Coverage Report

Created: 2024-09-06 07:53

/src/opus/src/analysis.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (c) 2011 Xiph.Org Foundation
2
   Written by Jean-Marc Valin */
3
/*
4
   Redistribution and use in source and binary forms, with or without
5
   modification, are permitted provided that the following conditions
6
   are met:
7
8
   - Redistributions of source code must retain the above copyright
9
   notice, this list of conditions and the following disclaimer.
10
11
   - Redistributions in binary form must reproduce the above copyright
12
   notice, this list of conditions and the following disclaimer in the
13
   documentation and/or other materials provided with the distribution.
14
15
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
19
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
20
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
22
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
*/
27
28
#ifdef HAVE_CONFIG_H
29
#include "config.h"
30
#endif
31
32
#define ANALYSIS_C
33
34
#ifdef MLP_TRAINING
35
#include <stdio.h>
36
#endif
37
38
#include "mathops.h"
39
#include "kiss_fft.h"
40
#include "celt.h"
41
#include "modes.h"
42
#include "arch.h"
43
#include "quant_bands.h"
44
#include "analysis.h"
45
#include "mlp.h"
46
#include "stack_alloc.h"
47
#include "float_cast.h"
48
49
#ifndef M_PI
50
#define M_PI 3.141592653
51
#endif
52
53
#ifndef DISABLE_FLOAT_API
54
55
#define TRANSITION_PENALTY 10
56
57
static const float dct_table[128] = {
58
        0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
59
        0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
60
        0.351851f, 0.338330f, 0.311806f, 0.273300f, 0.224292f, 0.166664f, 0.102631f, 0.034654f,
61
       -0.034654f,-0.102631f,-0.166664f,-0.224292f,-0.273300f,-0.311806f,-0.338330f,-0.351851f,
62
        0.346760f, 0.293969f, 0.196424f, 0.068975f,-0.068975f,-0.196424f,-0.293969f,-0.346760f,
63
       -0.346760f,-0.293969f,-0.196424f,-0.068975f, 0.068975f, 0.196424f, 0.293969f, 0.346760f,
64
        0.338330f, 0.224292f, 0.034654f,-0.166664f,-0.311806f,-0.351851f,-0.273300f,-0.102631f,
65
        0.102631f, 0.273300f, 0.351851f, 0.311806f, 0.166664f,-0.034654f,-0.224292f,-0.338330f,
66
        0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f,
67
        0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f,
68
        0.311806f, 0.034654f,-0.273300f,-0.338330f,-0.102631f, 0.224292f, 0.351851f, 0.166664f,
69
       -0.166664f,-0.351851f,-0.224292f, 0.102631f, 0.338330f, 0.273300f,-0.034654f,-0.311806f,
70
        0.293969f,-0.068975f,-0.346760f,-0.196424f, 0.196424f, 0.346760f, 0.068975f,-0.293969f,
71
       -0.293969f, 0.068975f, 0.346760f, 0.196424f,-0.196424f,-0.346760f,-0.068975f, 0.293969f,
72
        0.273300f,-0.166664f,-0.338330f, 0.034654f, 0.351851f, 0.102631f,-0.311806f,-0.224292f,
73
        0.224292f, 0.311806f,-0.102631f,-0.351851f,-0.034654f, 0.338330f, 0.166664f,-0.273300f,
74
};
75
76
static const float analysis_window[240] = {
77
      0.000043f, 0.000171f, 0.000385f, 0.000685f, 0.001071f, 0.001541f, 0.002098f, 0.002739f,
78
      0.003466f, 0.004278f, 0.005174f, 0.006156f, 0.007222f, 0.008373f, 0.009607f, 0.010926f,
79
      0.012329f, 0.013815f, 0.015385f, 0.017037f, 0.018772f, 0.020590f, 0.022490f, 0.024472f,
80
      0.026535f, 0.028679f, 0.030904f, 0.033210f, 0.035595f, 0.038060f, 0.040604f, 0.043227f,
81
      0.045928f, 0.048707f, 0.051564f, 0.054497f, 0.057506f, 0.060591f, 0.063752f, 0.066987f,
82
      0.070297f, 0.073680f, 0.077136f, 0.080665f, 0.084265f, 0.087937f, 0.091679f, 0.095492f,
83
      0.099373f, 0.103323f, 0.107342f, 0.111427f, 0.115579f, 0.119797f, 0.124080f, 0.128428f,
84
      0.132839f, 0.137313f, 0.141849f, 0.146447f, 0.151105f, 0.155823f, 0.160600f, 0.165435f,
85
      0.170327f, 0.175276f, 0.180280f, 0.185340f, 0.190453f, 0.195619f, 0.200838f, 0.206107f,
86
      0.211427f, 0.216797f, 0.222215f, 0.227680f, 0.233193f, 0.238751f, 0.244353f, 0.250000f,
87
      0.255689f, 0.261421f, 0.267193f, 0.273005f, 0.278856f, 0.284744f, 0.290670f, 0.296632f,
88
      0.302628f, 0.308658f, 0.314721f, 0.320816f, 0.326941f, 0.333097f, 0.339280f, 0.345492f,
89
      0.351729f, 0.357992f, 0.364280f, 0.370590f, 0.376923f, 0.383277f, 0.389651f, 0.396044f,
90
      0.402455f, 0.408882f, 0.415325f, 0.421783f, 0.428254f, 0.434737f, 0.441231f, 0.447736f,
91
      0.454249f, 0.460770f, 0.467298f, 0.473832f, 0.480370f, 0.486912f, 0.493455f, 0.500000f,
92
      0.506545f, 0.513088f, 0.519630f, 0.526168f, 0.532702f, 0.539230f, 0.545751f, 0.552264f,
93
      0.558769f, 0.565263f, 0.571746f, 0.578217f, 0.584675f, 0.591118f, 0.597545f, 0.603956f,
94
      0.610349f, 0.616723f, 0.623077f, 0.629410f, 0.635720f, 0.642008f, 0.648271f, 0.654508f,
95
      0.660720f, 0.666903f, 0.673059f, 0.679184f, 0.685279f, 0.691342f, 0.697372f, 0.703368f,
96
      0.709330f, 0.715256f, 0.721144f, 0.726995f, 0.732807f, 0.738579f, 0.744311f, 0.750000f,
97
      0.755647f, 0.761249f, 0.766807f, 0.772320f, 0.777785f, 0.783203f, 0.788573f, 0.793893f,
98
      0.799162f, 0.804381f, 0.809547f, 0.814660f, 0.819720f, 0.824724f, 0.829673f, 0.834565f,
99
      0.839400f, 0.844177f, 0.848895f, 0.853553f, 0.858151f, 0.862687f, 0.867161f, 0.871572f,
100
      0.875920f, 0.880203f, 0.884421f, 0.888573f, 0.892658f, 0.896677f, 0.900627f, 0.904508f,
101
      0.908321f, 0.912063f, 0.915735f, 0.919335f, 0.922864f, 0.926320f, 0.929703f, 0.933013f,
102
      0.936248f, 0.939409f, 0.942494f, 0.945503f, 0.948436f, 0.951293f, 0.954072f, 0.956773f,
103
      0.959396f, 0.961940f, 0.964405f, 0.966790f, 0.969096f, 0.971321f, 0.973465f, 0.975528f,
104
      0.977510f, 0.979410f, 0.981228f, 0.982963f, 0.984615f, 0.986185f, 0.987671f, 0.989074f,
105
      0.990393f, 0.991627f, 0.992778f, 0.993844f, 0.994826f, 0.995722f, 0.996534f, 0.997261f,
106
      0.997902f, 0.998459f, 0.998929f, 0.999315f, 0.999615f, 0.999829f, 0.999957f, 1.000000f,
107
};
108
109
static const int tbands[NB_TBANDS+1] = {
110
      4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 136, 160, 192, 240
111
};
112
113
0
#define NB_TONAL_SKIP_BANDS 9
114
115
static opus_val32 silk_resampler_down2_hp(
116
    opus_val32                  *S,                 /* I/O  State vector [ 2 ]                                          */
117
    opus_val32                  *out,               /* O    Output signal [ floor(len/2) ]                              */
118
    const opus_val32            *in,                /* I    Input signal [ len ]                                        */
119
    int                         inLen               /* I    Number of input samples                                     */
120
)
121
0
{
122
0
    int k, len2 = inLen/2;
123
0
    opus_val32 in32, out32, out32_hp, Y, X;
124
0
    opus_val64 hp_ener = 0;
125
    /* Internal variables and state are in Q10 format */
126
0
    for( k = 0; k < len2; k++ ) {
127
        /* Convert to Q10 */
128
0
        in32 = in[ 2 * k ];
129
130
        /* All-pass section for even input sample */
131
0
        Y      = SUB32( in32, S[ 0 ] );
132
0
        X      = MULT16_32_Q15(QCONST16(0.6074371f, 15), Y);
133
0
        out32  = ADD32( S[ 0 ], X );
134
0
        S[ 0 ] = ADD32( in32, X );
135
0
        out32_hp = out32;
136
        /* Convert to Q10 */
137
0
        in32 = in[ 2 * k + 1 ];
138
139
        /* All-pass section for odd input sample, and add to output of previous section */
140
0
        Y      = SUB32( in32, S[ 1 ] );
141
0
        X      = MULT16_32_Q15(QCONST16(0.15063f, 15), Y);
142
0
        out32  = ADD32( out32, S[ 1 ] );
143
0
        out32  = ADD32( out32, X );
144
0
        S[ 1 ] = ADD32( in32, X );
145
146
0
        Y      = SUB32( -in32, S[ 2 ] );
147
0
        X      = MULT16_32_Q15(QCONST16(0.15063f, 15), Y);
148
0
        out32_hp  = ADD32( out32_hp, S[ 2 ] );
149
0
        out32_hp  = ADD32( out32_hp, X );
150
0
        S[ 2 ] = ADD32( -in32, X );
151
152
0
        hp_ener += out32_hp*(opus_val64)out32_hp;
153
        /* Add, convert back to int16 and store to output */
154
0
        out[ k ] = HALF32(out32);
155
0
    }
156
#ifdef FIXED_POINT
157
    /* len2 can be up to 480, so we shift by 8 more to make it fit. */
158
    hp_ener = hp_ener >> (2*SIG_SHIFT + 8);
159
#endif
160
0
    return (opus_val32)hp_ener;
161
0
}
162
163
static opus_val32 downmix_and_resample(downmix_func downmix, const void *_x, opus_val32 *y, opus_val32 S[3], int subframe, int offset, int c1, int c2, int C, int Fs)
164
0
{
165
0
   VARDECL(opus_val32, tmp);
166
0
   opus_val32 scale;
167
0
   int j;
168
0
   opus_val32 ret = 0;
169
0
   SAVE_STACK;
170
171
0
   if (subframe==0) return 0;
172
0
   if (Fs == 48000)
173
0
   {
174
0
      subframe *= 2;
175
0
      offset *= 2;
176
0
   } else if (Fs == 16000) {
177
0
      subframe = subframe*2/3;
178
0
      offset = offset*2/3;
179
0
   }
180
0
   ALLOC(tmp, subframe, opus_val32);
181
182
0
   downmix(_x, tmp, subframe, offset, c1, c2, C);
183
#ifdef FIXED_POINT
184
   scale = (1<<SIG_SHIFT);
185
#else
186
0
   scale = 1.f/32768;
187
0
#endif
188
0
   if (c2==-2)
189
0
      scale /= C;
190
0
   else if (c2>-1)
191
0
      scale /= 2;
192
0
   for (j=0;j<subframe;j++)
193
0
      tmp[j] *= scale;
194
0
   if (Fs == 48000)
195
0
   {
196
0
      ret = silk_resampler_down2_hp(S, y, tmp, subframe);
197
0
   } else if (Fs == 24000) {
198
0
      OPUS_COPY(y, tmp, subframe);
199
0
   } else if (Fs == 16000) {
200
0
      VARDECL(opus_val32, tmp3x);
201
0
      ALLOC(tmp3x, 3*subframe, opus_val32);
202
      /* Don't do this at home! This resampler is horrible and it's only (barely)
203
         usable for the purpose of the analysis because we don't care about all
204
         the aliasing between 8 kHz and 12 kHz. */
205
0
      for (j=0;j<subframe;j++)
206
0
      {
207
0
         tmp3x[3*j] = tmp[j];
208
0
         tmp3x[3*j+1] = tmp[j];
209
0
         tmp3x[3*j+2] = tmp[j];
210
0
      }
211
0
      silk_resampler_down2_hp(S, y, tmp3x, 3*subframe);
212
0
   }
213
0
   RESTORE_STACK;
214
0
   return ret;
215
0
}
216
217
void tonality_analysis_init(TonalityAnalysisState *tonal, opus_int32 Fs)
218
0
{
219
  /* Initialize reusable fields. */
220
0
  tonal->arch = opus_select_arch();
221
0
  tonal->Fs = Fs;
222
  /* Clear remaining fields. */
223
0
  tonality_analysis_reset(tonal);
224
0
}
225
226
void tonality_analysis_reset(TonalityAnalysisState *tonal)
227
0
{
228
  /* Clear non-reusable fields. */
229
0
  char *start = (char*)&tonal->TONALITY_ANALYSIS_RESET_START;
230
0
  OPUS_CLEAR(start, sizeof(TonalityAnalysisState) - (start - (char*)tonal));
231
0
}
232
233
void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int len)
234
0
{
235
0
   int pos;
236
0
   int curr_lookahead;
237
0
   float tonality_max;
238
0
   float tonality_avg;
239
0
   int tonality_count;
240
0
   int i;
241
0
   int pos0;
242
0
   float prob_avg;
243
0
   float prob_count;
244
0
   float prob_min, prob_max;
245
0
   float vad_prob;
246
0
   int mpos, vpos;
247
0
   int bandwidth_span;
248
249
0
   pos = tonal->read_pos;
250
0
   curr_lookahead = tonal->write_pos-tonal->read_pos;
251
0
   if (curr_lookahead<0)
252
0
      curr_lookahead += DETECT_SIZE;
253
254
0
   tonal->read_subframe += len/(tonal->Fs/400);
255
0
   while (tonal->read_subframe>=8)
256
0
   {
257
0
      tonal->read_subframe -= 8;
258
0
      tonal->read_pos++;
259
0
   }
260
0
   if (tonal->read_pos>=DETECT_SIZE)
261
0
      tonal->read_pos-=DETECT_SIZE;
262
263
   /* On long frames, look at the second analysis window rather than the first. */
264
0
   if (len > tonal->Fs/50 && pos != tonal->write_pos)
265
0
   {
266
0
      pos++;
267
0
      if (pos==DETECT_SIZE)
268
0
         pos=0;
269
0
   }
270
0
   if (pos == tonal->write_pos)
271
0
      pos--;
272
0
   if (pos<0)
273
0
      pos = DETECT_SIZE-1;
274
0
   pos0 = pos;
275
0
   OPUS_COPY(info_out, &tonal->info[pos], 1);
276
0
   if (!info_out->valid)
277
0
      return;
278
0
   tonality_max = tonality_avg = info_out->tonality;
279
0
   tonality_count = 1;
280
   /* Look at the neighbouring frames and pick largest bandwidth found (to be safe). */
281
0
   bandwidth_span = 6;
282
   /* If possible, look ahead for a tone to compensate for the delay in the tone detector. */
283
0
   for (i=0;i<3;i++)
284
0
   {
285
0
      pos++;
286
0
      if (pos==DETECT_SIZE)
287
0
         pos = 0;
288
0
      if (pos == tonal->write_pos)
289
0
         break;
290
0
      tonality_max = MAX32(tonality_max, tonal->info[pos].tonality);
291
0
      tonality_avg += tonal->info[pos].tonality;
292
0
      tonality_count++;
293
0
      info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth);
294
0
      bandwidth_span--;
295
0
   }
296
0
   pos = pos0;
297
   /* Look back in time to see if any has a wider bandwidth than the current frame. */
298
0
   for (i=0;i<bandwidth_span;i++)
299
0
   {
300
0
      pos--;
301
0
      if (pos < 0)
302
0
         pos = DETECT_SIZE-1;
303
0
      if (pos == tonal->write_pos)
304
0
         break;
305
0
      info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth);
306
0
   }
307
0
   info_out->tonality = MAX32(tonality_avg/tonality_count, tonality_max-.2f);
308
309
0
   mpos = vpos = pos0;
310
   /* If we have enough look-ahead, compensate for the ~5-frame delay in the music prob and
311
      ~1 frame delay in the VAD prob. */
312
0
   if (curr_lookahead > 15)
313
0
   {
314
0
      mpos += 5;
315
0
      if (mpos>=DETECT_SIZE)
316
0
         mpos -= DETECT_SIZE;
317
0
      vpos += 1;
318
0
      if (vpos>=DETECT_SIZE)
319
0
         vpos -= DETECT_SIZE;
320
0
   }
321
322
   /* The following calculations attempt to minimize a "badness function"
323
      for the transition. When switching from speech to music, the badness
324
      of switching at frame k is
325
      b_k = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T)
326
      where
327
      v_i is the activity probability (VAD) at frame i,
328
      p_i is the music probability at frame i
329
      T is the probability threshold for switching
330
      S is the penalty for switching during active audio rather than silence
331
      the current frame has index i=0
332
333
      Rather than apply badness to directly decide when to switch, what we compute
334
      instead is the threshold for which the optimal switching point is now. When
335
      considering whether to switch now (frame 0) or at frame k, we have:
336
      S*v_0 = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T)
337
      which gives us:
338
      T = ( \sum_{i=0}^{k-1} v_i*p_i + S*(v_k-v_0) ) / ( \sum_{i=0}^{k-1} v_i )
339
      We take the min threshold across all positive values of k (up to the maximum
340
      amount of lookahead we have) to give us the threshold for which the current
341
      frame is the optimal switch point.
342
343
      The last step is that we need to consider whether we want to switch at all.
344
      For that we use the average of the music probability over the entire window.
345
      If the threshold is higher than that average we're not going to
346
      switch, so we compute a min with the average as well. The result of all these
347
      min operations is music_prob_min, which gives the threshold for switching to music
348
      if we're currently encoding for speech.
349
350
      We do the exact opposite to compute music_prob_max which is used for switching
351
      from music to speech.
352
    */
353
0
   prob_min = 1.f;
354
0
   prob_max = 0.f;
355
0
   vad_prob = tonal->info[vpos].activity_probability;
356
0
   prob_count = MAX16(.1f, vad_prob);
357
0
   prob_avg = MAX16(.1f, vad_prob)*tonal->info[mpos].music_prob;
358
0
   while (1)
359
0
   {
360
0
      float pos_vad;
361
0
      mpos++;
362
0
      if (mpos==DETECT_SIZE)
363
0
         mpos = 0;
364
0
      if (mpos == tonal->write_pos)
365
0
         break;
366
0
      vpos++;
367
0
      if (vpos==DETECT_SIZE)
368
0
         vpos = 0;
369
0
      if (vpos == tonal->write_pos)
370
0
         break;
371
0
      pos_vad = tonal->info[vpos].activity_probability;
372
0
      prob_min = MIN16((prob_avg - TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_min);
373
0
      prob_max = MAX16((prob_avg + TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_max);
374
0
      prob_count += MAX16(.1f, pos_vad);
375
0
      prob_avg += MAX16(.1f, pos_vad)*tonal->info[mpos].music_prob;
376
0
   }
377
0
   info_out->music_prob = prob_avg/prob_count;
378
0
   prob_min = MIN16(prob_avg/prob_count, prob_min);
379
0
   prob_max = MAX16(prob_avg/prob_count, prob_max);
380
0
   prob_min = MAX16(prob_min, 0.f);
381
0
   prob_max = MIN16(prob_max, 1.f);
382
383
   /* If we don't have enough look-ahead, do our best to make a decent decision. */
384
0
   if (curr_lookahead < 10)
385
0
   {
386
0
      float pmin, pmax;
387
0
      pmin = prob_min;
388
0
      pmax = prob_max;
389
0
      pos = pos0;
390
      /* Look for min/max in the past. */
391
0
      for (i=0;i<IMIN(tonal->count-1, 15);i++)
392
0
      {
393
0
         pos--;
394
0
         if (pos < 0)
395
0
            pos = DETECT_SIZE-1;
396
0
         pmin = MIN16(pmin, tonal->info[pos].music_prob);
397
0
         pmax = MAX16(pmax, tonal->info[pos].music_prob);
398
0
      }
399
      /* Bias against switching on active audio. */
400
0
      pmin = MAX16(0.f, pmin - .1f*vad_prob);
401
0
      pmax = MIN16(1.f, pmax + .1f*vad_prob);
402
0
      prob_min += (1.f-.1f*curr_lookahead)*(pmin - prob_min);
403
0
      prob_max += (1.f-.1f*curr_lookahead)*(pmax - prob_max);
404
0
   }
405
0
   info_out->music_prob_min = prob_min;
406
0
   info_out->music_prob_max = prob_max;
407
408
   /* printf("%f %f %f %f %f\n", prob_min, prob_max, prob_avg/prob_count, vad_prob, info_out->music_prob); */
409
0
}
410
411
static const float std_feature_bias[9] = {
412
      5.684947f, 3.475288f, 1.770634f, 1.599784f, 3.773215f,
413
      2.163313f, 1.260756f, 1.116868f, 1.918795f
414
};
415
416
0
#define LEAKAGE_OFFSET 2.5f
417
0
#define LEAKAGE_SLOPE 2.f
418
419
#ifdef FIXED_POINT
420
/* For fixed-point, the input is +/-2^15 shifted up by SIG_SHIFT, so we need to
421
   compensate for that in the energy. */
422
#define SCALE_COMPENS (1.f/((opus_int32)1<<(15+SIG_SHIFT)))
423
#define SCALE_ENER(e) ((SCALE_COMPENS*SCALE_COMPENS)*(e))
424
#else
425
0
#define SCALE_ENER(e) (e)
426
#endif
427
428
#ifdef FIXED_POINT
429
static int is_digital_silence32(const opus_val32* pcm, int frame_size, int channels, int lsb_depth)
430
{
431
   int silence = 0;
432
   opus_val32 sample_max = 0;
433
#ifdef MLP_TRAINING
434
   return 0;
435
#endif
436
   sample_max = celt_maxabs32(pcm, frame_size*channels);
437
438
   silence = (sample_max == 0);
439
   (void)lsb_depth;
440
   return silence;
441
}
442
#else
443
0
#define is_digital_silence32(pcm, frame_size, channels, lsb_depth) is_digital_silence(pcm, frame_size, channels, lsb_depth)
444
#endif
445
446
static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt_mode, const void *x, int len, int offset, int c1, int c2, int C, int lsb_depth, downmix_func downmix)
447
0
{
448
0
    int i, b;
449
0
    const kiss_fft_state *kfft;
450
0
    VARDECL(kiss_fft_cpx, in);
451
0
    VARDECL(kiss_fft_cpx, out);
452
0
    int N = 480, N2=240;
453
0
    float * OPUS_RESTRICT A = tonal->angle;
454
0
    float * OPUS_RESTRICT dA = tonal->d_angle;
455
0
    float * OPUS_RESTRICT d2A = tonal->d2_angle;
456
0
    VARDECL(float, tonality);
457
0
    VARDECL(float, noisiness);
458
0
    float band_tonality[NB_TBANDS];
459
0
    float logE[NB_TBANDS];
460
0
    float BFCC[8];
461
0
    float features[25];
462
0
    float frame_tonality;
463
0
    float max_frame_tonality;
464
    /*float tw_sum=0;*/
465
0
    float frame_noisiness;
466
0
    const float pi4 = (float)(M_PI*M_PI*M_PI*M_PI);
467
0
    float slope=0;
468
0
    float frame_stationarity;
469
0
    float relativeE;
470
0
    float frame_probs[2];
471
0
    float alpha, alphaE, alphaE2;
472
0
    float frame_loudness;
473
0
    float bandwidth_mask;
474
0
    int is_masked[NB_TBANDS+1];
475
0
    int bandwidth=0;
476
0
    float maxE = 0;
477
0
    float noise_floor;
478
0
    int remaining;
479
0
    AnalysisInfo *info;
480
0
    float hp_ener;
481
0
    float tonality2[240];
482
0
    float midE[8];
483
0
    float spec_variability=0;
484
0
    float band_log2[NB_TBANDS+1];
485
0
    float leakage_from[NB_TBANDS+1];
486
0
    float leakage_to[NB_TBANDS+1];
487
0
    float layer_out[MAX_NEURONS];
488
0
    float below_max_pitch;
489
0
    float above_max_pitch;
490
0
    int is_silence;
491
0
    SAVE_STACK;
492
493
0
    if (!tonal->initialized)
494
0
    {
495
0
       tonal->mem_fill = 240;
496
0
       tonal->initialized = 1;
497
0
    }
498
0
    alpha = 1.f/IMIN(10, 1+tonal->count);
499
0
    alphaE = 1.f/IMIN(25, 1+tonal->count);
500
    /* Noise floor related decay for bandwidth detection: -2.2 dB/second */
501
0
    alphaE2 = 1.f/IMIN(100, 1+tonal->count);
502
0
    if (tonal->count <= 1) alphaE2 = 1;
503
504
0
    if (tonal->Fs == 48000)
505
0
    {
506
       /* len and offset are now at 24 kHz. */
507
0
       len/= 2;
508
0
       offset /= 2;
509
0
    } else if (tonal->Fs == 16000) {
510
0
       len = 3*len/2;
511
0
       offset = 3*offset/2;
512
0
    }
513
514
0
    kfft = celt_mode->mdct.kfft[0];
515
0
    tonal->hp_ener_accum += (float)downmix_and_resample(downmix, x,
516
0
          &tonal->inmem[tonal->mem_fill], tonal->downmix_state,
517
0
          IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C, tonal->Fs);
518
0
    if (tonal->mem_fill+len < ANALYSIS_BUF_SIZE)
519
0
    {
520
0
       tonal->mem_fill += len;
521
       /* Don't have enough to update the analysis */
522
0
       RESTORE_STACK;
523
0
       return;
524
0
    }
525
0
    hp_ener = tonal->hp_ener_accum;
526
0
    info = &tonal->info[tonal->write_pos++];
527
0
    if (tonal->write_pos>=DETECT_SIZE)
528
0
       tonal->write_pos-=DETECT_SIZE;
529
530
0
    is_silence = is_digital_silence32(tonal->inmem, ANALYSIS_BUF_SIZE, 1, lsb_depth);
531
532
0
    ALLOC(in, 480, kiss_fft_cpx);
533
0
    ALLOC(out, 480, kiss_fft_cpx);
534
0
    ALLOC(tonality, 240, float);
535
0
    ALLOC(noisiness, 240, float);
536
0
    for (i=0;i<N2;i++)
537
0
    {
538
0
       float w = analysis_window[i];
539
0
       in[i].r = (kiss_fft_scalar)(w*tonal->inmem[i]);
540
0
       in[i].i = (kiss_fft_scalar)(w*tonal->inmem[N2+i]);
541
0
       in[N-i-1].r = (kiss_fft_scalar)(w*tonal->inmem[N-i-1]);
542
0
       in[N-i-1].i = (kiss_fft_scalar)(w*tonal->inmem[N+N2-i-1]);
543
0
    }
544
0
    OPUS_MOVE(tonal->inmem, tonal->inmem+ANALYSIS_BUF_SIZE-240, 240);
545
0
    remaining = len - (ANALYSIS_BUF_SIZE-tonal->mem_fill);
546
0
    tonal->hp_ener_accum = (float)downmix_and_resample(downmix, x,
547
0
          &tonal->inmem[240], tonal->downmix_state, remaining,
548
0
          offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C, tonal->Fs);
549
0
    tonal->mem_fill = 240 + remaining;
550
0
    if (is_silence)
551
0
    {
552
       /* On silence, copy the previous analysis. */
553
0
       int prev_pos = tonal->write_pos-2;
554
0
       if (prev_pos < 0)
555
0
          prev_pos += DETECT_SIZE;
556
0
       OPUS_COPY(info, &tonal->info[prev_pos], 1);
557
0
       RESTORE_STACK;
558
0
       return;
559
0
    }
560
0
    opus_fft(kfft, in, out, tonal->arch);
561
0
#ifndef FIXED_POINT
562
    /* If there's any NaN on the input, the entire output will be NaN, so we only need to check one value. */
563
0
    if (celt_isnan(out[0].r))
564
0
    {
565
0
       info->valid = 0;
566
0
       RESTORE_STACK;
567
0
       return;
568
0
    }
569
0
#endif
570
571
0
    for (i=1;i<N2;i++)
572
0
    {
573
0
       float X1r, X2r, X1i, X2i;
574
0
       float angle, d_angle, d2_angle;
575
0
       float angle2, d_angle2, d2_angle2;
576
0
       float mod1, mod2, avg_mod;
577
0
       X1r = (float)out[i].r+out[N-i].r;
578
0
       X1i = (float)out[i].i-out[N-i].i;
579
0
       X2r = (float)out[i].i+out[N-i].i;
580
0
       X2i = (float)out[N-i].r-out[i].r;
581
582
0
       angle = (float)(.5f/M_PI)*fast_atan2f(X1i, X1r);
583
0
       d_angle = angle - A[i];
584
0
       d2_angle = d_angle - dA[i];
585
586
0
       angle2 = (float)(.5f/M_PI)*fast_atan2f(X2i, X2r);
587
0
       d_angle2 = angle2 - angle;
588
0
       d2_angle2 = d_angle2 - d_angle;
589
590
0
       mod1 = d2_angle - (float)float2int(d2_angle);
591
0
       noisiness[i] = ABS16(mod1);
592
0
       mod1 *= mod1;
593
0
       mod1 *= mod1;
594
595
0
       mod2 = d2_angle2 - (float)float2int(d2_angle2);
596
0
       noisiness[i] += ABS16(mod2);
597
0
       mod2 *= mod2;
598
0
       mod2 *= mod2;
599
600
0
       avg_mod = .25f*(d2A[i]+mod1+2*mod2);
601
       /* This introduces an extra delay of 2 frames in the detection. */
602
0
       tonality[i] = 1.f/(1.f+40.f*16.f*pi4*avg_mod)-.015f;
603
       /* No delay on this detection, but it's less reliable. */
604
0
       tonality2[i] = 1.f/(1.f+40.f*16.f*pi4*mod2)-.015f;
605
606
0
       A[i] = angle2;
607
0
       dA[i] = d_angle2;
608
0
       d2A[i] = mod2;
609
0
    }
610
0
    for (i=2;i<N2-1;i++)
611
0
    {
612
0
       float tt = MIN32(tonality2[i], MAX32(tonality2[i-1], tonality2[i+1]));
613
0
       tonality[i] = .9f*MAX32(tonality[i], tt-.1f);
614
0
    }
615
0
    frame_tonality = 0;
616
0
    max_frame_tonality = 0;
617
    /*tw_sum = 0;*/
618
0
    info->activity = 0;
619
0
    frame_noisiness = 0;
620
0
    frame_stationarity = 0;
621
0
    if (!tonal->count)
622
0
    {
623
0
       for (b=0;b<NB_TBANDS;b++)
624
0
       {
625
0
          tonal->lowE[b] = 1e10;
626
0
          tonal->highE[b] = -1e10;
627
0
       }
628
0
    }
629
0
    relativeE = 0;
630
0
    frame_loudness = 0;
631
    /* The energy of the very first band is special because of DC. */
632
0
    {
633
0
       float E = 0;
634
0
       float X1r, X2r;
635
0
       X1r = 2*(float)out[0].r;
636
0
       X2r = 2*(float)out[0].i;
637
0
       E = X1r*X1r + X2r*X2r;
638
0
       for (i=1;i<4;i++)
639
0
       {
640
0
          float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
641
0
                     + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
642
0
          E += binE;
643
0
       }
644
0
       E = SCALE_ENER(E);
645
0
       band_log2[0] = .5f*1.442695f*(float)log(E+1e-10f);
646
0
    }
647
0
    for (b=0;b<NB_TBANDS;b++)
648
0
    {
649
0
       float E=0, tE=0, nE=0;
650
0
       float L1, L2;
651
0
       float stationarity;
652
0
       for (i=tbands[b];i<tbands[b+1];i++)
653
0
       {
654
0
          float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
655
0
                     + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
656
0
          binE = SCALE_ENER(binE);
657
0
          E += binE;
658
0
          tE += binE*MAX32(0, tonality[i]);
659
0
          nE += binE*2.f*(.5f-noisiness[i]);
660
0
       }
661
0
#ifndef FIXED_POINT
662
       /* Check for extreme band energies that could cause NaNs later. */
663
0
       if (!(E<1e9f) || celt_isnan(E))
664
0
       {
665
0
          info->valid = 0;
666
0
          RESTORE_STACK;
667
0
          return;
668
0
       }
669
0
#endif
670
671
0
       tonal->E[tonal->E_count][b] = E;
672
0
       frame_noisiness += nE/(1e-15f+E);
673
674
0
       frame_loudness += (float)sqrt(E+1e-10f);
675
0
       logE[b] = (float)log(E+1e-10f);
676
0
       band_log2[b+1] = .5f*1.442695f*(float)log(E+1e-10f);
677
0
       tonal->logE[tonal->E_count][b] = logE[b];
678
0
       if (tonal->count==0)
679
0
          tonal->highE[b] = tonal->lowE[b] = logE[b];
680
0
       if (tonal->highE[b] > tonal->lowE[b] + 7.5)
681
0
       {
682
0
          if (tonal->highE[b] - logE[b] > logE[b] - tonal->lowE[b])
683
0
             tonal->highE[b] -= .01f;
684
0
          else
685
0
             tonal->lowE[b] += .01f;
686
0
       }
687
0
       if (logE[b] > tonal->highE[b])
688
0
       {
689
0
          tonal->highE[b] = logE[b];
690
0
          tonal->lowE[b] = MAX32(tonal->highE[b]-15, tonal->lowE[b]);
691
0
       } else if (logE[b] < tonal->lowE[b])
692
0
       {
693
0
          tonal->lowE[b] = logE[b];
694
0
          tonal->highE[b] = MIN32(tonal->lowE[b]+15, tonal->highE[b]);
695
0
       }
696
0
       relativeE += (logE[b]-tonal->lowE[b])/(1e-5f + (tonal->highE[b]-tonal->lowE[b]));
697
698
0
       L1=L2=0;
699
0
       for (i=0;i<NB_FRAMES;i++)
700
0
       {
701
0
          L1 += (float)sqrt(tonal->E[i][b]);
702
0
          L2 += tonal->E[i][b];
703
0
       }
704
705
0
       stationarity = MIN16(0.99f,L1/(float)sqrt(1e-15+NB_FRAMES*L2));
706
0
       stationarity *= stationarity;
707
0
       stationarity *= stationarity;
708
0
       frame_stationarity += stationarity;
709
0
       /*band_tonality[b] = tE/(1e-15+E)*/;
710
0
       band_tonality[b] = MAX16(tE/(1e-15f+E), stationarity*tonal->prev_band_tonality[b]);
711
#if 0
712
       if (b>=NB_TONAL_SKIP_BANDS)
713
       {
714
          frame_tonality += tweight[b]*band_tonality[b];
715
          tw_sum += tweight[b];
716
       }
717
#else
718
0
       frame_tonality += band_tonality[b];
719
0
       if (b>=NB_TBANDS-NB_TONAL_SKIP_BANDS)
720
0
          frame_tonality -= band_tonality[b-NB_TBANDS+NB_TONAL_SKIP_BANDS];
721
0
#endif
722
0
       max_frame_tonality = MAX16(max_frame_tonality, (1.f+.03f*(b-NB_TBANDS))*frame_tonality);
723
0
       slope += band_tonality[b]*(b-8);
724
       /*printf("%f %f ", band_tonality[b], stationarity);*/
725
0
       tonal->prev_band_tonality[b] = band_tonality[b];
726
0
    }
727
728
0
    leakage_from[0] = band_log2[0];
729
0
    leakage_to[0] = band_log2[0] - LEAKAGE_OFFSET;
730
0
    for (b=1;b<NB_TBANDS+1;b++)
731
0
    {
732
0
       float leak_slope = LEAKAGE_SLOPE*(tbands[b]-tbands[b-1])/4;
733
0
       leakage_from[b] = MIN16(leakage_from[b-1]+leak_slope, band_log2[b]);
734
0
       leakage_to[b] = MAX16(leakage_to[b-1]-leak_slope, band_log2[b]-LEAKAGE_OFFSET);
735
0
    }
736
0
    for (b=NB_TBANDS-2;b>=0;b--)
737
0
    {
738
0
       float leak_slope = LEAKAGE_SLOPE*(tbands[b+1]-tbands[b])/4;
739
0
       leakage_from[b] = MIN16(leakage_from[b+1]+leak_slope, leakage_from[b]);
740
0
       leakage_to[b] = MAX16(leakage_to[b+1]-leak_slope, leakage_to[b]);
741
0
    }
742
0
    celt_assert(NB_TBANDS+1 <= LEAK_BANDS);
743
0
    for (b=0;b<NB_TBANDS+1;b++)
744
0
    {
745
       /* leak_boost[] is made up of two terms. The first, based on leakage_to[],
746
          represents the boost needed to overcome the amount of analysis leakage
747
          cause in a weaker band b by louder neighbouring bands.
748
          The second, based on leakage_from[], applies to a loud band b for
749
          which the quantization noise causes synthesis leakage to the weaker
750
          neighbouring bands. */
751
0
       float boost = MAX16(0, leakage_to[b] - band_log2[b]) +
752
0
             MAX16(0, band_log2[b] - (leakage_from[b]+LEAKAGE_OFFSET));
753
0
       info->leak_boost[b] = IMIN(255, (int)floor(.5 + 64.f*boost));
754
0
    }
755
0
    for (;b<LEAK_BANDS;b++) info->leak_boost[b] = 0;
756
757
0
    for (i=0;i<NB_FRAMES;i++)
758
0
    {
759
0
       int j;
760
0
       float mindist = 1e15f;
761
0
       for (j=0;j<NB_FRAMES;j++)
762
0
       {
763
0
          int k;
764
0
          float dist=0;
765
0
          for (k=0;k<NB_TBANDS;k++)
766
0
          {
767
0
             float tmp;
768
0
             tmp = tonal->logE[i][k] - tonal->logE[j][k];
769
0
             dist += tmp*tmp;
770
0
          }
771
0
          if (j!=i)
772
0
             mindist = MIN32(mindist, dist);
773
0
       }
774
0
       spec_variability += mindist;
775
0
    }
776
0
    spec_variability = (float)sqrt(spec_variability/NB_FRAMES/NB_TBANDS);
777
0
    bandwidth_mask = 0;
778
0
    bandwidth = 0;
779
0
    maxE = 0;
780
0
    noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8)));
781
0
    noise_floor *= noise_floor;
782
0
    below_max_pitch=0;
783
0
    above_max_pitch=0;
784
0
    for (b=0;b<NB_TBANDS;b++)
785
0
    {
786
0
       float E=0;
787
0
       float Em;
788
0
       int band_start, band_end;
789
       /* Keep a margin of 300 Hz for aliasing */
790
0
       band_start = tbands[b];
791
0
       band_end = tbands[b+1];
792
0
       for (i=band_start;i<band_end;i++)
793
0
       {
794
0
          float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
795
0
                     + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
796
0
          E += binE;
797
0
       }
798
0
       E = SCALE_ENER(E);
799
0
       maxE = MAX32(maxE, E);
800
0
       if (band_start < 64)
801
0
       {
802
0
          below_max_pitch += E;
803
0
       } else {
804
0
          above_max_pitch += E;
805
0
       }
806
0
       tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
807
0
       Em = MAX32(E, tonal->meanE[b]);
808
       /* Consider the band "active" only if all these conditions are met:
809
          1) less than 90 dB below the peak band (maximal masking possible considering
810
             both the ATH and the loudness-dependent slope of the spreading function)
811
          2) above the PCM quantization noise floor
812
          We use b+1 because the first CELT band isn't included in tbands[]
813
       */
814
0
       if (E*1e9f > maxE && (Em > 3*noise_floor*(band_end-band_start) || E > noise_floor*(band_end-band_start)))
815
0
          bandwidth = b+1;
816
       /* Check if the band is masked (see below). */
817
0
       is_masked[b] = E < (tonal->prev_bandwidth >= b+1  ? .01f : .05f)*bandwidth_mask;
818
       /* Use a simple follower with 13 dB/Bark slope for spreading function. */
819
0
       bandwidth_mask = MAX32(.05f*bandwidth_mask, E);
820
0
    }
821
    /* Special case for the last two bands, for which we don't have spectrum but only
822
       the energy above 12 kHz. The difficulty here is that the high-pass we use
823
       leaks some LF energy, so we need to increase the threshold without accidentally cutting
824
       off the band. */
825
0
    if (tonal->Fs == 48000) {
826
0
       float noise_ratio;
827
0
       float Em;
828
0
       float E = hp_ener*(1.f/(60*60));
829
0
       noise_ratio = tonal->prev_bandwidth==20 ? 10.f : 30.f;
830
831
#ifdef FIXED_POINT
832
       /* silk_resampler_down2_hp() shifted right by an extra 8 bits. */
833
       E *= 256.f*(1.f/Q15ONE)*(1.f/Q15ONE);
834
#endif
835
0
       above_max_pitch += E;
836
0
       tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
837
0
       Em = MAX32(E, tonal->meanE[b]);
838
0
       if (Em > 3*noise_ratio*noise_floor*160 || E > noise_ratio*noise_floor*160)
839
0
          bandwidth = 20;
840
       /* Check if the band is masked (see below). */
841
0
       is_masked[b] = E < (tonal->prev_bandwidth == 20  ? .01f : .05f)*bandwidth_mask;
842
0
    }
843
0
    if (above_max_pitch > below_max_pitch)
844
0
       info->max_pitch_ratio = below_max_pitch/above_max_pitch;
845
0
    else
846
0
       info->max_pitch_ratio = 1;
847
    /* In some cases, resampling aliasing can create a small amount of energy in the first band
848
       being cut. So if the last band is masked, we don't include it.  */
849
0
    if (bandwidth == 20 && is_masked[NB_TBANDS])
850
0
       bandwidth-=2;
851
0
    else if (bandwidth > 0 && bandwidth <= NB_TBANDS && is_masked[bandwidth-1])
852
0
       bandwidth--;
853
0
    if (tonal->count<=2)
854
0
       bandwidth = 20;
855
0
    frame_loudness = 20*(float)log10(frame_loudness);
856
0
    tonal->Etracker = MAX32(tonal->Etracker-.003f, frame_loudness);
857
0
    tonal->lowECount *= (1-alphaE);
858
0
    if (frame_loudness < tonal->Etracker-30)
859
0
       tonal->lowECount += alphaE;
860
861
0
    for (i=0;i<8;i++)
862
0
    {
863
0
       float sum=0;
864
0
       for (b=0;b<16;b++)
865
0
          sum += dct_table[i*16+b]*logE[b];
866
0
       BFCC[i] = sum;
867
0
    }
868
0
    for (i=0;i<8;i++)
869
0
    {
870
0
       float sum=0;
871
0
       for (b=0;b<16;b++)
872
0
          sum += dct_table[i*16+b]*.5f*(tonal->highE[b]+tonal->lowE[b]);
873
0
       midE[i] = sum;
874
0
    }
875
876
0
    frame_stationarity /= NB_TBANDS;
877
0
    relativeE /= NB_TBANDS;
878
0
    if (tonal->count<10)
879
0
       relativeE = .5f;
880
0
    frame_noisiness /= NB_TBANDS;
881
0
#if 1
882
0
    info->activity = frame_noisiness + (1-frame_noisiness)*relativeE;
883
#else
884
    info->activity = .5*(1+frame_noisiness-frame_stationarity);
885
#endif
886
0
    frame_tonality = (max_frame_tonality/(NB_TBANDS-NB_TONAL_SKIP_BANDS));
887
0
    frame_tonality = MAX16(frame_tonality, tonal->prev_tonality*.8f);
888
0
    tonal->prev_tonality = frame_tonality;
889
890
0
    slope /= 8*8;
891
0
    info->tonality_slope = slope;
892
893
0
    tonal->E_count = (tonal->E_count+1)%NB_FRAMES;
894
0
    tonal->count = IMIN(tonal->count+1, ANALYSIS_COUNT_MAX);
895
0
    info->tonality = frame_tonality;
896
897
0
    for (i=0;i<4;i++)
898
0
       features[i] = -0.12299f*(BFCC[i]+tonal->mem[i+24]) + 0.49195f*(tonal->mem[i]+tonal->mem[i+16]) + 0.69693f*tonal->mem[i+8] - 1.4349f*tonal->cmean[i];
899
900
0
    for (i=0;i<4;i++)
901
0
       tonal->cmean[i] = (1-alpha)*tonal->cmean[i] + alpha*BFCC[i];
902
903
0
    for (i=0;i<4;i++)
904
0
        features[4+i] = 0.63246f*(BFCC[i]-tonal->mem[i+24]) + 0.31623f*(tonal->mem[i]-tonal->mem[i+16]);
905
0
    for (i=0;i<3;i++)
906
0
        features[8+i] = 0.53452f*(BFCC[i]+tonal->mem[i+24]) - 0.26726f*(tonal->mem[i]+tonal->mem[i+16]) -0.53452f*tonal->mem[i+8];
907
908
0
    if (tonal->count > 5)
909
0
    {
910
0
       for (i=0;i<9;i++)
911
0
          tonal->std[i] = (1-alpha)*tonal->std[i] + alpha*features[i]*features[i];
912
0
    }
913
0
    for (i=0;i<4;i++)
914
0
       features[i] = BFCC[i]-midE[i];
915
916
0
    for (i=0;i<8;i++)
917
0
    {
918
0
       tonal->mem[i+24] = tonal->mem[i+16];
919
0
       tonal->mem[i+16] = tonal->mem[i+8];
920
0
       tonal->mem[i+8] = tonal->mem[i];
921
0
       tonal->mem[i] = BFCC[i];
922
0
    }
923
0
    for (i=0;i<9;i++)
924
0
       features[11+i] = (float)sqrt(tonal->std[i]) - std_feature_bias[i];
925
0
    features[18] = spec_variability - 0.78f;
926
0
    features[20] = info->tonality - 0.154723f;
927
0
    features[21] = info->activity - 0.724643f;
928
0
    features[22] = frame_stationarity - 0.743717f;
929
0
    features[23] = info->tonality_slope + 0.069216f;
930
0
    features[24] = tonal->lowECount - 0.067930f;
931
932
0
    analysis_compute_dense(&layer0, layer_out, features);
933
0
    analysis_compute_gru(&layer1, tonal->rnn_state, layer_out);
934
0
    analysis_compute_dense(&layer2, frame_probs, tonal->rnn_state);
935
936
    /* Probability of speech or music vs noise */
937
0
    info->activity_probability = frame_probs[1];
938
0
    info->music_prob = frame_probs[0];
939
940
    /*printf("%f %f %f\n", frame_probs[0], frame_probs[1], info->music_prob);*/
941
#ifdef MLP_TRAINING
942
    for (i=0;i<25;i++)
943
       printf("%f ", features[i]);
944
    printf("\n");
945
#endif
946
947
0
    info->bandwidth = bandwidth;
948
0
    tonal->prev_bandwidth = bandwidth;
949
    /*printf("%d %d\n", info->bandwidth, info->opus_bandwidth);*/
950
0
    info->noisiness = frame_noisiness;
951
0
    info->valid = 1;
952
0
    RESTORE_STACK;
953
0
}
954
955
void run_analysis(TonalityAnalysisState *analysis, const CELTMode *celt_mode, const void *analysis_pcm,
956
                 int analysis_frame_size, int frame_size, int c1, int c2, int C, opus_int32 Fs,
957
                 int lsb_depth, downmix_func downmix, AnalysisInfo *analysis_info)
958
0
{
959
0
   int offset;
960
0
   int pcm_len;
961
962
0
   analysis_frame_size -= analysis_frame_size&1;
963
0
   if (analysis_pcm != NULL)
964
0
   {
965
      /* Avoid overflow/wrap-around of the analysis buffer */
966
0
      analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/50, analysis_frame_size);
967
968
0
      pcm_len = analysis_frame_size - analysis->analysis_offset;
969
0
      offset = analysis->analysis_offset;
970
0
      while (pcm_len>0) {
971
0
         tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(Fs/50, pcm_len), offset, c1, c2, C, lsb_depth, downmix);
972
0
         offset += Fs/50;
973
0
         pcm_len -= Fs/50;
974
0
      }
975
0
      analysis->analysis_offset = analysis_frame_size;
976
977
0
      analysis->analysis_offset -= frame_size;
978
0
   }
979
980
0
   tonality_get_info(analysis, analysis_info, frame_size);
981
0
}
982
983
#endif /* DISABLE_FLOAT_API */