Coverage Report

Created: 2024-09-06 07:53

/src/opus/silk/float/wrappers_FLP.c
Line
Count
Source (jump to first uncovered line)
1
/***********************************************************************
2
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3
Redistribution and use in source and binary forms, with or without
4
modification, are permitted provided that the following conditions
5
are met:
6
- Redistributions of source code must retain the above copyright notice,
7
this list of conditions and the following disclaimer.
8
- Redistributions in binary form must reproduce the above copyright
9
notice, this list of conditions and the following disclaimer in the
10
documentation and/or other materials provided with the distribution.
11
- Neither the name of Internet Society, IETF or IETF Trust, nor the
12
names of specific contributors, may be used to endorse or promote
13
products derived from this software without specific prior written
14
permission.
15
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25
POSSIBILITY OF SUCH DAMAGE.
26
***********************************************************************/
27
28
#ifdef HAVE_CONFIG_H
29
#include "config.h"
30
#endif
31
32
#include "main_FLP.h"
33
34
/* Wrappers. Calls flp / fix code */
35
36
/* Convert AR filter coefficients to NLSF parameters */
37
void silk_A2NLSF_FLP(
38
    opus_int16                      *NLSF_Q15,                          /* O    NLSF vector      [ LPC_order ]              */
39
    const silk_float                *pAR,                               /* I    LPC coefficients [ LPC_order ]              */
40
    const opus_int                  LPC_order                           /* I    LPC order                                   */
41
)
42
0
{
43
0
    opus_int   i;
44
0
    opus_int32 a_fix_Q16[ MAX_LPC_ORDER ];
45
46
0
    for( i = 0; i < LPC_order; i++ ) {
47
0
        a_fix_Q16[ i ] = silk_float2int( pAR[ i ] * 65536.0f );
48
0
    }
49
50
0
    silk_A2NLSF( NLSF_Q15, a_fix_Q16, LPC_order );
51
0
}
52
53
/* Convert LSF parameters to AR prediction filter coefficients */
54
void silk_NLSF2A_FLP(
55
    silk_float                      *pAR,                               /* O    LPC coefficients [ LPC_order ]              */
56
    const opus_int16                *NLSF_Q15,                          /* I    NLSF vector      [ LPC_order ]              */
57
    const opus_int                  LPC_order,                          /* I    LPC order                                   */
58
    int                             arch                                /* I    Run-time architecture                       */
59
)
60
0
{
61
0
    opus_int   i;
62
0
    opus_int16 a_fix_Q12[ MAX_LPC_ORDER ];
63
64
0
    silk_NLSF2A( a_fix_Q12, NLSF_Q15, LPC_order, arch );
65
66
0
    for( i = 0; i < LPC_order; i++ ) {
67
0
        pAR[ i ] = ( silk_float )a_fix_Q12[ i ] * ( 1.0f / 4096.0f );
68
0
    }
69
0
}
70
71
/******************************************/
72
/* Floating-point NLSF processing wrapper */
73
/******************************************/
74
void silk_process_NLSFs_FLP(
75
    silk_encoder_state              *psEncC,                            /* I/O  Encoder state                               */
76
    silk_float                      PredCoef[ 2 ][ MAX_LPC_ORDER ],     /* O    Prediction coefficients                     */
77
    opus_int16                      NLSF_Q15[      MAX_LPC_ORDER ],     /* I/O  Normalized LSFs (quant out) (0 - (2^15-1))  */
78
    const opus_int16                prev_NLSF_Q15[ MAX_LPC_ORDER ]      /* I    Previous Normalized LSFs (0 - (2^15-1))     */
79
)
80
0
{
81
0
    opus_int     i, j;
82
0
    opus_int16   PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ];
83
84
0
    silk_process_NLSFs( psEncC, PredCoef_Q12, NLSF_Q15, prev_NLSF_Q15);
85
86
0
    for( j = 0; j < 2; j++ ) {
87
0
        for( i = 0; i < psEncC->predictLPCOrder; i++ ) {
88
0
            PredCoef[ j ][ i ] = ( silk_float )PredCoef_Q12[ j ][ i ] * ( 1.0f / 4096.0f );
89
0
        }
90
0
    }
91
0
}
92
93
/****************************************/
94
/* Floating-point Silk NSQ wrapper      */
95
/****************************************/
96
void silk_NSQ_wrapper_FLP(
97
    silk_encoder_state_FLP          *psEnc,                             /* I/O  Encoder state FLP                           */
98
    silk_encoder_control_FLP        *psEncCtrl,                         /* I/O  Encoder control FLP                         */
99
    SideInfoIndices                 *psIndices,                         /* I/O  Quantization indices                        */
100
    silk_nsq_state                  *psNSQ,                             /* I/O  Noise Shaping Quantzation state             */
101
    opus_int8                       pulses[],                           /* O    Quantized pulse signal                      */
102
    const silk_float                x[]                                 /* I    Prefiltered input signal                    */
103
)
104
0
{
105
0
    opus_int     i, j;
106
0
    opus_int16   x16[ MAX_FRAME_LENGTH ];
107
0
    opus_int32   Gains_Q16[ MAX_NB_SUBFR ];
108
0
    silk_DWORD_ALIGN opus_int16 PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ];
109
0
    opus_int16   LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ];
110
0
    opus_int     LTP_scale_Q14;
111
112
    /* Noise shaping parameters */
113
0
    opus_int16   AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ];
114
0
    opus_int32   LF_shp_Q14[ MAX_NB_SUBFR ];         /* Packs two int16 coefficients per int32 value             */
115
0
    opus_int     Lambda_Q10;
116
0
    opus_int     Tilt_Q14[ MAX_NB_SUBFR ];
117
0
    opus_int     HarmShapeGain_Q14[ MAX_NB_SUBFR ];
118
119
    /* Convert control struct to fix control struct */
120
    /* Noise shape parameters */
121
0
    for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
122
0
        for( j = 0; j < psEnc->sCmn.shapingLPCOrder; j++ ) {
123
0
            AR_Q13[ i * MAX_SHAPE_LPC_ORDER + j ] = silk_float2int( psEncCtrl->AR[ i * MAX_SHAPE_LPC_ORDER + j ] * 8192.0f );
124
0
        }
125
0
    }
126
127
0
    for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
128
0
        LF_shp_Q14[ i ] =   silk_LSHIFT32( silk_float2int( psEncCtrl->LF_AR_shp[ i ]     * 16384.0f ), 16 ) |
129
0
                              (opus_uint16)silk_float2int( psEncCtrl->LF_MA_shp[ i ]     * 16384.0f );
130
0
        Tilt_Q14[ i ]   =        (opus_int)silk_float2int( psEncCtrl->Tilt[ i ]          * 16384.0f );
131
0
        HarmShapeGain_Q14[ i ] = (opus_int)silk_float2int( psEncCtrl->HarmShapeGain[ i ] * 16384.0f );
132
0
    }
133
0
    Lambda_Q10 = ( opus_int )silk_float2int( psEncCtrl->Lambda * 1024.0f );
134
135
    /* prediction and coding parameters */
136
0
    for( i = 0; i < psEnc->sCmn.nb_subfr * LTP_ORDER; i++ ) {
137
0
        LTPCoef_Q14[ i ] = (opus_int16)silk_float2int( psEncCtrl->LTPCoef[ i ] * 16384.0f );
138
0
    }
139
140
0
    for( j = 0; j < 2; j++ ) {
141
0
        for( i = 0; i < psEnc->sCmn.predictLPCOrder; i++ ) {
142
0
            PredCoef_Q12[ j ][ i ] = (opus_int16)silk_float2int( psEncCtrl->PredCoef[ j ][ i ] * 4096.0f );
143
0
        }
144
0
    }
145
146
0
    for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
147
0
        Gains_Q16[ i ] = silk_float2int( psEncCtrl->Gains[ i ] * 65536.0f );
148
0
        silk_assert( Gains_Q16[ i ] > 0 );
149
0
    }
150
151
0
    if( psIndices->signalType == TYPE_VOICED ) {
152
0
        LTP_scale_Q14 = silk_LTPScales_table_Q14[ psIndices->LTP_scaleIndex ];
153
0
    } else {
154
0
        LTP_scale_Q14 = 0;
155
0
    }
156
157
    /* Convert input to fix */
158
0
    for( i = 0; i < psEnc->sCmn.frame_length; i++ ) {
159
0
        x16[ i ] = silk_float2int( x[ i ] );
160
0
    }
161
162
    /* Call NSQ */
163
0
    if( psEnc->sCmn.nStatesDelayedDecision > 1 || psEnc->sCmn.warping_Q16 > 0 ) {
164
0
        silk_NSQ_del_dec( &psEnc->sCmn, psNSQ, psIndices, x16, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14,
165
0
            AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14, psEnc->sCmn.arch );
166
0
    } else {
167
0
        silk_NSQ( &psEnc->sCmn, psNSQ, psIndices, x16, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14,
168
0
            AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14, psEnc->sCmn.arch );
169
0
    }
170
0
}
171
172
/***********************************************/
173
/* Floating-point Silk LTP quantiation wrapper */
174
/***********************************************/
175
void silk_quant_LTP_gains_FLP(
176
    silk_float                      B[ MAX_NB_SUBFR * LTP_ORDER ],      /* O    Quantized LTP gains                            */
177
    opus_int8                       cbk_index[ MAX_NB_SUBFR ],          /* O    Codebook index                              */
178
    opus_int8                       *periodicity_index,                 /* O    Periodicity index                           */
179
    opus_int32                      *sum_log_gain_Q7,                   /* I/O  Cumulative max prediction gain  */
180
    silk_float                      *pred_gain_dB,                        /* O    LTP prediction gain                            */
181
    const silk_float                XX[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I    Correlation matrix                    */
182
    const silk_float                xX[ MAX_NB_SUBFR * LTP_ORDER ],        /* I    Correlation vector                            */
183
    const opus_int                    subfr_len,                            /* I    Number of samples per subframe                */
184
    const opus_int                    nb_subfr,                           /* I    Number of subframes                            */
185
    int                             arch                                /* I    Run-time architecture                       */
186
)
187
0
{
188
0
    opus_int   i, pred_gain_dB_Q7;
189
0
    opus_int16 B_Q14[ MAX_NB_SUBFR * LTP_ORDER ];
190
0
    opus_int32 XX_Q17[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ];
191
0
    opus_int32 xX_Q17[ MAX_NB_SUBFR * LTP_ORDER ];
192
193
0
    i = 0;
194
0
    do {
195
0
        XX_Q17[ i ] = (opus_int32)silk_float2int( XX[ i ] * 131072.0f );
196
0
    } while ( ++i < nb_subfr * LTP_ORDER * LTP_ORDER );
197
0
    i = 0;
198
0
    do {
199
0
        xX_Q17[ i ] = (opus_int32)silk_float2int( xX[ i ] * 131072.0f );
200
0
    } while ( ++i < nb_subfr * LTP_ORDER );
201
202
0
    silk_quant_LTP_gains( B_Q14, cbk_index, periodicity_index, sum_log_gain_Q7, &pred_gain_dB_Q7, XX_Q17, xX_Q17, subfr_len, nb_subfr, arch );
203
204
0
    for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) {
205
0
        B[ i ] = (silk_float)B_Q14[ i ] * ( 1.0f / 16384.0f );
206
0
    }
207
208
0
    *pred_gain_dB = (silk_float)pred_gain_dB_Q7 * ( 1.0f / 128.0f );
209
0
}