBits_Q5; |
152 | 0 | RateLevelIndex = k; |
153 | 0 | } |
154 | 0 | } |
155 | 0 | ec_enc_icdf( psRangeEnc, RateLevelIndex, silk_rate_levels_iCDF[ signalType >> 1 ], 8 ); |
156 | | |
157 | | /***************************************************/ |
158 | | /* Sum-Weighted-Pulses Encoding */ |
159 | | /***************************************************/ |
160 | 0 | cdf_ptr = silk_pulses_per_block_iCDF[ RateLevelIndex ]; |
161 | 0 | for( i = 0; i < iter; i++ ) { |
162 | 0 | if( nRshifts[ i ] == 0 ) { |
163 | 0 | ec_enc_icdf( psRangeEnc, sum_pulses[ i ], cdf_ptr, 8 ); |
164 | 0 | } else { |
165 | 0 | ec_enc_icdf( psRangeEnc, SILK_MAX_PULSES + 1, cdf_ptr, 8 ); |
166 | 0 | for( k = 0; k < nRshifts[ i ] - 1; k++ ) { |
167 | 0 | ec_enc_icdf( psRangeEnc, SILK_MAX_PULSES + 1, silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1 ], 8 ); |
168 | 0 | } |
169 | 0 | ec_enc_icdf( psRangeEnc, sum_pulses[ i ], silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1 ], 8 ); |
170 | 0 | } |
171 | 0 | } |
172 | | |
173 | | /******************/ |
174 | | /* Shell Encoding */ |
175 | | /******************/ |
176 | 0 | for( i = 0; i < iter; i++ ) { |
177 | 0 | if( sum_pulses[ i ] > 0 ) { |
178 | 0 | silk_shell_encoder( psRangeEnc, &abs_pulses[ i * SHELL_CODEC_FRAME_LENGTH ] ); |
179 | 0 | } |
180 | 0 | } |
181 | | |
182 | | /****************/ |
183 | | /* LSB Encoding */ |
184 | | /****************/ |
185 | 0 | for( i = 0; i < iter; i++ ) { |
186 | 0 | if( nRshifts[ i ] > 0 ) { |
187 | 0 | pulses_ptr = &pulses[ i * SHELL_CODEC_FRAME_LENGTH ]; |
188 | 0 | nLS = nRshifts[ i ] - 1; |
189 | 0 | for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) { |
190 | 0 | abs_q = (opus_int8)silk_abs( pulses_ptr[ k ] ); |
191 | 0 | for( j = nLS; j > 0; j-- ) { |
192 | 0 | bit = silk_RSHIFT( abs_q, j ) & 1; |
193 | 0 | ec_enc_icdf( psRangeEnc, bit, silk_lsb_iCDF, 8 ); |
194 | 0 | } |
195 | 0 | bit = abs_q & 1; |
196 | 0 | ec_enc_icdf( psRangeEnc, bit, silk_lsb_iCDF, 8 ); |
197 | 0 | } |
198 | 0 | } |
199 | 0 | } |
200 | | |
201 | | /****************/ |
202 | | /* Encode signs */ |
203 | | /****************/ |
204 | 0 | silk_encode_signs( psRangeEnc, pulses, frame_length, signalType, quantOffsetType, sum_pulses ); |
205 | 0 | RESTORE_STACK; |
206 | 0 | } |