Coverage Report

Created: 2024-09-06 07:53

/src/opus/silk/x86/NSQ_del_dec_avx2.c
Line
Count
Source (jump to first uncovered line)
1
/***********************************************************************
2
Copyright (c) 2021 Google Inc.
3
Redistribution and use in source and binary forms, with or without
4
modification, are permitted provided that the following conditions
5
are met:
6
- Redistributions of source code must retain the above copyright notice,
7
this list of conditions and the following disclaimer.
8
- Redistributions in binary form must reproduce the above copyright
9
notice, this list of conditions and the following disclaimer in the
10
documentation and/or other materials provided with the distribution.
11
- Neither the name of Internet Society, IETF or IETF Trust, nor the
12
names of specific contributors, may be used to endorse or promote
13
products derived from this software without specific prior written
14
permission.
15
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25
POSSIBILITY OF SUCH DAMAGE.
26
***********************************************************************/
27
28
#ifdef HAVE_CONFIG_H
29
#include "config.h"
30
#endif
31
32
#ifdef OPUS_CHECK_ASM
33
#include <string.h>
34
#endif
35
36
#include "opus_defines.h"
37
#include <immintrin.h>
38
39
#include "main.h"
40
#include "stack_alloc.h"
41
#include "NSQ.h"
42
#include "celt/x86/x86cpu.h"
43
44
/* Returns TRUE if all assumptions met */
45
static OPUS_INLINE int verify_assumptions(const silk_encoder_state *psEncC)
46
0
{
47
    /* This optimization is based on these assumptions        */
48
    /* These assumptions are fundamental and hence assert are */
49
    /* used. Should any assert triggers, we have to re-visit  */
50
    /* all related code to make sure it still functions the   */
51
    /* same as the C implementation.                          */
52
0
    silk_assert(MAX_DEL_DEC_STATES  <= 4      &&
53
0
                MAX_FRAME_LENGTH     % 4 == 0 &&
54
0
                MAX_SUB_FRAME_LENGTH % 4 == 0 &&
55
0
                LTP_MEM_LENGTH_MS    % 4 == 0 );
56
0
    silk_assert(psEncC->fs_kHz ==  8 ||
57
0
                psEncC->fs_kHz == 12 ||
58
0
                psEncC->fs_kHz == 16 );
59
0
    silk_assert(psEncC->nb_subfr <= MAX_NB_SUBFR &&
60
0
                psEncC->nb_subfr > 0             );
61
0
    silk_assert(psEncC->nStatesDelayedDecision <= MAX_DEL_DEC_STATES &&
62
0
                psEncC->nStatesDelayedDecision > 0                   );
63
0
    silk_assert(psEncC->ltp_mem_length == psEncC->fs_kHz * LTP_MEM_LENGTH_MS);
64
65
    /* Regressions were observed on certain AMD Zen CPUs when      */
66
    /* nStatesDelayedDecision is 1 or 2. Ideally we should detect  */
67
    /* these CPUs and enable this optimization on others; however, */
68
    /* there is no good way to do so under current OPUS framework. */
69
0
    return psEncC->nStatesDelayedDecision == 3 ||
70
0
           psEncC->nStatesDelayedDecision == 4;
71
0
}
72
73
/* Intrinsics not defined on MSVC */
74
#ifdef _MSC_VER
75
#include <Intsafe.h>
76
static inline int __builtin_sadd_overflow(opus_int32 a, opus_int32 b, opus_int32* res)
77
{
78
    *res = a+b;
79
    return (*res ^ a) & (*res ^ b) & 0x80000000;
80
}
81
static inline int __builtin_ctz(unsigned int x)
82
{
83
    DWORD res = 0;
84
    return _BitScanForward(&res, x) ? res : 32;
85
}
86
#endif
87
88
static OPUS_INLINE __m128i silk_cvtepi64_epi32_high(__m256i num)
89
0
{
90
0
    return _mm256_castsi256_si128(_mm256_permutevar8x32_epi32(num, _mm256_set_epi32(0, 0, 0, 0, 7, 5, 3, 1)));
91
0
}
92
93
static OPUS_INLINE opus_int16 silk_sat16(opus_int32 num)
94
0
{
95
0
    num = num > silk_int16_MAX ? silk_int16_MAX : num;
96
0
    num = num < silk_int16_MIN ? silk_int16_MIN : num;
97
0
    return num;
98
0
}
99
100
static OPUS_INLINE opus_int32 silk_sar_round_32(opus_int32 a, int bits)
101
0
{
102
0
    silk_assert(bits > 0 && bits < 31);
103
0
    a += 1 << (bits-1);
104
0
    return a >> bits;
105
0
}
106
107
static OPUS_INLINE opus_int64 silk_sar_round_smulww(opus_int32 a, opus_int32 b, int bits)
108
0
{
109
0
    silk_assert(bits > 0 && bits < 63);
110
#ifdef OPUS_CHECK_ASM
111
    return silk_RSHIFT_ROUND(silk_SMULWW(a, b), bits);
112
#else
113
    /* This code is more correct, but it won't overflow like the C code in some rare cases. */
114
0
    silk_assert(bits > 0 && bits < 63);
115
0
    opus_int64 t = ((opus_int64)a) * ((opus_int64)b);
116
0
    bits += 16;
117
0
    t += 1ull << (bits-1);
118
0
    return t >> bits;
119
0
#endif
120
0
}
121
122
static OPUS_INLINE opus_int32 silk_add_sat32(opus_int32 a, opus_int32 b)
123
0
{
124
0
    opus_int32 sum;
125
0
    if (__builtin_sadd_overflow(a, b, &sum))
126
0
    {
127
0
        return a >= 0 ? silk_int32_MAX : silk_int32_MIN;
128
0
    }
129
0
    return sum;
130
0
}
131
132
static OPUS_INLINE __m128i silk_mm_srai_round_epi32(__m128i a, int bits)
133
0
{
134
0
    silk_assert(bits > 0 && bits < 31);
135
0
    return _mm_srai_epi32(_mm_add_epi32(a, _mm_set1_epi32(1 << (bits - 1))), bits);
136
0
}
137
138
/* add/subtract with output saturated */
139
static OPUS_INLINE __m128i silk_mm_add_sat_epi32(__m128i a, __m128i b)
140
0
{
141
0
    __m128i r = _mm_add_epi32(a, b);
142
0
    __m128i OF = _mm_and_si128(_mm_xor_si128(a, r), _mm_xor_si128(b, r));           /* OF = (sum ^ a) & (sum ^ b)   */
143
0
    __m128i SAT = _mm_add_epi32(_mm_srli_epi32(a, 31), _mm_set1_epi32(0x7FFFFFFF)); /* SAT = (a >> 31) + 0x7FFFFFFF */
144
0
    return _mm_blendv_epi8(r, SAT, _mm_srai_epi32(OF, 31));
145
0
}
146
static OPUS_INLINE __m128i silk_mm_sub_sat_epi32(__m128i a, __m128i b)
147
0
{
148
0
    __m128i r = _mm_sub_epi32(a, b);
149
0
    __m128i OF = _mm_andnot_si128(_mm_xor_si128(b, r), _mm_xor_si128(a, r));        /* OF = (sum ^ a) & (sum ^ ~b) = (sum ^ a) & ~(sum ^ b) */
150
0
    __m128i SAT = _mm_add_epi32(_mm_srli_epi32(a, 31), _mm_set1_epi32(0x7FFFFFFF)); /* SAT = (a >> 31) + 0x7FFFFFFF                         */
151
0
    return _mm_blendv_epi8(r, SAT, _mm_srai_epi32(OF, 31));
152
0
}
153
static OPUS_INLINE __m256i silk_mm256_sub_sat_epi32(__m256i a, __m256i b)
154
0
{
155
0
    __m256i r = _mm256_sub_epi32(a, b);
156
0
    __m256i OF = _mm256_andnot_si256(_mm256_xor_si256(b, r), _mm256_xor_si256(a, r));        /* OF = (sum ^ a) & (sum ^ ~b) = (sum ^ a) & ~(sum ^ b) */
157
0
    __m256i SAT = _mm256_add_epi32(_mm256_srli_epi32(a, 31), _mm256_set1_epi32(0x7FFFFFFF)); /* SAT = (a >> 31) + 0x7FFFFFFF                         */
158
0
    return _mm256_blendv_epi8(r, SAT, _mm256_srai_epi32(OF, 31));
159
0
}
160
161
static OPUS_INLINE __m128i silk_mm_limit_epi32(__m128i num, opus_int32 limit1, opus_int32 limit2)
162
0
{
163
0
    opus_int32 lo = limit1 < limit2 ? limit1 : limit2;
164
0
    opus_int32 hi = limit1 > limit2 ? limit1 : limit2;
165
166
0
    num = _mm_min_epi32(num, _mm_set1_epi32(hi));
167
0
    num = _mm_max_epi32(num, _mm_set1_epi32(lo));
168
0
    return num;
169
0
}
170
171
/* cond < 0 ? -num : num */
172
static OPUS_INLINE __m128i silk_mm_sign_epi32(__m128i num, __m128i cond)
173
0
{
174
0
    return _mm_sign_epi32(num, _mm_or_si128(cond, _mm_set1_epi32(1)));
175
0
}
176
static OPUS_INLINE __m256i silk_mm256_sign_epi32(__m256i num, __m256i cond)
177
0
{
178
0
    return _mm256_sign_epi32(num, _mm256_or_si256(cond, _mm256_set1_epi32(1)));
179
0
}
180
181
/* (a32 * b32) >> 16 */
182
static OPUS_INLINE __m128i silk_mm_smulww_epi32(__m128i a, opus_int32 b)
183
0
{
184
0
    return silk_cvtepi64_epi32_high(_mm256_slli_epi64(_mm256_mul_epi32(_mm256_cvtepi32_epi64(a), _mm256_set1_epi32(b)), 16));
185
0
}
186
187
/* (a32 * (opus_int32)((opus_int16)(b32))) >> 16 output have to be 32bit int */
188
static OPUS_INLINE __m128i silk_mm_smulwb_epi32(__m128i a, opus_int32 b)
189
0
{
190
0
    return silk_cvtepi64_epi32_high(_mm256_mul_epi32(_mm256_cvtepi32_epi64(a), _mm256_set1_epi32(silk_LSHIFT(b, 16))));
191
0
}
192
193
/* (opus_int32)((opus_int16)(a3))) * (opus_int32)((opus_int16)(b32)) output have to be 32bit int */
194
static OPUS_INLINE __m256i silk_mm256_smulbb_epi32(__m256i a, __m256i b)
195
0
{
196
0
    const char FF = (char)0xFF;
197
0
    __m256i msk = _mm256_set_epi8(
198
0
        FF, FF, FF, FF, FF, FF, FF, FF, 13, 12, 9, 8, 5, 4, 1, 0,
199
0
        FF, FF, FF, FF, FF, FF, FF, FF, 13, 12, 9, 8, 5, 4, 1, 0);
200
0
    __m256i lo = _mm256_mullo_epi16(a, b);
201
0
    __m256i hi = _mm256_mulhi_epi16(a, b);
202
0
    lo = _mm256_shuffle_epi8(lo, msk);
203
0
    hi = _mm256_shuffle_epi8(hi, msk);
204
0
    return _mm256_unpacklo_epi16(lo, hi);
205
0
}
206
207
static OPUS_INLINE __m256i silk_mm256_reverse_epi32(__m256i v)
208
0
{
209
0
    v = _mm256_shuffle_epi32(v, 0x1B);
210
0
    v = _mm256_permute4x64_epi64(v, 0x4E);
211
0
    return v;
212
0
}
213
214
static OPUS_INLINE opus_int32 silk_mm256_hsum_epi32(__m256i v)
215
0
{
216
0
    __m128i sum = _mm_add_epi32(_mm256_extracti128_si256(v, 1), _mm256_extracti128_si256(v, 0));
217
0
    sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E));
218
0
    sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1));
219
0
    return _mm_cvtsi128_si32(sum);
220
0
}
221
222
static OPUS_INLINE __m128i silk_mm_hmin_epi32(__m128i num)
223
0
{
224
0
    num = _mm_min_epi32(num, _mm_shuffle_epi32(num, 0x4E)); /* 0123 -> 2301 */
225
0
    num = _mm_min_epi32(num, _mm_shuffle_epi32(num, 0xB1)); /* 0123 -> 1032 */
226
0
    return num;
227
0
}
228
229
static OPUS_INLINE __m128i silk_mm_hmax_epi32(__m128i num)
230
0
{
231
0
    num = _mm_max_epi32(num, _mm_shuffle_epi32(num, 0x4E)); /* 0123 -> 2310 */
232
0
    num = _mm_max_epi32(num, _mm_shuffle_epi32(num, 0xB1)); /* 0123 -> 1032 */
233
0
    return num;
234
0
}
235
236
static OPUS_INLINE __m128i silk_mm_mask_hmin_epi32(__m128i num, __m128i mask)
237
0
{
238
0
    num = _mm_blendv_epi8(num, _mm_set1_epi32(silk_int32_MAX), mask);
239
0
    return silk_mm_hmin_epi32(num);
240
0
}
241
242
static OPUS_INLINE __m128i silk_mm_mask_hmax_epi32(__m128i num, __m128i mask)
243
0
{
244
0
    num = _mm_blendv_epi8(num, _mm_set1_epi32(silk_int32_MIN), mask);
245
0
    return silk_mm_hmax_epi32(num);
246
0
}
247
248
static OPUS_INLINE __m128i silk_mm256_rand_epi32(__m128i seed)
249
0
{
250
0
    seed = _mm_mullo_epi32(seed, _mm_set1_epi32(RAND_MULTIPLIER));
251
0
    seed = _mm_add_epi32(seed, _mm_set1_epi32(RAND_INCREMENT));
252
0
    return seed;
253
0
}
254
255
static OPUS_INLINE opus_int32 silk_index_of_first_equal_epi32(__m128i a, __m128i b)
256
0
{
257
0
    unsigned int mask = _mm_movemask_epi8(_mm_cmpeq_epi32(a, b)) & 0x1111;
258
0
    silk_assert(mask != 0);
259
0
    return __builtin_ctz(mask) >> 2;
260
0
}
261
262
static __m128i silk_index_to_selector(opus_int32 index)
263
0
{
264
0
    silk_assert(index < 4);
265
0
    index <<= 2;
266
0
    return _mm_set_epi8(
267
0
        index + 3, index + 2, index + 1, index + 0,
268
0
        index + 3, index + 2, index + 1, index + 0,
269
0
        index + 3, index + 2, index + 1, index + 0,
270
0
        index + 3, index + 2, index + 1, index + 0);
271
0
}
272
273
static opus_int32 silk_select_winner(__m128i num, __m128i selector)
274
0
{
275
0
    return _mm_cvtsi128_si32(_mm_shuffle_epi8(num, selector));
276
0
}
277
278
typedef struct
279
{
280
    __m128i RandState;
281
    __m128i Q_Q10;
282
    __m128i Xq_Q14;
283
    __m128i Pred_Q15;
284
    __m128i Shape_Q14;
285
} NSQ_del_dec_sample_struct;
286
287
typedef struct
288
{
289
    __m128i sLPC_Q14[MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH];
290
    __m128i LF_AR_Q14;
291
    __m128i Seed;
292
    __m128i SeedInit;
293
    __m128i RD_Q10;
294
    __m128i Diff_Q14;
295
    __m128i sAR2_Q14[MAX_SHAPE_LPC_ORDER];
296
    NSQ_del_dec_sample_struct Samples[DECISION_DELAY];
297
} NSQ_del_dec_struct;
298
299
static OPUS_INLINE void silk_nsq_del_dec_scale_states_avx2(
300
    const silk_encoder_state *psEncC,          /* I    Encoder State                   */
301
    silk_nsq_state *NSQ,                       /* I/O  NSQ state                       */
302
    NSQ_del_dec_struct *psDelDec,              /* I/O  Delayed decision states         */
303
    const opus_int16 x16[],                    /* I    Input                           */
304
    opus_int32 x_sc_Q10[MAX_SUB_FRAME_LENGTH], /* O    Input scaled with 1/Gain in Q10 */
305
    const opus_int16 sLTP[],                   /* I    Re-whitened LTP state in Q0     */
306
    opus_int32 sLTP_Q15[],                     /* O    LTP state matching scaled input */
307
    opus_int subfr,                            /* I    Subframe number                 */
308
    const opus_int LTP_scale_Q14,              /* I    LTP state scaling               */
309
    const opus_int32 Gains_Q16[MAX_NB_SUBFR],  /* I                                    */
310
    const opus_int pitchL[MAX_NB_SUBFR],       /* I    Pitch lag                       */
311
    const opus_int signal_type,                /* I    Signal type                     */
312
    const opus_int decisionDelay               /* I    Decision delay                  */
313
);
314
315
/*******************************************/
316
/* LPC analysis filter                     */
317
/* NB! State is kept internally and the    */
318
/* filter always starts with zero state    */
319
/* first d output samples are set to zero  */
320
/*******************************************/
321
static OPUS_INLINE void silk_LPC_analysis_filter_avx2(
322
    opus_int16                  *out,               /* O    Output signal                           */
323
    const opus_int16            *in,                /* I    Input signal                            */
324
    const opus_int16            *B,                 /* I    MA prediction coefficients, Q12 [order] */
325
    const opus_int32            len,                /* I    Signal length                           */
326
    const opus_int32            order               /* I    Filter order                            */
327
);
328
329
/******************************************/
330
/* Noise shape quantizer for one subframe */
331
/******************************************/
332
static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_avx2(
333
    silk_nsq_state *NSQ,                        /* I/O  NSQ state                          */
334
    NSQ_del_dec_struct psDelDec[],              /* I/O  Delayed decision states            */
335
    opus_int signalType,                        /* I    Signal type                        */
336
    const opus_int32 x_Q10[],                   /* I                                       */
337
    opus_int8 pulses[],                         /* O                                       */
338
    opus_int16 xq[],                            /* O                                       */
339
    opus_int32 sLTP_Q15[],                      /* I/O  LTP filter state                   */
340
    opus_int32 delayedGain_Q10[DECISION_DELAY], /* I/O  Gain delay buffer                  */
341
    const opus_int16 a_Q12[],                   /* I    Short term prediction coefs        */
342
    const opus_int16 b_Q14[],                   /* I    Long term prediction coefs         */
343
    const opus_int16 AR_shp_Q13[],              /* I    Noise shaping coefs                */
344
    opus_int lag,                               /* I    Pitch lag                          */
345
    opus_int32 HarmShapeFIRPacked_Q14,          /* I                                       */
346
    opus_int Tilt_Q14,                          /* I    Spectral tilt                      */
347
    opus_int32 LF_shp_Q14,                      /* I                                       */
348
    opus_int32 Gain_Q16,                        /* I                                       */
349
    opus_int Lambda_Q10,                        /* I                                       */
350
    opus_int offset_Q10,                        /* I                                       */
351
    opus_int length,                            /* I    Input length                       */
352
    opus_int subfr,                             /* I    Subframe number                    */
353
    opus_int shapingLPCOrder,                   /* I    Shaping LPC filter order           */
354
    opus_int predictLPCOrder,                   /* I    Prediction filter order            */
355
    opus_int warping_Q16,                       /* I                                       */
356
    __m128i MaskDelDec,                         /* I    Mask of states in decision tree    */
357
    opus_int *smpl_buf_idx,                     /* I/O  Index to newest samples in buffers */
358
    opus_int decisionDelay                      /* I                                       */
359
);
360
361
void silk_NSQ_del_dec_avx2(
362
    const silk_encoder_state *psEncC,                            /* I    Encoder State               */
363
    silk_nsq_state *NSQ,                                         /* I/O  NSQ state                   */
364
    SideInfoIndices *psIndices,                                  /* I/O  Quantization Indices        */
365
    const opus_int16 x16[],                                      /* I    Input                       */
366
    opus_int8 pulses[],                                          /* O    Quantized pulse signal      */
367
    const opus_int16 *PredCoef_Q12,                              /* I    Short term prediction coefs */
368
    const opus_int16 LTPCoef_Q14[LTP_ORDER * MAX_NB_SUBFR],      /* I    Long term prediction coefs  */
369
    const opus_int16 AR_Q13[MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER], /* I    Noise shaping coefs         */
370
    const opus_int HarmShapeGain_Q14[MAX_NB_SUBFR],              /* I    Long term shaping coefs     */
371
    const opus_int Tilt_Q14[MAX_NB_SUBFR],                       /* I    Spectral tilt               */
372
    const opus_int32 LF_shp_Q14[MAX_NB_SUBFR],                   /* I    Low frequency shaping coefs */
373
    const opus_int32 Gains_Q16[MAX_NB_SUBFR],                    /* I    Quantization step sizes     */
374
    const opus_int32 pitchL[MAX_NB_SUBFR],                       /* I    Pitch lags                  */
375
    const opus_int Lambda_Q10,                                   /* I    Rate/distortion tradeoff    */
376
    const opus_int LTP_scale_Q14                                 /* I    LTP state scaling           */
377
)
378
0
{
379
#ifdef OPUS_CHECK_ASM
380
    silk_nsq_state NSQ_c;
381
    SideInfoIndices psIndices_c;
382
    opus_int8 pulses_c[MAX_FRAME_LENGTH];
383
    const opus_int8 *const pulses_a = pulses;
384
385
    silk_memcpy(&NSQ_c, NSQ, sizeof(NSQ_c));
386
    silk_memcpy(&psIndices_c, psIndices, sizeof(psIndices_c));
387
    silk_memcpy(pulses_c, pulses, sizeof(pulses_c));
388
    silk_NSQ_del_dec_c(psEncC, &NSQ_c, &psIndices_c, x16, pulses_c, PredCoef_Q12, LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16,
389
                       pitchL, Lambda_Q10, LTP_scale_Q14);
390
#endif
391
392
0
    if (!verify_assumptions(psEncC))
393
0
    {
394
0
        silk_NSQ_del_dec_c(psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14);
395
0
        return;
396
0
    }
397
398
0
    opus_int i, k, lag, start_idx, LSF_interpolation_flag, Winner_ind, subfr;
399
0
    opus_int last_smple_idx, smpl_buf_idx, decisionDelay;
400
0
    const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13;
401
0
    opus_int16 *pxq;
402
0
    VARDECL(opus_int32, sLTP_Q15);
403
0
    VARDECL(opus_int16, sLTP);
404
0
    opus_int32 HarmShapeFIRPacked_Q14;
405
0
    opus_int offset_Q10;
406
0
    opus_int32 Gain_Q10;
407
0
    opus_int32 x_sc_Q10[MAX_SUB_FRAME_LENGTH];
408
0
    opus_int32 delayedGain_Q10[DECISION_DELAY];
409
0
    NSQ_del_dec_struct psDelDec = {0};
410
0
    NSQ_del_dec_sample_struct *psSample;
411
0
    __m128i RDmin_Q10, MaskDelDec, Winner_selector;
412
0
    SAVE_STACK;
413
414
0
    MaskDelDec = _mm_cvtepi8_epi32(_mm_cvtsi32_si128(0xFFFFFF00ul << ((psEncC->nStatesDelayedDecision - 1) << 3)));
415
416
    /* Set unvoiced lag to the previous one, overwrite later for voiced */
417
0
    lag = NSQ->lagPrev;
418
419
0
    silk_assert(NSQ->prev_gain_Q16 != 0);
420
0
    psDelDec.Seed = _mm_and_si128(
421
0
        _mm_add_epi32(_mm_set_epi32(3, 2, 1, 0), _mm_set1_epi32(psIndices->Seed)),
422
0
        _mm_set1_epi32(3));
423
0
    psDelDec.SeedInit = psDelDec.Seed;
424
0
    psDelDec.RD_Q10 = _mm_setzero_si128();
425
0
    psDelDec.LF_AR_Q14 = _mm_set1_epi32(NSQ->sLF_AR_shp_Q14);
426
0
    psDelDec.Diff_Q14 = _mm_set1_epi32(NSQ->sDiff_shp_Q14);
427
0
    psDelDec.Samples[0].Shape_Q14 = _mm_set1_epi32(NSQ->sLTP_shp_Q14[psEncC->ltp_mem_length - 1]);
428
0
    for (i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
429
0
    {
430
0
        psDelDec.sLPC_Q14[i] = _mm_set1_epi32(NSQ->sLPC_Q14[i]);
431
0
    }
432
0
    for (i = 0; i < MAX_SHAPE_LPC_ORDER; i++)
433
0
    {
434
0
        psDelDec.sAR2_Q14[i] = _mm_set1_epi32(NSQ->sAR2_Q14[i]);
435
0
    }
436
437
0
    offset_Q10 = silk_Quantization_Offsets_Q10[psIndices->signalType >> 1][psIndices->quantOffsetType];
438
0
    smpl_buf_idx = 0; /* index of oldest samples */
439
440
0
    decisionDelay = silk_min_int(DECISION_DELAY, psEncC->subfr_length);
441
442
    /* For voiced frames limit the decision delay to lower than the pitch lag */
443
0
    if (psIndices->signalType == TYPE_VOICED)
444
0
    {
445
0
        for (k = 0; k < psEncC->nb_subfr; k++)
446
0
        {
447
0
            decisionDelay = silk_min_int(decisionDelay, pitchL[k] - LTP_ORDER / 2 - 1);
448
0
        }
449
0
    }
450
0
    else
451
0
    {
452
0
        if (lag > 0)
453
0
        {
454
0
            decisionDelay = silk_min_int(decisionDelay, lag - LTP_ORDER / 2 - 1);
455
0
        }
456
0
    }
457
458
0
    if (psIndices->NLSFInterpCoef_Q2 == 4)
459
0
    {
460
0
        LSF_interpolation_flag = 0;
461
0
    }
462
0
    else
463
0
    {
464
0
        LSF_interpolation_flag = 1;
465
0
    }
466
467
0
    ALLOC(sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32);
468
0
    ALLOC(sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16);
469
    /* Set up pointers to start of sub frame */
470
0
    pxq = &NSQ->xq[psEncC->ltp_mem_length];
471
0
    NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length;
472
0
    NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
473
0
    subfr = 0;
474
0
    for (k = 0; k < psEncC->nb_subfr; k++)
475
0
    {
476
0
        A_Q12 = &PredCoef_Q12[((k >> 1) | (1 ^ LSF_interpolation_flag)) * MAX_LPC_ORDER];
477
0
        B_Q14 = &LTPCoef_Q14[k * LTP_ORDER];
478
0
        AR_shp_Q13 = &AR_Q13[k * MAX_SHAPE_LPC_ORDER];
479
480
        /* Noise shape parameters */
481
0
        silk_assert(HarmShapeGain_Q14[k] >= 0);
482
0
        HarmShapeFIRPacked_Q14  =                          silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
483
0
        HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );
484
485
0
        NSQ->rewhite_flag = 0;
486
0
        if (psIndices->signalType == TYPE_VOICED)
487
0
        {
488
            /* Voiced */
489
0
            lag = pitchL[k];
490
491
            /* Re-whitening */
492
0
            if ((k & (3 ^ (LSF_interpolation_flag << 1))) == 0)
493
0
            {
494
0
                if (k == 2)
495
0
                {
496
                    /* RESET DELAYED DECISIONS */
497
                    /* Find winner */
498
0
                    RDmin_Q10 = silk_mm_mask_hmin_epi32(psDelDec.RD_Q10, MaskDelDec);
499
0
                    Winner_ind = silk_index_of_first_equal_epi32(RDmin_Q10, psDelDec.RD_Q10);
500
0
                    Winner_selector = silk_index_to_selector(Winner_ind);
501
0
                    psDelDec.RD_Q10 = _mm_add_epi32(
502
0
                        psDelDec.RD_Q10,
503
0
                        _mm_blendv_epi8(
504
0
                            _mm_set1_epi32(silk_int32_MAX >> 4),
505
0
                            _mm_setzero_si128(),
506
0
                            _mm_cvtepi8_epi32(_mm_cvtsi32_si128(0xFFU << (unsigned)(Winner_ind << 3)))));
507
508
                    /* Copy final part of signals from winner state to output and long-term filter states */
509
0
                    last_smple_idx = smpl_buf_idx + decisionDelay;
510
0
                    for (i = 0; i < decisionDelay; i++)
511
0
                    {
512
0
                        last_smple_idx = (last_smple_idx + DECISION_DELAY - 1) % DECISION_DELAY;
513
0
                        psSample = &psDelDec.Samples[last_smple_idx];
514
0
                        pulses[i - decisionDelay] =
515
0
                            (opus_int8)silk_sar_round_32(silk_select_winner(psSample->Q_Q10, Winner_selector), 10);
516
0
                        pxq[i - decisionDelay] =
517
0
                            silk_sat16((opus_int32)silk_sar_round_smulww(silk_select_winner(psSample->Xq_Q14, Winner_selector), Gains_Q16[1], 14));
518
0
                        NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - decisionDelay + i] =
519
0
                            silk_select_winner(psSample->Shape_Q14, Winner_selector);
520
0
                    }
521
522
0
                    subfr = 0;
523
0
                }
524
525
                /* Rewhiten with new A coefs */
526
0
                start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
527
0
                silk_assert(start_idx > 0);
528
529
0
                silk_LPC_analysis_filter_avx2(&sLTP[start_idx], &NSQ->xq[start_idx + k * psEncC->subfr_length],
530
0
                                              A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder);
531
532
0
                NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
533
0
                NSQ->rewhite_flag = 1;
534
0
            }
535
0
        }
536
537
0
        silk_nsq_del_dec_scale_states_avx2(psEncC, NSQ, &psDelDec, x16, x_sc_Q10, sLTP, sLTP_Q15, k,
538
0
                                           LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType, decisionDelay);
539
540
0
        silk_noise_shape_quantizer_del_dec_avx2(NSQ, &psDelDec, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15,
541
0
                                                delayedGain_Q10, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[k], LF_shp_Q14[k],
542
0
                                                Gains_Q16[k], Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder,
543
0
                                                psEncC->predictLPCOrder, psEncC->warping_Q16, MaskDelDec, &smpl_buf_idx, decisionDelay);
544
545
0
        x16 += psEncC->subfr_length;
546
0
        pulses += psEncC->subfr_length;
547
0
        pxq += psEncC->subfr_length;
548
0
    }
549
550
    /* Find winner */
551
0
    RDmin_Q10 = silk_mm_mask_hmin_epi32(psDelDec.RD_Q10, MaskDelDec);
552
0
    Winner_selector = silk_index_to_selector(silk_index_of_first_equal_epi32(RDmin_Q10, psDelDec.RD_Q10));
553
554
    /* Copy final part of signals from winner state to output and long-term filter states */
555
0
    psIndices->Seed = silk_select_winner(psDelDec.SeedInit, Winner_selector);
556
0
    last_smple_idx = smpl_buf_idx + decisionDelay;
557
0
    Gain_Q10 = Gains_Q16[psEncC->nb_subfr - 1] >> 6;
558
0
    for (i = 0; i < decisionDelay; i++)
559
0
    {
560
0
        last_smple_idx = (last_smple_idx + DECISION_DELAY - 1) % DECISION_DELAY;
561
0
        psSample = &psDelDec.Samples[last_smple_idx];
562
563
0
        pulses[i - decisionDelay] =
564
0
            (opus_int8)silk_sar_round_32(silk_select_winner(psSample->Q_Q10, Winner_selector), 10);
565
0
        pxq[i - decisionDelay] =
566
0
            silk_sat16((opus_int32)silk_sar_round_smulww(silk_select_winner(psSample->Xq_Q14, Winner_selector), Gain_Q10, 8));
567
0
        NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - decisionDelay + i] =
568
0
            silk_select_winner(psSample->Shape_Q14, Winner_selector);
569
0
    }
570
0
    for (i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
571
0
    {
572
0
        NSQ->sLPC_Q14[i] = silk_select_winner(psDelDec.sLPC_Q14[i], Winner_selector);
573
0
    }
574
0
    for (i = 0; i < MAX_SHAPE_LPC_ORDER; i++)
575
0
    {
576
0
        NSQ->sAR2_Q14[i] = silk_select_winner(psDelDec.sAR2_Q14[i], Winner_selector);
577
0
    }
578
579
    /* Update states */
580
0
    NSQ->sLF_AR_shp_Q14 = silk_select_winner(psDelDec.LF_AR_Q14, Winner_selector);
581
0
    NSQ->sDiff_shp_Q14 = silk_select_winner(psDelDec.Diff_Q14, Winner_selector);
582
0
    NSQ->lagPrev = pitchL[psEncC->nb_subfr - 1];
583
584
    /* Save quantized speech signal */
585
0
    silk_memmove(NSQ->xq, &NSQ->xq[psEncC->frame_length], psEncC->ltp_mem_length * sizeof(opus_int16));
586
0
    silk_memmove(NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[psEncC->frame_length], psEncC->ltp_mem_length * sizeof(opus_int32));
587
588
#ifdef OPUS_CHECK_ASM
589
    silk_assert(!memcmp(&NSQ_c, NSQ, sizeof(NSQ_c)));
590
    silk_assert(!memcmp(&psIndices_c, psIndices, sizeof(psIndices_c)));
591
    silk_assert(!memcmp(pulses_c, pulses_a, sizeof(pulses_c)));
592
#endif
593
594
0
    RESTORE_STACK;
595
0
}
596
597
static OPUS_INLINE __m128i silk_noise_shape_quantizer_short_prediction_x4(const __m128i *buf32, const opus_int16 *coef16, opus_int order)
598
0
{
599
0
    __m256i out;
600
0
    silk_assert(order == 10 || order == 16);
601
602
    /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
603
0
    out = _mm256_set1_epi32(order >> 1);
604
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-0]), _mm256_set1_epi32(silk_LSHIFT(coef16[0], 16)))); /* High DWORD */
605
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-1]), _mm256_set1_epi32(silk_LSHIFT(coef16[1], 16)))); /* High DWORD */
606
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-2]), _mm256_set1_epi32(silk_LSHIFT(coef16[2], 16)))); /* High DWORD */
607
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-3]), _mm256_set1_epi32(silk_LSHIFT(coef16[3], 16)))); /* High DWORD */
608
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-4]), _mm256_set1_epi32(silk_LSHIFT(coef16[4], 16)))); /* High DWORD */
609
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-5]), _mm256_set1_epi32(silk_LSHIFT(coef16[5], 16)))); /* High DWORD */
610
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-6]), _mm256_set1_epi32(silk_LSHIFT(coef16[6], 16)))); /* High DWORD */
611
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-7]), _mm256_set1_epi32(silk_LSHIFT(coef16[7], 16)))); /* High DWORD */
612
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-8]), _mm256_set1_epi32(silk_LSHIFT(coef16[8], 16)))); /* High DWORD */
613
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-9]), _mm256_set1_epi32(silk_LSHIFT(coef16[9], 16)))); /* High DWORD */
614
615
0
    if (order == 16)
616
0
    {
617
0
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-10]), _mm256_set1_epi32(silk_LSHIFT(coef16[10], 16)))); /* High DWORD */
618
0
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-11]), _mm256_set1_epi32(silk_LSHIFT(coef16[11], 16)))); /* High DWORD */
619
0
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-12]), _mm256_set1_epi32(silk_LSHIFT(coef16[12], 16)))); /* High DWORD */
620
0
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-13]), _mm256_set1_epi32(silk_LSHIFT(coef16[13], 16)))); /* High DWORD */
621
0
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-14]), _mm256_set1_epi32(silk_LSHIFT(coef16[14], 16)))); /* High DWORD */
622
0
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-15]), _mm256_set1_epi32(silk_LSHIFT(coef16[15], 16)))); /* High DWORD */
623
0
    }
624
0
    return silk_cvtepi64_epi32_high(out);
625
0
}
626
627
/******************************************/
628
/* Noise shape quantizer for one subframe */
629
/******************************************/
630
static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_avx2(
631
    silk_nsq_state *NSQ,                        /* I/O  NSQ state                          */
632
    NSQ_del_dec_struct *psDelDec,               /* I/O  Delayed decision states            */
633
    opus_int signalType,                        /* I    Signal type                        */
634
    const opus_int32 x_Q10[],                   /* I                                       */
635
    opus_int8 pulses[],                         /* O                                       */
636
    opus_int16 xq[],                            /* O                                       */
637
    opus_int32 sLTP_Q15[],                      /* I/O  LTP filter state                   */
638
    opus_int32 delayedGain_Q10[DECISION_DELAY], /* I/O  Gain delay buffer                  */
639
    const opus_int16 a_Q12[],                   /* I    Short term prediction coefs        */
640
    const opus_int16 b_Q14[],                   /* I    Long term prediction coefs         */
641
    const opus_int16 AR_shp_Q13[],              /* I    Noise shaping coefs                */
642
    opus_int lag,                               /* I    Pitch lag                          */
643
    opus_int32 HarmShapeFIRPacked_Q14,          /* I                                       */
644
    opus_int Tilt_Q14,                          /* I    Spectral tilt                      */
645
    opus_int32 LF_shp_Q14,                      /* I                                       */
646
    opus_int32 Gain_Q16,                        /* I                                       */
647
    opus_int Lambda_Q10,                        /* I                                       */
648
    opus_int offset_Q10,                        /* I                                       */
649
    opus_int length,                            /* I    Input length                       */
650
    opus_int subfr,                             /* I    Subframe number                    */
651
    opus_int shapingLPCOrder,                   /* I    Shaping LPC filter order           */
652
    opus_int predictLPCOrder,                   /* I    Prediction filter order            */
653
    opus_int warping_Q16,                       /* I                                       */
654
    __m128i MaskDelDec,                         /* I    Mask of states in decision tree    */
655
    opus_int *smpl_buf_idx,                     /* I/O  Index to newest samples in buffers */
656
    opus_int decisionDelay                      /* I                                       */
657
)
658
0
{
659
0
    int i;
660
0
    opus_int32 *shp_lag_ptr = &NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2];
661
0
    opus_int32 *pred_lag_ptr = &sLTP_Q15[NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2];
662
0
    opus_int32 Gain_Q10 = Gain_Q16 >> 6;
663
664
0
    for (i = 0; i < length; i++)
665
0
    {
666
        /* Perform common calculations used in all states */
667
        /* NSQ_sample_struct */
668
        /* Low  128 bits => 1st set */
669
        /* High 128 bits => 2nd set */
670
0
        int j;
671
0
        __m256i SS_Q_Q10;
672
0
        __m256i SS_RD_Q10;
673
0
        __m256i SS_xq_Q14;
674
0
        __m256i SS_LF_AR_Q14;
675
0
        __m256i SS_Diff_Q14;
676
0
        __m256i SS_sLTP_shp_Q14;
677
0
        __m256i SS_LPC_exc_Q14;
678
0
        __m256i exc_Q14;
679
0
        __m256i q_Q10, rr_Q10, rd_Q10;
680
0
        __m256i mask;
681
0
        __m128i LPC_pred_Q14, n_AR_Q14;
682
0
        __m128i RDmin_Q10, RDmax_Q10;
683
0
        __m128i n_LF_Q14;
684
0
        __m128i r_Q10, q1_Q0, q1_Q10, q2_Q10;
685
0
        __m128i Winner_rand_state, Winner_selector;
686
0
        __m128i tmp0, tmp1;
687
0
        NSQ_del_dec_sample_struct *psLastSample, *psSample;
688
0
        opus_int32 RDmin_ind, RDmax_ind, last_smple_idx;
689
0
        opus_int32 LTP_pred_Q14, n_LTP_Q14;
690
691
        /* Long-term prediction */
692
0
        if (signalType == TYPE_VOICED)
693
0
        {
694
            /* Unrolled loop */
695
            /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
696
0
            LTP_pred_Q14 = 2;
697
0
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-0], b_Q14[0]);
698
0
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-1], b_Q14[1]);
699
0
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-2], b_Q14[2]);
700
0
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-3], b_Q14[3]);
701
0
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-4], b_Q14[4]);
702
0
            LTP_pred_Q14 = silk_LSHIFT(LTP_pred_Q14, 1); /* Q13 -> Q14 */
703
0
            pred_lag_ptr++;
704
0
        }
705
0
        else
706
0
        {
707
0
            LTP_pred_Q14 = 0;
708
0
        }
709
710
        /* Long-term shaping */
711
0
        if (lag > 0)
712
0
        {
713
            /* Symmetric, packed FIR coefficients */
714
0
            n_LTP_Q14 = silk_add_sat32(shp_lag_ptr[0], shp_lag_ptr[-2]);
715
0
            n_LTP_Q14 = silk_SMULWB(n_LTP_Q14, HarmShapeFIRPacked_Q14);
716
0
            n_LTP_Q14 = n_LTP_Q14 + silk_SMULWT(shp_lag_ptr[-1], HarmShapeFIRPacked_Q14);
717
0
            n_LTP_Q14 = LTP_pred_Q14 - (silk_LSHIFT(n_LTP_Q14, 2)); /* Q12 -> Q14 */
718
0
            shp_lag_ptr++;
719
0
        }
720
0
        else
721
0
        {
722
0
            n_LTP_Q14 = 0;
723
0
        }
724
725
        /* BEGIN Updating Delayed Decision States */
726
727
        /* Generate dither */
728
0
        psDelDec->Seed = silk_mm256_rand_epi32(psDelDec->Seed);
729
730
        /* Short-term prediction */
731
0
        LPC_pred_Q14 = silk_noise_shape_quantizer_short_prediction_x4(&psDelDec->sLPC_Q14[NSQ_LPC_BUF_LENGTH - 1 + i], a_Q12, predictLPCOrder);
732
0
        LPC_pred_Q14 = _mm_slli_epi32(LPC_pred_Q14, 4); /* Q10 -> Q14 */
733
734
        /* Noise shape feedback */
735
0
        silk_assert(shapingLPCOrder > 0);
736
0
        silk_assert((shapingLPCOrder & 1) == 0); /* check that order is even */
737
        /* Output of lowpass section */
738
0
        tmp0 = _mm_add_epi32(psDelDec->Diff_Q14, silk_mm_smulwb_epi32(psDelDec->sAR2_Q14[0], warping_Q16));
739
0
        n_AR_Q14 = _mm_set1_epi32(shapingLPCOrder >> 1);
740
0
        for (j = 0; j < shapingLPCOrder - 1; j++)
741
0
        {
742
            /* Output of allpass section */
743
0
            tmp1 = psDelDec->sAR2_Q14[j];
744
0
            psDelDec->sAR2_Q14[j] = tmp0;
745
0
            n_AR_Q14 = _mm_add_epi32(n_AR_Q14, silk_mm_smulwb_epi32(tmp0, AR_shp_Q13[j]));
746
0
            tmp0 = _mm_add_epi32(tmp1, silk_mm_smulwb_epi32(_mm_sub_epi32(psDelDec->sAR2_Q14[j + 1], tmp0), warping_Q16));
747
0
        }
748
0
        psDelDec->sAR2_Q14[shapingLPCOrder - 1] = tmp0;
749
0
        n_AR_Q14 = _mm_add_epi32(n_AR_Q14, silk_mm_smulwb_epi32(tmp0, AR_shp_Q13[shapingLPCOrder - 1]));
750
751
0
        n_AR_Q14 = _mm_slli_epi32(n_AR_Q14, 1);                                                  /* Q11 -> Q12 */
752
0
        n_AR_Q14 = _mm_add_epi32(n_AR_Q14, silk_mm_smulwb_epi32(psDelDec->LF_AR_Q14, Tilt_Q14)); /* Q12 */
753
0
        n_AR_Q14 = _mm_slli_epi32(n_AR_Q14, 2);                                                  /* Q12 -> Q14 */
754
755
0
        tmp0 = silk_mm_smulwb_epi32(psDelDec->Samples[*smpl_buf_idx].Shape_Q14, LF_shp_Q14); /* Q12 */
756
0
        tmp1 = silk_mm_smulwb_epi32(psDelDec->LF_AR_Q14, LF_shp_Q14 >> 16);                  /* Q12 */
757
0
        n_LF_Q14 = _mm_add_epi32(tmp0, tmp1);                                                /* Q12 */
758
0
        n_LF_Q14 = _mm_slli_epi32(n_LF_Q14, 2);                                              /* Q12 -> Q14 */
759
760
        /* Input minus prediction plus noise feedback                       */
761
        /* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP  */
762
0
        tmp0 = silk_mm_add_sat_epi32(n_AR_Q14, n_LF_Q14);              /* Q14 */
763
0
        tmp1 = _mm_add_epi32(_mm_set1_epi32(n_LTP_Q14), LPC_pred_Q14); /* Q13 */
764
0
        tmp0 = silk_mm_sub_sat_epi32(tmp1, tmp0);                      /* Q13 */
765
0
        tmp0 = silk_mm_srai_round_epi32(tmp0, 4);                      /* Q10 */
766
767
0
        r_Q10 = _mm_sub_epi32(_mm_set1_epi32(x_Q10[i]), tmp0); /* residual error Q10 */
768
769
        /* Flip sign depending on dither */
770
0
        r_Q10 = silk_mm_sign_epi32(r_Q10, psDelDec->Seed);
771
0
        r_Q10 = silk_mm_limit_epi32(r_Q10, -(31 << 10), 30 << 10);
772
773
        /* Find two quantization level candidates and measure their rate-distortion */
774
0
        q1_Q10 = _mm_sub_epi32(r_Q10, _mm_set1_epi32(offset_Q10));
775
0
        q1_Q0 = _mm_srai_epi32(q1_Q10, 10);
776
0
        if (Lambda_Q10 > 2048)
777
0
        {
778
            /* For aggressive RDO, the bias becomes more than one pulse. */
779
0
            tmp0 = _mm_sub_epi32(_mm_abs_epi32(q1_Q10), _mm_set1_epi32(Lambda_Q10 / 2 - 512)); /* rdo_offset */
780
0
            q1_Q0 = _mm_srai_epi32(q1_Q10, 31);
781
0
            tmp1 = _mm_cmpgt_epi32(tmp0, _mm_setzero_si128());
782
0
            tmp0 = _mm_srai_epi32(silk_mm_sign_epi32(tmp0, q1_Q10), 10);
783
0
            q1_Q0 = _mm_blendv_epi8(q1_Q0, tmp0, tmp1);
784
0
        }
785
786
0
        tmp0 = _mm_sign_epi32(_mm_set1_epi32(QUANT_LEVEL_ADJUST_Q10), q1_Q0);
787
0
        q1_Q10 = _mm_sub_epi32(_mm_slli_epi32(q1_Q0, 10), tmp0);
788
0
        q1_Q10 = _mm_add_epi32(q1_Q10, _mm_set1_epi32(offset_Q10));
789
790
        /* check if q1_Q0 is 0 or -1 */
791
0
        tmp0 = _mm_add_epi32(_mm_srli_epi32(q1_Q0, 31), q1_Q0);
792
0
        tmp1 = _mm_cmpeq_epi32(tmp0, _mm_setzero_si128());
793
0
        tmp0 = _mm_blendv_epi8(_mm_set1_epi32(1024), _mm_set1_epi32(1024 - QUANT_LEVEL_ADJUST_Q10), tmp1);
794
0
        q2_Q10 = _mm_add_epi32(q1_Q10, tmp0);
795
0
        q_Q10 = _mm256_set_m128i(q2_Q10, q1_Q10);
796
797
0
        rr_Q10 = _mm256_sub_epi32(_mm256_broadcastsi128_si256(r_Q10), q_Q10);
798
0
        rd_Q10 = _mm256_abs_epi32(q_Q10);
799
0
        rr_Q10 = silk_mm256_smulbb_epi32(rr_Q10, rr_Q10);
800
0
        rd_Q10 = silk_mm256_smulbb_epi32(rd_Q10, _mm256_set1_epi32(Lambda_Q10));
801
0
        rd_Q10 = _mm256_add_epi32(rd_Q10, rr_Q10);
802
0
        rd_Q10 = _mm256_srai_epi32(rd_Q10, 10);
803
804
0
        mask = _mm256_broadcastsi128_si256(_mm_cmplt_epi32(_mm256_extracti128_si256(rd_Q10, 0), _mm256_extracti128_si256(rd_Q10, 1)));
805
0
        SS_RD_Q10 = _mm256_add_epi32(
806
0
            _mm256_broadcastsi128_si256(psDelDec->RD_Q10),
807
0
            _mm256_blendv_epi8(
808
0
                _mm256_permute2x128_si256(rd_Q10, rd_Q10, 0x1),
809
0
                rd_Q10,
810
0
                mask));
811
0
        SS_Q_Q10 = _mm256_blendv_epi8(
812
0
            _mm256_permute2x128_si256(q_Q10, q_Q10, 0x1),
813
0
            q_Q10,
814
0
            mask);
815
816
        /* Update states for best and second best quantization */
817
818
        /* Quantized excitation */
819
0
        exc_Q14 = silk_mm256_sign_epi32(_mm256_slli_epi32(SS_Q_Q10, 4), _mm256_broadcastsi128_si256(psDelDec->Seed));
820
821
        /* Add predictions */
822
0
        exc_Q14 = _mm256_add_epi32(exc_Q14, _mm256_set1_epi32(LTP_pred_Q14));
823
0
        SS_LPC_exc_Q14 = _mm256_slli_epi32(exc_Q14, 1);
824
0
        SS_xq_Q14 = _mm256_add_epi32(exc_Q14, _mm256_broadcastsi128_si256(LPC_pred_Q14));
825
826
        /* Update states */
827
0
        SS_Diff_Q14 = _mm256_sub_epi32(SS_xq_Q14, _mm256_set1_epi32(silk_LSHIFT(x_Q10[i], 4)));
828
0
        SS_LF_AR_Q14 = _mm256_sub_epi32(SS_Diff_Q14, _mm256_broadcastsi128_si256(n_AR_Q14));
829
0
        SS_sLTP_shp_Q14 = silk_mm256_sub_sat_epi32(SS_LF_AR_Q14, _mm256_broadcastsi128_si256(n_LF_Q14));
830
831
        /* END Updating Delayed Decision States */
832
833
0
        *smpl_buf_idx = (*smpl_buf_idx + DECISION_DELAY - 1) % DECISION_DELAY;
834
0
        last_smple_idx = (*smpl_buf_idx + decisionDelay) % DECISION_DELAY;
835
0
        psLastSample = &psDelDec->Samples[last_smple_idx];
836
837
        /* Find winner */
838
0
        RDmin_Q10 = silk_mm_mask_hmin_epi32(_mm256_castsi256_si128(SS_RD_Q10), MaskDelDec);
839
0
        Winner_selector = silk_index_to_selector(silk_index_of_first_equal_epi32(RDmin_Q10, _mm256_castsi256_si128(SS_RD_Q10)));
840
841
        /* Increase RD values of expired states */
842
0
        Winner_rand_state = _mm_shuffle_epi8(psLastSample->RandState, Winner_selector);
843
844
0
        SS_RD_Q10 = _mm256_blendv_epi8(
845
0
            _mm256_add_epi32(SS_RD_Q10, _mm256_set1_epi32(silk_int32_MAX >> 4)),
846
0
            SS_RD_Q10,
847
0
            _mm256_broadcastsi128_si256(_mm_cmpeq_epi32(psLastSample->RandState, Winner_rand_state)));
848
849
        /* find worst in first set */
850
0
        RDmax_Q10 = silk_mm_mask_hmax_epi32(_mm256_extracti128_si256(SS_RD_Q10, 0), MaskDelDec);
851
        /* find best in second set */
852
0
        RDmin_Q10 = silk_mm_mask_hmin_epi32(_mm256_extracti128_si256(SS_RD_Q10, 1), MaskDelDec);
853
854
        /* Replace a state if best from second set outperforms worst in first set */
855
0
        tmp0 = _mm_cmplt_epi32(RDmin_Q10, RDmax_Q10);
856
0
        if (!_mm_test_all_zeros(tmp0, tmp0))
857
0
        {
858
0
            int t;
859
0
            RDmax_ind = silk_index_of_first_equal_epi32(RDmax_Q10, _mm256_extracti128_si256(SS_RD_Q10, 0));
860
0
            RDmin_ind = silk_index_of_first_equal_epi32(RDmin_Q10, _mm256_extracti128_si256(SS_RD_Q10, 1));
861
0
            tmp1 = _mm_cvtepi8_epi32(_mm_cvtsi32_si128(0xFFU << (unsigned)(RDmax_ind << 3)));
862
0
            tmp0 = _mm_blendv_epi8(
863
0
                _mm_set_epi8(0xF, 0xE, 0xD, 0xC, 0xB, 0xA, 0x9, 0x8, 0x7, 0x6, 0x5, 0x4, 0x3, 0x2, 0x1, 0x0),
864
0
                silk_index_to_selector(RDmin_ind),
865
0
                tmp1);
866
0
            for (t = i; t < MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH; t++)
867
0
            {
868
0
                psDelDec->sLPC_Q14[t] = _mm_shuffle_epi8(psDelDec->sLPC_Q14[t], tmp0);
869
0
            }
870
0
            psDelDec->Seed = _mm_shuffle_epi8(psDelDec->Seed, tmp0);
871
0
            psDelDec->SeedInit = _mm_shuffle_epi8(psDelDec->SeedInit, tmp0);
872
0
            for (t = 0; t < MAX_SHAPE_LPC_ORDER; t++)
873
0
            {
874
0
                psDelDec->sAR2_Q14[t] = _mm_shuffle_epi8(psDelDec->sAR2_Q14[t], tmp0);
875
0
            }
876
0
            for (t = 0; t < DECISION_DELAY; t++)
877
0
            {
878
0
                psDelDec->Samples[t].RandState = _mm_shuffle_epi8(psDelDec->Samples[t].RandState, tmp0);
879
0
                psDelDec->Samples[t].Q_Q10 = _mm_shuffle_epi8(psDelDec->Samples[t].Q_Q10, tmp0);
880
0
                psDelDec->Samples[t].Xq_Q14 = _mm_shuffle_epi8(psDelDec->Samples[t].Xq_Q14, tmp0);
881
0
                psDelDec->Samples[t].Pred_Q15 = _mm_shuffle_epi8(psDelDec->Samples[t].Pred_Q15, tmp0);
882
0
                psDelDec->Samples[t].Shape_Q14 = _mm_shuffle_epi8(psDelDec->Samples[t].Shape_Q14, tmp0);
883
0
            }
884
0
            mask = _mm256_castsi128_si256(_mm_blendv_epi8(_mm_set_epi32(0x3, 0x2, 0x1, 0x0), _mm_set1_epi32(RDmin_ind + 4), tmp1));
885
0
            SS_Q_Q10 = _mm256_permutevar8x32_epi32(SS_Q_Q10, mask);
886
0
            SS_RD_Q10 = _mm256_permutevar8x32_epi32(SS_RD_Q10, mask);
887
0
            SS_xq_Q14 = _mm256_permutevar8x32_epi32(SS_xq_Q14, mask);
888
0
            SS_LF_AR_Q14 = _mm256_permutevar8x32_epi32(SS_LF_AR_Q14, mask);
889
0
            SS_Diff_Q14 = _mm256_permutevar8x32_epi32(SS_Diff_Q14, mask);
890
0
            SS_sLTP_shp_Q14 = _mm256_permutevar8x32_epi32(SS_sLTP_shp_Q14, mask);
891
0
            SS_LPC_exc_Q14 = _mm256_permutevar8x32_epi32(SS_LPC_exc_Q14, mask);
892
0
        }
893
894
        /* Write samples from winner to output and long-term filter states */
895
0
        if (subfr > 0 || i >= decisionDelay)
896
0
        {
897
0
            pulses[i - decisionDelay] =
898
0
                (opus_int8)silk_sar_round_32(silk_select_winner(psLastSample->Q_Q10, Winner_selector), 10);
899
0
            xq[i - decisionDelay] =
900
0
                silk_sat16((opus_int32)silk_sar_round_smulww(silk_select_winner(psLastSample->Xq_Q14, Winner_selector), delayedGain_Q10[last_smple_idx], 8));
901
0
            NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - decisionDelay] =
902
0
                silk_select_winner(psLastSample->Shape_Q14, Winner_selector);
903
0
            sLTP_Q15[NSQ->sLTP_buf_idx - decisionDelay] =
904
0
                silk_select_winner(psLastSample->Pred_Q15, Winner_selector);
905
0
        }
906
0
        NSQ->sLTP_shp_buf_idx++;
907
0
        NSQ->sLTP_buf_idx++;
908
909
        /* Update states */
910
0
        psSample = &psDelDec->Samples[*smpl_buf_idx];
911
0
        psDelDec->Seed = _mm_add_epi32(psDelDec->Seed, silk_mm_srai_round_epi32(_mm256_castsi256_si128(SS_Q_Q10), 10));
912
0
        psDelDec->LF_AR_Q14 = _mm256_castsi256_si128(SS_LF_AR_Q14);
913
0
        psDelDec->Diff_Q14 = _mm256_castsi256_si128(SS_Diff_Q14);
914
0
        psDelDec->sLPC_Q14[i + NSQ_LPC_BUF_LENGTH] = _mm256_castsi256_si128(SS_xq_Q14);
915
0
        psDelDec->RD_Q10 = _mm256_castsi256_si128(SS_RD_Q10);
916
0
        psSample->Xq_Q14 = _mm256_castsi256_si128(SS_xq_Q14);
917
0
        psSample->Q_Q10 = _mm256_castsi256_si128(SS_Q_Q10);
918
0
        psSample->Pred_Q15 = _mm256_castsi256_si128(SS_LPC_exc_Q14);
919
0
        psSample->Shape_Q14 = _mm256_castsi256_si128(SS_sLTP_shp_Q14);
920
0
        psSample->RandState = psDelDec->Seed;
921
0
        delayedGain_Q10[*smpl_buf_idx] = Gain_Q10;
922
0
    }
923
    /* Update LPC states */
924
0
    for (i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
925
0
    {
926
0
        psDelDec->sLPC_Q14[i] = (&psDelDec->sLPC_Q14[length])[i];
927
0
    }
928
0
}
929
930
static OPUS_INLINE void silk_nsq_del_dec_scale_states_avx2(
931
    const silk_encoder_state *psEncC,          /* I    Encoder State                   */
932
    silk_nsq_state *NSQ,                       /* I/O  NSQ state                       */
933
    NSQ_del_dec_struct *psDelDec,              /* I/O  Delayed decision states         */
934
    const opus_int16 x16[],                    /* I    Input                           */
935
    opus_int32 x_sc_Q10[MAX_SUB_FRAME_LENGTH], /* O    Input scaled with 1/Gain in Q10 */
936
    const opus_int16 sLTP[],                   /* I    Re-whitened LTP state in Q0     */
937
    opus_int32 sLTP_Q15[],                     /* O    LTP state matching scaled input */
938
    opus_int subfr,                            /* I    Subframe number                 */
939
    const opus_int LTP_scale_Q14,              /* I    LTP state scaling               */
940
    const opus_int32 Gains_Q16[MAX_NB_SUBFR],  /* I                                    */
941
    const opus_int pitchL[MAX_NB_SUBFR],       /* I    Pitch lag                       */
942
    const opus_int signal_type,                /* I    Signal type                     */
943
    const opus_int decisionDelay               /* I    Decision delay                  */
944
)
945
0
{
946
0
    int i;
947
0
    opus_int lag;
948
0
    opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26;
949
0
    NSQ_del_dec_sample_struct *psSample;
950
951
0
    lag = pitchL[subfr];
952
0
    inv_gain_Q31 = silk_INVERSE32_varQ(silk_max(Gains_Q16[subfr], 1), 47);
953
0
    silk_assert(inv_gain_Q31 != 0);
954
955
    /* Scale input */
956
0
    inv_gain_Q26 = silk_sar_round_32(inv_gain_Q31, 5);
957
0
    for (i = 0; i < psEncC->subfr_length; i+=4)
958
0
    {
959
0
        __m256i x = _mm256_cvtepi16_epi64(_mm_loadu_si64(&x16[i]));
960
0
        x = _mm256_slli_epi64(_mm256_mul_epi32(x, _mm256_set1_epi32(inv_gain_Q26)), 16);
961
0
        _mm_storeu_si128((__m128i*)&x_sc_Q10[i], silk_cvtepi64_epi32_high(x));
962
0
    }
963
964
    /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */
965
0
    if (NSQ->rewhite_flag)
966
0
    {
967
0
        if (subfr == 0)
968
0
        {
969
            /* Do LTP downscaling */
970
0
            inv_gain_Q31 = silk_LSHIFT(silk_SMULWB(inv_gain_Q31, LTP_scale_Q14), 2);
971
0
        }
972
0
        for (i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++)
973
0
        {
974
0
            silk_assert(i < MAX_FRAME_LENGTH);
975
0
            sLTP_Q15[i] = silk_SMULWB(inv_gain_Q31, sLTP[i]);
976
0
        }
977
0
    }
978
979
    /* Adjust for changing gain */
980
0
    if (Gains_Q16[subfr] != NSQ->prev_gain_Q16)
981
0
    {
982
0
        gain_adj_Q16 = silk_DIV32_varQ(NSQ->prev_gain_Q16, Gains_Q16[subfr], 16);
983
984
        /* Scale long-term shaping state */
985
0
        for (i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i+=4)
986
0
        {
987
0
      opus_int32 *p = &NSQ->sLTP_shp_Q14[i];
988
0
            _mm_storeu_si128((__m128i*)p, silk_mm_smulww_epi32(_mm_loadu_si128((__m128i*)p), gain_adj_Q16));
989
0
        }
990
991
        /* Scale long-term prediction state */
992
0
        if (signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0)
993
0
        {
994
0
            for (i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx - decisionDelay; i++)
995
0
            {
996
0
                sLTP_Q15[i] = ((opus_int64)sLTP_Q15[i]) * ((opus_int64)gain_adj_Q16) >> 16;
997
0
            }
998
0
        }
999
1000
        /* Scale scalar states */
1001
0
        psDelDec->LF_AR_Q14 = silk_mm_smulww_epi32(psDelDec->LF_AR_Q14, gain_adj_Q16);
1002
0
        psDelDec->Diff_Q14 = silk_mm_smulww_epi32(psDelDec->Diff_Q14, gain_adj_Q16);
1003
1004
        /* Scale short-term prediction and shaping states */
1005
0
        for (i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
1006
0
        {
1007
0
            psDelDec->sLPC_Q14[i] = silk_mm_smulww_epi32(psDelDec->sLPC_Q14[i], gain_adj_Q16);
1008
0
        }
1009
0
        for (i = 0; i < DECISION_DELAY; i++)
1010
0
        {
1011
0
            psSample = &psDelDec->Samples[i];
1012
0
            psSample->Pred_Q15 = silk_mm_smulww_epi32(psSample->Pred_Q15, gain_adj_Q16);
1013
0
            psSample->Shape_Q14 = silk_mm_smulww_epi32(psSample->Shape_Q14, gain_adj_Q16);
1014
0
        }
1015
0
        for (i = 0; i < MAX_SHAPE_LPC_ORDER; i++)
1016
0
        {
1017
0
            psDelDec->sAR2_Q14[i] = silk_mm_smulww_epi32(psDelDec->sAR2_Q14[i], gain_adj_Q16);
1018
0
        }
1019
1020
        /* Save inverse gain */
1021
0
        NSQ->prev_gain_Q16 = Gains_Q16[subfr];
1022
0
    }
1023
0
}
1024
1025
static OPUS_INLINE void silk_LPC_analysis_filter_avx2(
1026
    opus_int16                  *out,               /* O    Output signal                           */
1027
    const opus_int16            *in,                /* I    Input signal                            */
1028
    const opus_int16            *B,                 /* I    MA prediction coefficients, Q12 [order] */
1029
    const opus_int32            len,                /* I    Signal length                           */
1030
    const opus_int32            order               /* I    Filter order                            */
1031
)
1032
0
{
1033
0
    int i;
1034
0
    opus_int32       out32_Q12, out32;
1035
0
    silk_assert(order == 10 || order == 16);
1036
1037
0
    for(i = order; i < len; i++ )
1038
0
    {
1039
0
        const opus_int16 *in_ptr = &in[ i ];
1040
        /* Allowing wrap around so that two wraps can cancel each other. The rare
1041
           cases where the result wraps around can only be triggered by invalid streams*/
1042
1043
0
        __m256i in_v = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*)&in_ptr[-8]));
1044
0
        __m256i B_v  = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*)&      B[0]));
1045
0
        __m256i sum = _mm256_mullo_epi32(in_v, silk_mm256_reverse_epi32(B_v));
1046
0
        if (order > 10)
1047
0
        {
1048
0
            in_v = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*)&in_ptr[-16]));
1049
0
            B_v  = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*)&B       [8]));
1050
0
            B_v  = silk_mm256_reverse_epi32(B_v);
1051
0
        }
1052
0
        else
1053
0
        {
1054
0
            in_v = _mm256_cvtepi16_epi32(_mm_loadu_si32(&in_ptr[-10]));
1055
0
            B_v  = _mm256_cvtepi16_epi32(_mm_loadu_si32(&B       [8]));
1056
0
            B_v  = _mm256_shuffle_epi32(B_v, 0x01);
1057
0
        }
1058
0
        sum = _mm256_add_epi32(sum, _mm256_mullo_epi32(in_v, B_v));
1059
1060
0
        out32_Q12 = silk_mm256_hsum_epi32(sum);
1061
1062
        /* Subtract prediction */
1063
0
        out32_Q12 = silk_SUB32_ovflw( silk_LSHIFT( (opus_int32)*in_ptr, 12 ), out32_Q12 );
1064
1065
        /* Scale to Q0 */
1066
0
        out32 = silk_sar_round_32(out32_Q12, 12);
1067
1068
        /* Saturate output */
1069
0
        out[ i ] = silk_sat16(out32);
1070
0
    }
1071
1072
    /* Set first d output samples to zero */
1073
0
    silk_memset( out, 0, order * sizeof( opus_int16 ) );
1074
0
}