/src/opus/silk/float/noise_shape_analysis_FLP.c
Line | Count | Source (jump to first uncovered line) |
1 | | /*********************************************************************** |
2 | | Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
3 | | Redistribution and use in source and binary forms, with or without |
4 | | modification, are permitted provided that the following conditions |
5 | | are met: |
6 | | - Redistributions of source code must retain the above copyright notice, |
7 | | this list of conditions and the following disclaimer. |
8 | | - Redistributions in binary form must reproduce the above copyright |
9 | | notice, this list of conditions and the following disclaimer in the |
10 | | documentation and/or other materials provided with the distribution. |
11 | | - Neither the name of Internet Society, IETF or IETF Trust, nor the |
12 | | names of specific contributors, may be used to endorse or promote |
13 | | products derived from this software without specific prior written |
14 | | permission. |
15 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
16 | | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
17 | | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
18 | | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
19 | | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
20 | | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
21 | | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
22 | | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
23 | | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
24 | | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
25 | | POSSIBILITY OF SUCH DAMAGE. |
26 | | ***********************************************************************/ |
27 | | |
28 | | #ifdef HAVE_CONFIG_H |
29 | | #include "config.h" |
30 | | #endif |
31 | | |
32 | | #include "main_FLP.h" |
33 | | #include "tuning_parameters.h" |
34 | | |
35 | | /* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */ |
36 | | /* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */ |
37 | | /* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */ |
38 | | /* coefficient in an array of coefficients, for monic filters. */ |
39 | | static OPUS_INLINE silk_float warped_gain( |
40 | | const silk_float *coefs, |
41 | | silk_float lambda, |
42 | | opus_int order |
43 | 0 | ) { |
44 | 0 | opus_int i; |
45 | 0 | silk_float gain; |
46 | |
|
47 | 0 | lambda = -lambda; |
48 | 0 | gain = coefs[ order - 1 ]; |
49 | 0 | for( i = order - 2; i >= 0; i-- ) { |
50 | 0 | gain = lambda * gain + coefs[ i ]; |
51 | 0 | } |
52 | 0 | return (silk_float)( 1.0f / ( 1.0f - lambda * gain ) ); |
53 | 0 | } |
54 | | |
55 | | /* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */ |
56 | | /* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */ |
57 | | static OPUS_INLINE void warped_true2monic_coefs( |
58 | | silk_float *coefs, |
59 | | silk_float lambda, |
60 | | silk_float limit, |
61 | | opus_int order |
62 | 0 | ) { |
63 | 0 | opus_int i, iter, ind = 0; |
64 | 0 | silk_float tmp, maxabs, chirp, gain; |
65 | | |
66 | | /* Convert to monic coefficients */ |
67 | 0 | for( i = order - 1; i > 0; i-- ) { |
68 | 0 | coefs[ i - 1 ] -= lambda * coefs[ i ]; |
69 | 0 | } |
70 | 0 | gain = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs[ 0 ] ); |
71 | 0 | for( i = 0; i < order; i++ ) { |
72 | 0 | coefs[ i ] *= gain; |
73 | 0 | } |
74 | | |
75 | | /* Limit */ |
76 | 0 | for( iter = 0; iter < 10; iter++ ) { |
77 | | /* Find maximum absolute value */ |
78 | 0 | maxabs = -1.0f; |
79 | 0 | for( i = 0; i < order; i++ ) { |
80 | 0 | tmp = silk_abs_float( coefs[ i ] ); |
81 | 0 | if( tmp > maxabs ) { |
82 | 0 | maxabs = tmp; |
83 | 0 | ind = i; |
84 | 0 | } |
85 | 0 | } |
86 | 0 | if( maxabs <= limit ) { |
87 | | /* Coefficients are within range - done */ |
88 | 0 | return; |
89 | 0 | } |
90 | | |
91 | | /* Convert back to true warped coefficients */ |
92 | 0 | for( i = 1; i < order; i++ ) { |
93 | 0 | coefs[ i - 1 ] += lambda * coefs[ i ]; |
94 | 0 | } |
95 | 0 | gain = 1.0f / gain; |
96 | 0 | for( i = 0; i < order; i++ ) { |
97 | 0 | coefs[ i ] *= gain; |
98 | 0 | } |
99 | | |
100 | | /* Apply bandwidth expansion */ |
101 | 0 | chirp = 0.99f - ( 0.8f + 0.1f * iter ) * ( maxabs - limit ) / ( maxabs * ( ind + 1 ) ); |
102 | 0 | silk_bwexpander_FLP( coefs, order, chirp ); |
103 | | |
104 | | /* Convert to monic warped coefficients */ |
105 | 0 | for( i = order - 1; i > 0; i-- ) { |
106 | 0 | coefs[ i - 1 ] -= lambda * coefs[ i ]; |
107 | 0 | } |
108 | 0 | gain = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs[ 0 ] ); |
109 | 0 | for( i = 0; i < order; i++ ) { |
110 | 0 | coefs[ i ] *= gain; |
111 | 0 | } |
112 | 0 | } |
113 | 0 | silk_assert( 0 ); |
114 | 0 | } |
115 | | |
116 | | static OPUS_INLINE void limit_coefs( |
117 | | silk_float *coefs, |
118 | | silk_float limit, |
119 | | opus_int order |
120 | 0 | ) { |
121 | 0 | opus_int i, iter, ind = 0; |
122 | 0 | silk_float tmp, maxabs, chirp; |
123 | |
|
124 | 0 | for( iter = 0; iter < 10; iter++ ) { |
125 | | /* Find maximum absolute value */ |
126 | 0 | maxabs = -1.0f; |
127 | 0 | for( i = 0; i < order; i++ ) { |
128 | 0 | tmp = silk_abs_float( coefs[ i ] ); |
129 | 0 | if( tmp > maxabs ) { |
130 | 0 | maxabs = tmp; |
131 | 0 | ind = i; |
132 | 0 | } |
133 | 0 | } |
134 | 0 | if( maxabs <= limit ) { |
135 | | /* Coefficients are within range - done */ |
136 | 0 | return; |
137 | 0 | } |
138 | | |
139 | | /* Apply bandwidth expansion */ |
140 | 0 | chirp = 0.99f - ( 0.8f + 0.1f * iter ) * ( maxabs - limit ) / ( maxabs * ( ind + 1 ) ); |
141 | 0 | silk_bwexpander_FLP( coefs, order, chirp ); |
142 | 0 | } |
143 | 0 | silk_assert( 0 ); |
144 | 0 | } |
145 | | |
146 | | /* Compute noise shaping coefficients and initial gain values */ |
147 | | void silk_noise_shape_analysis_FLP( |
148 | | silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ |
149 | | silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */ |
150 | | const silk_float *pitch_res, /* I LPC residual from pitch analysis */ |
151 | | const silk_float *x /* I Input signal [frame_length + la_shape] */ |
152 | | ) |
153 | 0 | { |
154 | 0 | silk_shape_state_FLP *psShapeSt = &psEnc->sShape; |
155 | 0 | opus_int k, nSamples, nSegs; |
156 | 0 | silk_float SNR_adj_dB, HarmShapeGain, Tilt; |
157 | 0 | silk_float nrg, log_energy, log_energy_prev, energy_variation; |
158 | 0 | silk_float BWExp, gain_mult, gain_add, strength, b, warping; |
159 | 0 | silk_float x_windowed[ SHAPE_LPC_WIN_MAX ]; |
160 | 0 | silk_float auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ]; |
161 | 0 | silk_float rc[ MAX_SHAPE_LPC_ORDER + 1 ]; |
162 | 0 | const silk_float *x_ptr, *pitch_res_ptr; |
163 | | |
164 | | /* Point to start of first LPC analysis block */ |
165 | 0 | x_ptr = x - psEnc->sCmn.la_shape; |
166 | | |
167 | | /****************/ |
168 | | /* GAIN CONTROL */ |
169 | | /****************/ |
170 | 0 | SNR_adj_dB = psEnc->sCmn.SNR_dB_Q7 * ( 1 / 128.0f ); |
171 | | |
172 | | /* Input quality is the average of the quality in the lowest two VAD bands */ |
173 | 0 | psEncCtrl->input_quality = 0.5f * ( psEnc->sCmn.input_quality_bands_Q15[ 0 ] + psEnc->sCmn.input_quality_bands_Q15[ 1 ] ) * ( 1.0f / 32768.0f ); |
174 | | |
175 | | /* Coding quality level, between 0.0 and 1.0 */ |
176 | 0 | psEncCtrl->coding_quality = silk_sigmoid( 0.25f * ( SNR_adj_dB - 20.0f ) ); |
177 | |
|
178 | 0 | if( psEnc->sCmn.useCBR == 0 ) { |
179 | | /* Reduce coding SNR during low speech activity */ |
180 | 0 | b = 1.0f - psEnc->sCmn.speech_activity_Q8 * ( 1.0f / 256.0f ); |
181 | 0 | SNR_adj_dB -= BG_SNR_DECR_dB * psEncCtrl->coding_quality * ( 0.5f + 0.5f * psEncCtrl->input_quality ) * b * b; |
182 | 0 | } |
183 | |
|
184 | 0 | if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
185 | | /* Reduce gains for periodic signals */ |
186 | 0 | SNR_adj_dB += HARM_SNR_INCR_dB * psEnc->LTPCorr; |
187 | 0 | } else { |
188 | | /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */ |
189 | 0 | SNR_adj_dB += ( -0.4f * psEnc->sCmn.SNR_dB_Q7 * ( 1 / 128.0f ) + 6.0f ) * ( 1.0f - psEncCtrl->input_quality ); |
190 | 0 | } |
191 | | |
192 | | /*************************/ |
193 | | /* SPARSENESS PROCESSING */ |
194 | | /*************************/ |
195 | | /* Set quantizer offset */ |
196 | 0 | if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
197 | | /* Initially set to 0; may be overruled in process_gains(..) */ |
198 | 0 | psEnc->sCmn.indices.quantOffsetType = 0; |
199 | 0 | } else { |
200 | | /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */ |
201 | 0 | nSamples = 2 * psEnc->sCmn.fs_kHz; |
202 | 0 | energy_variation = 0.0f; |
203 | 0 | log_energy_prev = 0.0f; |
204 | 0 | pitch_res_ptr = pitch_res; |
205 | 0 | nSegs = silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; |
206 | 0 | for( k = 0; k < nSegs; k++ ) { |
207 | 0 | nrg = ( silk_float )nSamples + ( silk_float )silk_energy_FLP( pitch_res_ptr, nSamples ); |
208 | 0 | log_energy = silk_log2( nrg ); |
209 | 0 | if( k > 0 ) { |
210 | 0 | energy_variation += silk_abs_float( log_energy - log_energy_prev ); |
211 | 0 | } |
212 | 0 | log_energy_prev = log_energy; |
213 | 0 | pitch_res_ptr += nSamples; |
214 | 0 | } |
215 | | |
216 | | /* Set quantization offset depending on sparseness measure */ |
217 | 0 | if( energy_variation > ENERGY_VARIATION_THRESHOLD_QNT_OFFSET * (nSegs-1) ) { |
218 | 0 | psEnc->sCmn.indices.quantOffsetType = 0; |
219 | 0 | } else { |
220 | 0 | psEnc->sCmn.indices.quantOffsetType = 1; |
221 | 0 | } |
222 | 0 | } |
223 | | |
224 | | /*******************************/ |
225 | | /* Control bandwidth expansion */ |
226 | | /*******************************/ |
227 | | /* More BWE for signals with high prediction gain */ |
228 | 0 | strength = FIND_PITCH_WHITE_NOISE_FRACTION * psEncCtrl->predGain; /* between 0.0 and 1.0 */ |
229 | 0 | BWExp = BANDWIDTH_EXPANSION / ( 1.0f + strength * strength ); |
230 | | |
231 | | /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ |
232 | 0 | warping = (silk_float)psEnc->sCmn.warping_Q16 / 65536.0f + 0.01f * psEncCtrl->coding_quality; |
233 | | |
234 | | /********************************************/ |
235 | | /* Compute noise shaping AR coefs and gains */ |
236 | | /********************************************/ |
237 | 0 | for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
238 | | /* Apply window: sine slope followed by flat part followed by cosine slope */ |
239 | 0 | opus_int shift, slope_part, flat_part; |
240 | 0 | flat_part = psEnc->sCmn.fs_kHz * 3; |
241 | 0 | slope_part = ( psEnc->sCmn.shapeWinLength - flat_part ) / 2; |
242 | |
|
243 | 0 | silk_apply_sine_window_FLP( x_windowed, x_ptr, 1, slope_part ); |
244 | 0 | shift = slope_part; |
245 | 0 | silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(silk_float) ); |
246 | 0 | shift += flat_part; |
247 | 0 | silk_apply_sine_window_FLP( x_windowed + shift, x_ptr + shift, 2, slope_part ); |
248 | | |
249 | | /* Update pointer: next LPC analysis block */ |
250 | 0 | x_ptr += psEnc->sCmn.subfr_length; |
251 | |
|
252 | 0 | if( psEnc->sCmn.warping_Q16 > 0 ) { |
253 | | /* Calculate warped auto correlation */ |
254 | 0 | silk_warped_autocorrelation_FLP( auto_corr, x_windowed, warping, |
255 | 0 | psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder ); |
256 | 0 | } else { |
257 | | /* Calculate regular auto correlation */ |
258 | 0 | silk_autocorrelation_FLP( auto_corr, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, psEnc->sCmn.arch ); |
259 | 0 | } |
260 | | |
261 | | /* Add white noise, as a fraction of energy */ |
262 | 0 | auto_corr[ 0 ] += auto_corr[ 0 ] * SHAPE_WHITE_NOISE_FRACTION + 1.0f; |
263 | | |
264 | | /* Convert correlations to prediction coefficients, and compute residual energy */ |
265 | 0 | nrg = silk_schur_FLP( rc, auto_corr, psEnc->sCmn.shapingLPCOrder ); |
266 | 0 | silk_k2a_FLP( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], rc, psEnc->sCmn.shapingLPCOrder ); |
267 | 0 | psEncCtrl->Gains[ k ] = ( silk_float )sqrt( nrg ); |
268 | |
|
269 | 0 | if( psEnc->sCmn.warping_Q16 > 0 ) { |
270 | | /* Adjust gain for warping */ |
271 | 0 | psEncCtrl->Gains[ k ] *= warped_gain( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], warping, psEnc->sCmn.shapingLPCOrder ); |
272 | 0 | } |
273 | | |
274 | | /* Bandwidth expansion for synthesis filter shaping */ |
275 | 0 | silk_bwexpander_FLP( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp ); |
276 | |
|
277 | 0 | if( psEnc->sCmn.warping_Q16 > 0 ) { |
278 | | /* Convert to monic warped prediction coefficients and limit absolute values */ |
279 | 0 | warped_true2monic_coefs( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], warping, 3.999f, psEnc->sCmn.shapingLPCOrder ); |
280 | 0 | } else { |
281 | | /* Limit absolute values */ |
282 | 0 | limit_coefs( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], 3.999f, psEnc->sCmn.shapingLPCOrder ); |
283 | 0 | } |
284 | 0 | } |
285 | | |
286 | | /*****************/ |
287 | | /* Gain tweaking */ |
288 | | /*****************/ |
289 | | /* Increase gains during low speech activity */ |
290 | 0 | gain_mult = (silk_float)pow( 2.0f, -0.16f * SNR_adj_dB ); |
291 | 0 | gain_add = (silk_float)pow( 2.0f, 0.16f * MIN_QGAIN_DB ); |
292 | 0 | for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
293 | 0 | psEncCtrl->Gains[ k ] *= gain_mult; |
294 | 0 | psEncCtrl->Gains[ k ] += gain_add; |
295 | 0 | } |
296 | | |
297 | | /************************************************/ |
298 | | /* Control low-frequency shaping and noise tilt */ |
299 | | /************************************************/ |
300 | | /* Less low frequency shaping for noisy inputs */ |
301 | 0 | strength = LOW_FREQ_SHAPING * ( 1.0f + LOW_QUALITY_LOW_FREQ_SHAPING_DECR * ( psEnc->sCmn.input_quality_bands_Q15[ 0 ] * ( 1.0f / 32768.0f ) - 1.0f ) ); |
302 | 0 | strength *= psEnc->sCmn.speech_activity_Q8 * ( 1.0f / 256.0f ); |
303 | 0 | if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
304 | | /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */ |
305 | | /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/ |
306 | 0 | for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
307 | 0 | b = 0.2f / psEnc->sCmn.fs_kHz + 3.0f / psEncCtrl->pitchL[ k ]; |
308 | 0 | psEncCtrl->LF_MA_shp[ k ] = -1.0f + b; |
309 | 0 | psEncCtrl->LF_AR_shp[ k ] = 1.0f - b - b * strength; |
310 | 0 | } |
311 | 0 | Tilt = - HP_NOISE_COEF - |
312 | 0 | (1 - HP_NOISE_COEF) * HARM_HP_NOISE_COEF * psEnc->sCmn.speech_activity_Q8 * ( 1.0f / 256.0f ); |
313 | 0 | } else { |
314 | 0 | b = 1.3f / psEnc->sCmn.fs_kHz; |
315 | 0 | psEncCtrl->LF_MA_shp[ 0 ] = -1.0f + b; |
316 | 0 | psEncCtrl->LF_AR_shp[ 0 ] = 1.0f - b - b * strength * 0.6f; |
317 | 0 | for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) { |
318 | 0 | psEncCtrl->LF_MA_shp[ k ] = psEncCtrl->LF_MA_shp[ 0 ]; |
319 | 0 | psEncCtrl->LF_AR_shp[ k ] = psEncCtrl->LF_AR_shp[ 0 ]; |
320 | 0 | } |
321 | 0 | Tilt = -HP_NOISE_COEF; |
322 | 0 | } |
323 | | |
324 | | /****************************/ |
325 | | /* HARMONIC SHAPING CONTROL */ |
326 | | /****************************/ |
327 | 0 | if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
328 | | /* Harmonic noise shaping */ |
329 | 0 | HarmShapeGain = HARMONIC_SHAPING; |
330 | | |
331 | | /* More harmonic noise shaping for high bitrates or noisy input */ |
332 | 0 | HarmShapeGain += HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING * |
333 | 0 | ( 1.0f - ( 1.0f - psEncCtrl->coding_quality ) * psEncCtrl->input_quality ); |
334 | | |
335 | | /* Less harmonic noise shaping for less periodic signals */ |
336 | 0 | HarmShapeGain *= ( silk_float )sqrt( psEnc->LTPCorr ); |
337 | 0 | } else { |
338 | 0 | HarmShapeGain = 0.0f; |
339 | 0 | } |
340 | | |
341 | | /*************************/ |
342 | | /* Smooth over subframes */ |
343 | | /*************************/ |
344 | 0 | for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
345 | 0 | psShapeSt->HarmShapeGain_smth += SUBFR_SMTH_COEF * ( HarmShapeGain - psShapeSt->HarmShapeGain_smth ); |
346 | 0 | psEncCtrl->HarmShapeGain[ k ] = psShapeSt->HarmShapeGain_smth; |
347 | 0 | psShapeSt->Tilt_smth += SUBFR_SMTH_COEF * ( Tilt - psShapeSt->Tilt_smth ); |
348 | 0 | psEncCtrl->Tilt[ k ] = psShapeSt->Tilt_smth; |
349 | 0 | } |
350 | 0 | } |