Coverage Report

Created: 2024-09-06 07:53

/src/opus/silk/encode_pulses.c
Line
Count
Source (jump to first uncovered line)
1
/***********************************************************************
2
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3
Redistribution and use in source and binary forms, with or without
4
modification, are permitted provided that the following conditions
5
are met:
6
- Redistributions of source code must retain the above copyright notice,
7
this list of conditions and the following disclaimer.
8
- Redistributions in binary form must reproduce the above copyright
9
notice, this list of conditions and the following disclaimer in the
10
documentation and/or other materials provided with the distribution.
11
- Neither the name of Internet Society, IETF or IETF Trust, nor the
12
names of specific contributors, may be used to endorse or promote
13
products derived from this software without specific prior written
14
permission.
15
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25
POSSIBILITY OF SUCH DAMAGE.
26
***********************************************************************/
27
28
#ifdef HAVE_CONFIG_H
29
#include "config.h"
30
#endif
31
32
#include "main.h"
33
#include "stack_alloc.h"
34
35
/*********************************************/
36
/* Encode quantization indices of excitation */
37
/*********************************************/
38
39
static OPUS_INLINE opus_int combine_and_check(    /* return ok                           */
40
    opus_int         *pulses_comb,           /* O                                   */
41
    const opus_int   *pulses_in,             /* I                                   */
42
    opus_int         max_pulses,             /* I    max value for sum of pulses    */
43
    opus_int         len                     /* I    number of output values        */
44
)
45
0
{
46
0
    opus_int k, sum;
47
48
0
    for( k = 0; k < len; k++ ) {
49
0
        sum = pulses_in[ 2 * k ] + pulses_in[ 2 * k + 1 ];
50
0
        if( sum > max_pulses ) {
51
0
            return 1;
52
0
        }
53
0
        pulses_comb[ k ] = sum;
54
0
    }
55
56
0
    return 0;
57
0
}
58
59
/* Encode quantization indices of excitation */
60
void silk_encode_pulses(
61
    ec_enc                      *psRangeEnc,                    /* I/O  compressor data structure                   */
62
    const opus_int              signalType,                     /* I    Signal type                                 */
63
    const opus_int              quantOffsetType,                /* I    quantOffsetType                             */
64
    opus_int8                   pulses[],                       /* I    quantization indices                        */
65
    const opus_int              frame_length                    /* I    Frame length                                */
66
)
67
0
{
68
0
    opus_int   i, k, j, iter, bit, nLS, scale_down, RateLevelIndex = 0;
69
0
    opus_int32 abs_q, minSumBits_Q5, sumBits_Q5;
70
0
    VARDECL( opus_int, abs_pulses );
71
0
    VARDECL( opus_int, sum_pulses );
72
0
    VARDECL( opus_int, nRshifts );
73
0
    opus_int   pulses_comb[ 8 ];
74
0
    opus_int   *abs_pulses_ptr;
75
0
    const opus_int8 *pulses_ptr;
76
0
    const opus_uint8 *cdf_ptr;
77
0
    const opus_uint8 *nBits_ptr;
78
0
    SAVE_STACK;
79
80
0
    silk_memset( pulses_comb, 0, 8 * sizeof( opus_int ) ); /* Fixing Valgrind reported problem*/
81
82
    /****************************/
83
    /* Prepare for shell coding */
84
    /****************************/
85
    /* Calculate number of shell blocks */
86
0
    silk_assert( 1 << LOG2_SHELL_CODEC_FRAME_LENGTH == SHELL_CODEC_FRAME_LENGTH );
87
0
    iter = silk_RSHIFT( frame_length, LOG2_SHELL_CODEC_FRAME_LENGTH );
88
0
    if( iter * SHELL_CODEC_FRAME_LENGTH < frame_length ) {
89
0
        celt_assert( frame_length == 12 * 10 ); /* Make sure only happens for 10 ms @ 12 kHz */
90
0
        iter++;
91
0
        silk_memset( &pulses[ frame_length ], 0, SHELL_CODEC_FRAME_LENGTH * sizeof(opus_int8));
92
0
    }
93
94
    /* Take the absolute value of the pulses */
95
0
    ALLOC( abs_pulses, iter * SHELL_CODEC_FRAME_LENGTH, opus_int );
96
0
    silk_assert( !( SHELL_CODEC_FRAME_LENGTH & 3 ) );
97
0
    for( i = 0; i < iter * SHELL_CODEC_FRAME_LENGTH; i+=4 ) {
98
0
        abs_pulses[i+0] = ( opus_int )silk_abs( pulses[ i + 0 ] );
99
0
        abs_pulses[i+1] = ( opus_int )silk_abs( pulses[ i + 1 ] );
100
0
        abs_pulses[i+2] = ( opus_int )silk_abs( pulses[ i + 2 ] );
101
0
        abs_pulses[i+3] = ( opus_int )silk_abs( pulses[ i + 3 ] );
102
0
    }
103
104
    /* Calc sum pulses per shell code frame */
105
0
    ALLOC( sum_pulses, iter, opus_int );
106
0
    ALLOC( nRshifts, iter, opus_int );
107
0
    abs_pulses_ptr = abs_pulses;
108
0
    for( i = 0; i < iter; i++ ) {
109
0
        nRshifts[ i ] = 0;
110
111
0
        while( 1 ) {
112
            /* 1+1 -> 2 */
113
0
            scale_down = combine_and_check( pulses_comb, abs_pulses_ptr, silk_max_pulses_table[ 0 ], 8 );
114
            /* 2+2 -> 4 */
115
0
            scale_down += combine_and_check( pulses_comb, pulses_comb, silk_max_pulses_table[ 1 ], 4 );
116
            /* 4+4 -> 8 */
117
0
            scale_down += combine_and_check( pulses_comb, pulses_comb, silk_max_pulses_table[ 2 ], 2 );
118
            /* 8+8 -> 16 */
119
0
            scale_down += combine_and_check( &sum_pulses[ i ], pulses_comb, silk_max_pulses_table[ 3 ], 1 );
120
121
0
            if( scale_down ) {
122
                /* We need to downscale the quantization signal */
123
0
                nRshifts[ i ]++;
124
0
                for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) {
125
0
                    abs_pulses_ptr[ k ] = silk_RSHIFT( abs_pulses_ptr[ k ], 1 );
126
0
                }
127
0
            } else {
128
                /* Jump out of while(1) loop and go to next shell coding frame */
129
0
                break;
130
0
            }
131
0
        }
132
0
        abs_pulses_ptr += SHELL_CODEC_FRAME_LENGTH;
133
0
    }
134
135
    /**************/
136
    /* Rate level */
137
    /**************/
138
    /* find rate level that leads to fewest bits for coding of pulses per block info */
139
0
    minSumBits_Q5 = silk_int32_MAX;
140
0
    for( k = 0; k < N_RATE_LEVELS - 1; k++ ) {
141
0
        nBits_ptr  = silk_pulses_per_block_BITS_Q5[ k ];
142
0
        sumBits_Q5 = silk_rate_levels_BITS_Q5[ signalType >> 1 ][ k ];
143
0
        for( i = 0; i < iter; i++ ) {
144
0
            if( nRshifts[ i ] > 0 ) {
145
0
                sumBits_Q5 += nBits_ptr[ SILK_MAX_PULSES + 1 ];
146
0
            } else {
147
0
                sumBits_Q5 += nBits_ptr[ sum_pulses[ i ] ];
148
0
            }
149
0
        }
150
0
        if( sumBits_Q5 < minSumBits_Q5 ) {
151
0
            minSumBits_Q5 = sumBits_Q5;
152
0
            RateLevelIndex = k;
153
0
        }
154
0
    }
155
0
    ec_enc_icdf( psRangeEnc, RateLevelIndex, silk_rate_levels_iCDF[ signalType >> 1 ], 8 );
156
157
    /***************************************************/
158
    /* Sum-Weighted-Pulses Encoding                    */
159
    /***************************************************/
160
0
    cdf_ptr = silk_pulses_per_block_iCDF[ RateLevelIndex ];
161
0
    for( i = 0; i < iter; i++ ) {
162
0
        if( nRshifts[ i ] == 0 ) {
163
0
            ec_enc_icdf( psRangeEnc, sum_pulses[ i ], cdf_ptr, 8 );
164
0
        } else {
165
0
            ec_enc_icdf( psRangeEnc, SILK_MAX_PULSES + 1, cdf_ptr, 8 );
166
0
            for( k = 0; k < nRshifts[ i ] - 1; k++ ) {
167
0
                ec_enc_icdf( psRangeEnc, SILK_MAX_PULSES + 1, silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1 ], 8 );
168
0
            }
169
0
            ec_enc_icdf( psRangeEnc, sum_pulses[ i ], silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1 ], 8 );
170
0
        }
171
0
    }
172
173
    /******************/
174
    /* Shell Encoding */
175
    /******************/
176
0
    for( i = 0; i < iter; i++ ) {
177
0
        if( sum_pulses[ i ] > 0 ) {
178
0
            silk_shell_encoder( psRangeEnc, &abs_pulses[ i * SHELL_CODEC_FRAME_LENGTH ] );
179
0
        }
180
0
    }
181
182
    /****************/
183
    /* LSB Encoding */
184
    /****************/
185
0
    for( i = 0; i < iter; i++ ) {
186
0
        if( nRshifts[ i ] > 0 ) {
187
0
            pulses_ptr = &pulses[ i * SHELL_CODEC_FRAME_LENGTH ];
188
0
            nLS = nRshifts[ i ] - 1;
189
0
            for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) {
190
0
                abs_q = (opus_int8)silk_abs( pulses_ptr[ k ] );
191
0
                for( j = nLS; j > 0; j-- ) {
192
0
                    bit = silk_RSHIFT( abs_q, j ) & 1;
193
0
                    ec_enc_icdf( psRangeEnc, bit, silk_lsb_iCDF, 8 );
194
0
                }
195
0
                bit = abs_q & 1;
196
0
                ec_enc_icdf( psRangeEnc, bit, silk_lsb_iCDF, 8 );
197
0
            }
198
0
        }
199
0
    }
200
201
    /****************/
202
    /* Encode signs */
203
    /****************/
204
0
    silk_encode_signs( psRangeEnc, pulses, frame_length, signalType, quantOffsetType, sum_pulses );
205
0
    RESTORE_STACK;
206
0
}