/src/opus/silk/x86/VAD_sse4_1.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (c) 2014-2020, Cisco Systems, INC |
2 | | Written by XiangMingZhu WeiZhou MinPeng YanWang FrancisQuiers |
3 | | |
4 | | Redistribution and use in source and binary forms, with or without |
5 | | modification, are permitted provided that the following conditions |
6 | | are met: |
7 | | |
8 | | - Redistributions of source code must retain the above copyright |
9 | | notice, this list of conditions and the following disclaimer. |
10 | | |
11 | | - Redistributions in binary form must reproduce the above copyright |
12 | | notice, this list of conditions and the following disclaimer in the |
13 | | documentation and/or other materials provided with the distribution. |
14 | | |
15 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
16 | | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
17 | | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
18 | | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
19 | | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
20 | | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
21 | | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
22 | | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
23 | | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
24 | | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
25 | | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
26 | | */ |
27 | | |
28 | | #ifdef HAVE_CONFIG_H |
29 | | #include "config.h" |
30 | | #endif |
31 | | |
32 | | #include <xmmintrin.h> |
33 | | #include <emmintrin.h> |
34 | | #include <smmintrin.h> |
35 | | |
36 | | #include "main.h" |
37 | | #include "stack_alloc.h" |
38 | | |
39 | | /* Weighting factors for tilt measure */ |
40 | | static const opus_int32 tiltWeights[ VAD_N_BANDS ] = { 30000, 6000, -12000, -12000 }; |
41 | | |
42 | | /***************************************/ |
43 | | /* Get the speech activity level in Q8 */ |
44 | | /***************************************/ |
45 | | opus_int silk_VAD_GetSA_Q8_sse4_1( /* O Return value, 0 if success */ |
46 | | silk_encoder_state *psEncC, /* I/O Encoder state */ |
47 | | const opus_int16 pIn[] /* I PCM input */ |
48 | | ) |
49 | 0 | { |
50 | 0 | opus_int SA_Q15, pSNR_dB_Q7, input_tilt; |
51 | 0 | opus_int decimated_framelength1, decimated_framelength2; |
52 | 0 | opus_int decimated_framelength; |
53 | 0 | opus_int dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s; |
54 | 0 | opus_int32 sumSquared, smooth_coef_Q16; |
55 | 0 | opus_int16 HPstateTmp; |
56 | 0 | VARDECL( opus_int16, X ); |
57 | 0 | opus_int32 Xnrg[ VAD_N_BANDS ]; |
58 | 0 | opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ]; |
59 | 0 | opus_int32 speech_nrg, x_tmp; |
60 | 0 | opus_int X_offset[ VAD_N_BANDS ]; |
61 | 0 | opus_int ret = 0; |
62 | 0 | silk_VAD_state *psSilk_VAD = &psEncC->sVAD; |
63 | |
|
64 | 0 | SAVE_STACK; |
65 | |
|
66 | | #ifdef OPUS_CHECK_ASM |
67 | | silk_encoder_state psEncC_c; |
68 | | opus_int ret_c; |
69 | | |
70 | | silk_memcpy( &psEncC_c, psEncC, sizeof( psEncC_c ) ); |
71 | | ret_c = silk_VAD_GetSA_Q8_c( &psEncC_c, pIn ); |
72 | | #endif |
73 | | |
74 | | /* Safety checks */ |
75 | 0 | silk_assert( VAD_N_BANDS == 4 ); |
76 | 0 | celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length ); |
77 | 0 | celt_assert( psEncC->frame_length <= 512 ); |
78 | 0 | celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) ); |
79 | | |
80 | | /***********************/ |
81 | | /* Filter and Decimate */ |
82 | | /***********************/ |
83 | 0 | decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 ); |
84 | 0 | decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 ); |
85 | 0 | decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 ); |
86 | | /* Decimate into 4 bands: |
87 | | 0 L 3L L 3L 5L |
88 | | - -- - -- -- |
89 | | 8 8 2 4 4 |
90 | | |
91 | | [0-1 kHz| temp. |1-2 kHz| 2-4 kHz | 4-8 kHz | |
92 | | |
93 | | They're arranged to allow the minimal ( frame_length / 4 ) extra |
94 | | scratch space during the downsampling process */ |
95 | 0 | X_offset[ 0 ] = 0; |
96 | 0 | X_offset[ 1 ] = decimated_framelength + decimated_framelength2; |
97 | 0 | X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength; |
98 | 0 | X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2; |
99 | 0 | ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 ); |
100 | | |
101 | | /* 0-8 kHz to 0-4 kHz and 4-8 kHz */ |
102 | 0 | silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[ 0 ], |
103 | 0 | X, &X[ X_offset[ 3 ] ], psEncC->frame_length ); |
104 | | |
105 | | /* 0-4 kHz to 0-2 kHz and 2-4 kHz */ |
106 | 0 | silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ], |
107 | 0 | X, &X[ X_offset[ 2 ] ], decimated_framelength1 ); |
108 | | |
109 | | /* 0-2 kHz to 0-1 kHz and 1-2 kHz */ |
110 | 0 | silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ], |
111 | 0 | X, &X[ X_offset[ 1 ] ], decimated_framelength2 ); |
112 | | |
113 | | /*********************************************/ |
114 | | /* HP filter on lowest band (differentiator) */ |
115 | | /*********************************************/ |
116 | 0 | X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 ); |
117 | 0 | HPstateTmp = X[ decimated_framelength - 1 ]; |
118 | 0 | for( i = decimated_framelength - 1; i > 0; i-- ) { |
119 | 0 | X[ i - 1 ] = silk_RSHIFT( X[ i - 1 ], 1 ); |
120 | 0 | X[ i ] -= X[ i - 1 ]; |
121 | 0 | } |
122 | 0 | X[ 0 ] -= psSilk_VAD->HPstate; |
123 | 0 | psSilk_VAD->HPstate = HPstateTmp; |
124 | | |
125 | | /*************************************/ |
126 | | /* Calculate the energy in each band */ |
127 | | /*************************************/ |
128 | 0 | for( b = 0; b < VAD_N_BANDS; b++ ) { |
129 | | /* Find the decimated framelength in the non-uniformly divided bands */ |
130 | 0 | decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) ); |
131 | | |
132 | | /* Split length into subframe lengths */ |
133 | 0 | dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 ); |
134 | 0 | dec_subframe_offset = 0; |
135 | | |
136 | | /* Compute energy per sub-frame */ |
137 | | /* initialize with summed energy of last subframe */ |
138 | 0 | Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ]; |
139 | 0 | for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) { |
140 | 0 | __m128i xmm_X, xmm_acc; |
141 | 0 | sumSquared = 0; |
142 | |
|
143 | 0 | xmm_acc = _mm_setzero_si128(); |
144 | |
|
145 | 0 | for( i = 0; i < dec_subframe_length - 7; i += 8 ) |
146 | 0 | { |
147 | 0 | xmm_X = _mm_loadu_si128( (__m128i *)(void*)&(X[ X_offset[ b ] + i + dec_subframe_offset ] ) ); |
148 | 0 | xmm_X = _mm_srai_epi16( xmm_X, 3 ); |
149 | 0 | xmm_X = _mm_madd_epi16( xmm_X, xmm_X ); |
150 | 0 | xmm_acc = _mm_add_epi32( xmm_acc, xmm_X ); |
151 | 0 | } |
152 | |
|
153 | 0 | xmm_acc = _mm_add_epi32( xmm_acc, _mm_unpackhi_epi64( xmm_acc, xmm_acc ) ); |
154 | 0 | xmm_acc = _mm_add_epi32( xmm_acc, _mm_shufflelo_epi16( xmm_acc, 0x0E ) ); |
155 | |
|
156 | 0 | sumSquared += _mm_cvtsi128_si32( xmm_acc ); |
157 | |
|
158 | 0 | for( ; i < dec_subframe_length; i++ ) { |
159 | | /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2. */ |
160 | | /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128) */ |
161 | 0 | x_tmp = silk_RSHIFT( |
162 | 0 | X[ X_offset[ b ] + i + dec_subframe_offset ], 3 ); |
163 | 0 | sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp ); |
164 | | |
165 | | /* Safety check */ |
166 | 0 | silk_assert( sumSquared >= 0 ); |
167 | 0 | } |
168 | | |
169 | | /* Add/saturate summed energy of current subframe */ |
170 | 0 | if( s < VAD_INTERNAL_SUBFRAMES - 1 ) { |
171 | 0 | Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared ); |
172 | 0 | } else { |
173 | | /* Look-ahead subframe */ |
174 | 0 | Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) ); |
175 | 0 | } |
176 | |
|
177 | 0 | dec_subframe_offset += dec_subframe_length; |
178 | 0 | } |
179 | 0 | psSilk_VAD->XnrgSubfr[ b ] = sumSquared; |
180 | 0 | } |
181 | | |
182 | | /********************/ |
183 | | /* Noise estimation */ |
184 | | /********************/ |
185 | 0 | silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD ); |
186 | | |
187 | | /***********************************************/ |
188 | | /* Signal-plus-noise to noise ratio estimation */ |
189 | | /***********************************************/ |
190 | 0 | sumSquared = 0; |
191 | 0 | input_tilt = 0; |
192 | 0 | for( b = 0; b < VAD_N_BANDS; b++ ) { |
193 | 0 | speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ]; |
194 | 0 | if( speech_nrg > 0 ) { |
195 | | /* Divide, with sufficient resolution */ |
196 | 0 | if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) { |
197 | 0 | NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 ); |
198 | 0 | } else { |
199 | 0 | NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 ); |
200 | 0 | } |
201 | | |
202 | | /* Convert to log domain */ |
203 | 0 | SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128; |
204 | | |
205 | | /* Sum-of-squares */ |
206 | 0 | sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 ); /* Q14 */ |
207 | | |
208 | | /* Tilt measure */ |
209 | 0 | if( speech_nrg < ( (opus_int32)1 << 20 ) ) { |
210 | | /* Scale down SNR value for small subband speech energies */ |
211 | 0 | SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 ); |
212 | 0 | } |
213 | 0 | input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 ); |
214 | 0 | } else { |
215 | 0 | NrgToNoiseRatio_Q8[ b ] = 256; |
216 | 0 | } |
217 | 0 | } |
218 | | |
219 | | /* Mean-of-squares */ |
220 | 0 | sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */ |
221 | | |
222 | | /* Root-mean-square approximation, scale to dBs, and write to output pointer */ |
223 | 0 | pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */ |
224 | | |
225 | | /*********************************/ |
226 | | /* Speech Probability Estimation */ |
227 | | /*********************************/ |
228 | 0 | SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 ); |
229 | | |
230 | | /**************************/ |
231 | | /* Frequency Tilt Measure */ |
232 | | /**************************/ |
233 | 0 | psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 ); |
234 | | |
235 | | /**************************************************/ |
236 | | /* Scale the sigmoid output based on power levels */ |
237 | | /**************************************************/ |
238 | 0 | speech_nrg = 0; |
239 | 0 | for( b = 0; b < VAD_N_BANDS; b++ ) { |
240 | | /* Accumulate signal-without-noise energies, higher frequency bands have more weight */ |
241 | 0 | speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 ); |
242 | 0 | } |
243 | |
|
244 | 0 | if( psEncC->frame_length == 20 * psEncC->fs_kHz ) { |
245 | 0 | speech_nrg = silk_RSHIFT32( speech_nrg, 1 ); |
246 | 0 | } |
247 | | /* Power scaling */ |
248 | 0 | if( speech_nrg <= 0 ) { |
249 | 0 | SA_Q15 = silk_RSHIFT( SA_Q15, 1 ); |
250 | 0 | } else if( speech_nrg < 16384 ) { |
251 | 0 | speech_nrg = silk_LSHIFT32( speech_nrg, 16 ); |
252 | | |
253 | | /* square-root */ |
254 | 0 | speech_nrg = silk_SQRT_APPROX( speech_nrg ); |
255 | 0 | SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 ); |
256 | 0 | } |
257 | | |
258 | | /* Copy the resulting speech activity in Q8 */ |
259 | 0 | psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX ); |
260 | | |
261 | | /***********************************/ |
262 | | /* Energy Level and SNR estimation */ |
263 | | /***********************************/ |
264 | | /* Smoothing coefficient */ |
265 | 0 | smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) ); |
266 | |
|
267 | 0 | if( psEncC->frame_length == 10 * psEncC->fs_kHz ) { |
268 | 0 | smooth_coef_Q16 >>= 1; |
269 | 0 | } |
270 | |
|
271 | 0 | for( b = 0; b < VAD_N_BANDS; b++ ) { |
272 | | /* compute smoothed energy-to-noise ratio per band */ |
273 | 0 | psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ], |
274 | 0 | NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 ); |
275 | | |
276 | | /* signal to noise ratio in dB per band */ |
277 | 0 | SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 ); |
278 | | /* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */ |
279 | 0 | psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) ); |
280 | 0 | } |
281 | |
|
282 | | #ifdef OPUS_CHECK_ASM |
283 | | silk_assert( ret == ret_c ); |
284 | | silk_assert( !memcmp( &psEncC_c, psEncC, sizeof( psEncC_c ) ) ); |
285 | | #endif |
286 | |
|
287 | 0 | RESTORE_STACK; |
288 | 0 | return( ret ); |
289 | 0 | } |