/src/vorbis/lib/smallft.c
Line | Count | Source (jump to first uncovered line) |
1 | | /******************************************************************** |
2 | | * * |
3 | | * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. * |
4 | | * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * |
5 | | * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * |
6 | | * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * |
7 | | * * |
8 | | * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 * |
9 | | * by the Xiph.Org Foundation https://xiph.org/ * |
10 | | * * |
11 | | ******************************************************************** |
12 | | |
13 | | function: *unnormalized* fft transform |
14 | | |
15 | | ********************************************************************/ |
16 | | |
17 | | /* FFT implementation from OggSquish, minus cosine transforms, |
18 | | * minus all but radix 2/4 case. In Vorbis we only need this |
19 | | * cut-down version. |
20 | | * |
21 | | * To do more than just power-of-two sized vectors, see the full |
22 | | * version I wrote for NetLib. |
23 | | * |
24 | | * Note that the packing is a little strange; rather than the FFT r/i |
25 | | * packing following R_0, I_n, R_1, I_1, R_2, I_2 ... R_n-1, I_n-1, |
26 | | * it follows R_0, R_1, I_1, R_2, I_2 ... R_n-1, I_n-1, I_n like the |
27 | | * FORTRAN version |
28 | | */ |
29 | | |
30 | | #include <stdlib.h> |
31 | | #include <string.h> |
32 | | #include <math.h> |
33 | | #include "smallft.h" |
34 | | #include "os.h" |
35 | | #include "misc.h" |
36 | | |
37 | 0 | static void drfti1(int n, float *wa, int *ifac){ |
38 | 0 | static int ntryh[4] = { 4,2,3,5 }; |
39 | 0 | static float tpi = 6.28318530717958648f; |
40 | 0 | float arg,argh,argld,fi; |
41 | 0 | int ntry=0,i,j=-1; |
42 | 0 | int k1, l1, l2, ib; |
43 | 0 | int ld, ii, ip, is, nq, nr; |
44 | 0 | int ido, ipm, nfm1; |
45 | 0 | int nl=n; |
46 | 0 | int nf=0; |
47 | |
|
48 | 0 | L101: |
49 | 0 | j++; |
50 | 0 | if (j < 4) |
51 | 0 | ntry=ntryh[j]; |
52 | 0 | else |
53 | 0 | ntry+=2; |
54 | |
|
55 | 0 | L104: |
56 | 0 | nq=nl/ntry; |
57 | 0 | nr=nl-ntry*nq; |
58 | 0 | if (nr!=0) goto L101; |
59 | | |
60 | 0 | nf++; |
61 | 0 | ifac[nf+1]=ntry; |
62 | 0 | nl=nq; |
63 | 0 | if(ntry!=2)goto L107; |
64 | 0 | if(nf==1)goto L107; |
65 | | |
66 | 0 | for (i=1;i<nf;i++){ |
67 | 0 | ib=nf-i+1; |
68 | 0 | ifac[ib+1]=ifac[ib]; |
69 | 0 | } |
70 | 0 | ifac[2] = 2; |
71 | |
|
72 | 0 | L107: |
73 | 0 | if(nl!=1)goto L104; |
74 | 0 | ifac[0]=n; |
75 | 0 | ifac[1]=nf; |
76 | 0 | argh=tpi/n; |
77 | 0 | is=0; |
78 | 0 | nfm1=nf-1; |
79 | 0 | l1=1; |
80 | |
|
81 | 0 | if(nfm1==0)return; |
82 | | |
83 | 0 | for (k1=0;k1<nfm1;k1++){ |
84 | 0 | ip=ifac[k1+2]; |
85 | 0 | ld=0; |
86 | 0 | l2=l1*ip; |
87 | 0 | ido=n/l2; |
88 | 0 | ipm=ip-1; |
89 | |
|
90 | 0 | for (j=0;j<ipm;j++){ |
91 | 0 | ld+=l1; |
92 | 0 | i=is; |
93 | 0 | argld=(float)ld*argh; |
94 | 0 | fi=0.f; |
95 | 0 | for (ii=2;ii<ido;ii+=2){ |
96 | 0 | fi+=1.f; |
97 | 0 | arg=fi*argld; |
98 | 0 | wa[i++]=cos(arg); |
99 | 0 | wa[i++]=sin(arg); |
100 | 0 | } |
101 | 0 | is+=ido; |
102 | 0 | } |
103 | 0 | l1=l2; |
104 | 0 | } |
105 | 0 | } |
106 | | |
107 | 0 | static void fdrffti(int n, float *wsave, int *ifac){ |
108 | |
|
109 | 0 | if (n == 1) return; |
110 | 0 | drfti1(n, wsave+n, ifac); |
111 | 0 | } |
112 | | |
113 | 0 | static void dradf2(int ido,int l1,float *cc,float *ch,float *wa1){ |
114 | 0 | int i,k; |
115 | 0 | float ti2,tr2; |
116 | 0 | int t0,t1,t2,t3,t4,t5,t6; |
117 | |
|
118 | 0 | t1=0; |
119 | 0 | t0=(t2=l1*ido); |
120 | 0 | t3=ido<<1; |
121 | 0 | for(k=0;k<l1;k++){ |
122 | 0 | ch[t1<<1]=cc[t1]+cc[t2]; |
123 | 0 | ch[(t1<<1)+t3-1]=cc[t1]-cc[t2]; |
124 | 0 | t1+=ido; |
125 | 0 | t2+=ido; |
126 | 0 | } |
127 | |
|
128 | 0 | if(ido<2)return; |
129 | 0 | if(ido==2)goto L105; |
130 | | |
131 | 0 | t1=0; |
132 | 0 | t2=t0; |
133 | 0 | for(k=0;k<l1;k++){ |
134 | 0 | t3=t2; |
135 | 0 | t4=(t1<<1)+(ido<<1); |
136 | 0 | t5=t1; |
137 | 0 | t6=t1+t1; |
138 | 0 | for(i=2;i<ido;i+=2){ |
139 | 0 | t3+=2; |
140 | 0 | t4-=2; |
141 | 0 | t5+=2; |
142 | 0 | t6+=2; |
143 | 0 | tr2=wa1[i-2]*cc[t3-1]+wa1[i-1]*cc[t3]; |
144 | 0 | ti2=wa1[i-2]*cc[t3]-wa1[i-1]*cc[t3-1]; |
145 | 0 | ch[t6]=cc[t5]+ti2; |
146 | 0 | ch[t4]=ti2-cc[t5]; |
147 | 0 | ch[t6-1]=cc[t5-1]+tr2; |
148 | 0 | ch[t4-1]=cc[t5-1]-tr2; |
149 | 0 | } |
150 | 0 | t1+=ido; |
151 | 0 | t2+=ido; |
152 | 0 | } |
153 | |
|
154 | 0 | if(ido%2==1)return; |
155 | | |
156 | 0 | L105: |
157 | 0 | t3=(t2=(t1=ido)-1); |
158 | 0 | t2+=t0; |
159 | 0 | for(k=0;k<l1;k++){ |
160 | 0 | ch[t1]=-cc[t2]; |
161 | 0 | ch[t1-1]=cc[t3]; |
162 | 0 | t1+=ido<<1; |
163 | 0 | t2+=ido; |
164 | 0 | t3+=ido; |
165 | 0 | } |
166 | 0 | } |
167 | | |
168 | | static void dradf4(int ido,int l1,float *cc,float *ch,float *wa1, |
169 | 0 | float *wa2,float *wa3){ |
170 | 0 | static float hsqt2 = .70710678118654752f; |
171 | 0 | int i,k,t0,t1,t2,t3,t4,t5,t6; |
172 | 0 | float ci2,ci3,ci4,cr2,cr3,cr4,ti1,ti2,ti3,ti4,tr1,tr2,tr3,tr4; |
173 | 0 | t0=l1*ido; |
174 | |
|
175 | 0 | t1=t0; |
176 | 0 | t4=t1<<1; |
177 | 0 | t2=t1+(t1<<1); |
178 | 0 | t3=0; |
179 | |
|
180 | 0 | for(k=0;k<l1;k++){ |
181 | 0 | tr1=cc[t1]+cc[t2]; |
182 | 0 | tr2=cc[t3]+cc[t4]; |
183 | |
|
184 | 0 | ch[t5=t3<<2]=tr1+tr2; |
185 | 0 | ch[(ido<<2)+t5-1]=tr2-tr1; |
186 | 0 | ch[(t5+=(ido<<1))-1]=cc[t3]-cc[t4]; |
187 | 0 | ch[t5]=cc[t2]-cc[t1]; |
188 | |
|
189 | 0 | t1+=ido; |
190 | 0 | t2+=ido; |
191 | 0 | t3+=ido; |
192 | 0 | t4+=ido; |
193 | 0 | } |
194 | |
|
195 | 0 | if(ido<2)return; |
196 | 0 | if(ido==2)goto L105; |
197 | | |
198 | | |
199 | 0 | t1=0; |
200 | 0 | for(k=0;k<l1;k++){ |
201 | 0 | t2=t1; |
202 | 0 | t4=t1<<2; |
203 | 0 | t5=(t6=ido<<1)+t4; |
204 | 0 | for(i=2;i<ido;i+=2){ |
205 | 0 | t3=(t2+=2); |
206 | 0 | t4+=2; |
207 | 0 | t5-=2; |
208 | |
|
209 | 0 | t3+=t0; |
210 | 0 | cr2=wa1[i-2]*cc[t3-1]+wa1[i-1]*cc[t3]; |
211 | 0 | ci2=wa1[i-2]*cc[t3]-wa1[i-1]*cc[t3-1]; |
212 | 0 | t3+=t0; |
213 | 0 | cr3=wa2[i-2]*cc[t3-1]+wa2[i-1]*cc[t3]; |
214 | 0 | ci3=wa2[i-2]*cc[t3]-wa2[i-1]*cc[t3-1]; |
215 | 0 | t3+=t0; |
216 | 0 | cr4=wa3[i-2]*cc[t3-1]+wa3[i-1]*cc[t3]; |
217 | 0 | ci4=wa3[i-2]*cc[t3]-wa3[i-1]*cc[t3-1]; |
218 | |
|
219 | 0 | tr1=cr2+cr4; |
220 | 0 | tr4=cr4-cr2; |
221 | 0 | ti1=ci2+ci4; |
222 | 0 | ti4=ci2-ci4; |
223 | |
|
224 | 0 | ti2=cc[t2]+ci3; |
225 | 0 | ti3=cc[t2]-ci3; |
226 | 0 | tr2=cc[t2-1]+cr3; |
227 | 0 | tr3=cc[t2-1]-cr3; |
228 | |
|
229 | 0 | ch[t4-1]=tr1+tr2; |
230 | 0 | ch[t4]=ti1+ti2; |
231 | |
|
232 | 0 | ch[t5-1]=tr3-ti4; |
233 | 0 | ch[t5]=tr4-ti3; |
234 | |
|
235 | 0 | ch[t4+t6-1]=ti4+tr3; |
236 | 0 | ch[t4+t6]=tr4+ti3; |
237 | |
|
238 | 0 | ch[t5+t6-1]=tr2-tr1; |
239 | 0 | ch[t5+t6]=ti1-ti2; |
240 | 0 | } |
241 | 0 | t1+=ido; |
242 | 0 | } |
243 | 0 | if(ido&1)return; |
244 | | |
245 | 0 | L105: |
246 | |
|
247 | 0 | t2=(t1=t0+ido-1)+(t0<<1); |
248 | 0 | t3=ido<<2; |
249 | 0 | t4=ido; |
250 | 0 | t5=ido<<1; |
251 | 0 | t6=ido; |
252 | |
|
253 | 0 | for(k=0;k<l1;k++){ |
254 | 0 | ti1=-hsqt2*(cc[t1]+cc[t2]); |
255 | 0 | tr1=hsqt2*(cc[t1]-cc[t2]); |
256 | |
|
257 | 0 | ch[t4-1]=tr1+cc[t6-1]; |
258 | 0 | ch[t4+t5-1]=cc[t6-1]-tr1; |
259 | |
|
260 | 0 | ch[t4]=ti1-cc[t1+t0]; |
261 | 0 | ch[t4+t5]=ti1+cc[t1+t0]; |
262 | |
|
263 | 0 | t1+=ido; |
264 | 0 | t2+=ido; |
265 | 0 | t4+=t3; |
266 | 0 | t6+=ido; |
267 | 0 | } |
268 | 0 | } |
269 | | |
270 | | static void dradfg(int ido,int ip,int l1,int idl1,float *cc,float *c1, |
271 | 0 | float *c2,float *ch,float *ch2,float *wa){ |
272 | |
|
273 | 0 | static float tpi=6.283185307179586f; |
274 | 0 | int idij,ipph,i,j,k,l,ic,ik,is; |
275 | 0 | int t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10; |
276 | 0 | float dc2,ai1,ai2,ar1,ar2,ds2; |
277 | 0 | int nbd; |
278 | 0 | float dcp,arg,dsp,ar1h,ar2h; |
279 | 0 | int idp2,ipp2; |
280 | |
|
281 | 0 | arg=tpi/(float)ip; |
282 | 0 | dcp=cos(arg); |
283 | 0 | dsp=sin(arg); |
284 | 0 | ipph=(ip+1)>>1; |
285 | 0 | ipp2=ip; |
286 | 0 | idp2=ido; |
287 | 0 | nbd=(ido-1)>>1; |
288 | 0 | t0=l1*ido; |
289 | 0 | t10=ip*ido; |
290 | |
|
291 | 0 | if(ido==1)goto L119; |
292 | 0 | for(ik=0;ik<idl1;ik++)ch2[ik]=c2[ik]; |
293 | |
|
294 | 0 | t1=0; |
295 | 0 | for(j=1;j<ip;j++){ |
296 | 0 | t1+=t0; |
297 | 0 | t2=t1; |
298 | 0 | for(k=0;k<l1;k++){ |
299 | 0 | ch[t2]=c1[t2]; |
300 | 0 | t2+=ido; |
301 | 0 | } |
302 | 0 | } |
303 | |
|
304 | 0 | is=-ido; |
305 | 0 | t1=0; |
306 | 0 | if(nbd>l1){ |
307 | 0 | for(j=1;j<ip;j++){ |
308 | 0 | t1+=t0; |
309 | 0 | is+=ido; |
310 | 0 | t2= -ido+t1; |
311 | 0 | for(k=0;k<l1;k++){ |
312 | 0 | idij=is-1; |
313 | 0 | t2+=ido; |
314 | 0 | t3=t2; |
315 | 0 | for(i=2;i<ido;i+=2){ |
316 | 0 | idij+=2; |
317 | 0 | t3+=2; |
318 | 0 | ch[t3-1]=wa[idij-1]*c1[t3-1]+wa[idij]*c1[t3]; |
319 | 0 | ch[t3]=wa[idij-1]*c1[t3]-wa[idij]*c1[t3-1]; |
320 | 0 | } |
321 | 0 | } |
322 | 0 | } |
323 | 0 | }else{ |
324 | |
|
325 | 0 | for(j=1;j<ip;j++){ |
326 | 0 | is+=ido; |
327 | 0 | idij=is-1; |
328 | 0 | t1+=t0; |
329 | 0 | t2=t1; |
330 | 0 | for(i=2;i<ido;i+=2){ |
331 | 0 | idij+=2; |
332 | 0 | t2+=2; |
333 | 0 | t3=t2; |
334 | 0 | for(k=0;k<l1;k++){ |
335 | 0 | ch[t3-1]=wa[idij-1]*c1[t3-1]+wa[idij]*c1[t3]; |
336 | 0 | ch[t3]=wa[idij-1]*c1[t3]-wa[idij]*c1[t3-1]; |
337 | 0 | t3+=ido; |
338 | 0 | } |
339 | 0 | } |
340 | 0 | } |
341 | 0 | } |
342 | |
|
343 | 0 | t1=0; |
344 | 0 | t2=ipp2*t0; |
345 | 0 | if(nbd<l1){ |
346 | 0 | for(j=1;j<ipph;j++){ |
347 | 0 | t1+=t0; |
348 | 0 | t2-=t0; |
349 | 0 | t3=t1; |
350 | 0 | t4=t2; |
351 | 0 | for(i=2;i<ido;i+=2){ |
352 | 0 | t3+=2; |
353 | 0 | t4+=2; |
354 | 0 | t5=t3-ido; |
355 | 0 | t6=t4-ido; |
356 | 0 | for(k=0;k<l1;k++){ |
357 | 0 | t5+=ido; |
358 | 0 | t6+=ido; |
359 | 0 | c1[t5-1]=ch[t5-1]+ch[t6-1]; |
360 | 0 | c1[t6-1]=ch[t5]-ch[t6]; |
361 | 0 | c1[t5]=ch[t5]+ch[t6]; |
362 | 0 | c1[t6]=ch[t6-1]-ch[t5-1]; |
363 | 0 | } |
364 | 0 | } |
365 | 0 | } |
366 | 0 | }else{ |
367 | 0 | for(j=1;j<ipph;j++){ |
368 | 0 | t1+=t0; |
369 | 0 | t2-=t0; |
370 | 0 | t3=t1; |
371 | 0 | t4=t2; |
372 | 0 | for(k=0;k<l1;k++){ |
373 | 0 | t5=t3; |
374 | 0 | t6=t4; |
375 | 0 | for(i=2;i<ido;i+=2){ |
376 | 0 | t5+=2; |
377 | 0 | t6+=2; |
378 | 0 | c1[t5-1]=ch[t5-1]+ch[t6-1]; |
379 | 0 | c1[t6-1]=ch[t5]-ch[t6]; |
380 | 0 | c1[t5]=ch[t5]+ch[t6]; |
381 | 0 | c1[t6]=ch[t6-1]-ch[t5-1]; |
382 | 0 | } |
383 | 0 | t3+=ido; |
384 | 0 | t4+=ido; |
385 | 0 | } |
386 | 0 | } |
387 | 0 | } |
388 | |
|
389 | 0 | L119: |
390 | 0 | for(ik=0;ik<idl1;ik++)c2[ik]=ch2[ik]; |
391 | |
|
392 | 0 | t1=0; |
393 | 0 | t2=ipp2*idl1; |
394 | 0 | for(j=1;j<ipph;j++){ |
395 | 0 | t1+=t0; |
396 | 0 | t2-=t0; |
397 | 0 | t3=t1-ido; |
398 | 0 | t4=t2-ido; |
399 | 0 | for(k=0;k<l1;k++){ |
400 | 0 | t3+=ido; |
401 | 0 | t4+=ido; |
402 | 0 | c1[t3]=ch[t3]+ch[t4]; |
403 | 0 | c1[t4]=ch[t4]-ch[t3]; |
404 | 0 | } |
405 | 0 | } |
406 | |
|
407 | 0 | ar1=1.f; |
408 | 0 | ai1=0.f; |
409 | 0 | t1=0; |
410 | 0 | t2=ipp2*idl1; |
411 | 0 | t3=(ip-1)*idl1; |
412 | 0 | for(l=1;l<ipph;l++){ |
413 | 0 | t1+=idl1; |
414 | 0 | t2-=idl1; |
415 | 0 | ar1h=dcp*ar1-dsp*ai1; |
416 | 0 | ai1=dcp*ai1+dsp*ar1; |
417 | 0 | ar1=ar1h; |
418 | 0 | t4=t1; |
419 | 0 | t5=t2; |
420 | 0 | t6=t3; |
421 | 0 | t7=idl1; |
422 | |
|
423 | 0 | for(ik=0;ik<idl1;ik++){ |
424 | 0 | ch2[t4++]=c2[ik]+ar1*c2[t7++]; |
425 | 0 | ch2[t5++]=ai1*c2[t6++]; |
426 | 0 | } |
427 | |
|
428 | 0 | dc2=ar1; |
429 | 0 | ds2=ai1; |
430 | 0 | ar2=ar1; |
431 | 0 | ai2=ai1; |
432 | |
|
433 | 0 | t4=idl1; |
434 | 0 | t5=(ipp2-1)*idl1; |
435 | 0 | for(j=2;j<ipph;j++){ |
436 | 0 | t4+=idl1; |
437 | 0 | t5-=idl1; |
438 | |
|
439 | 0 | ar2h=dc2*ar2-ds2*ai2; |
440 | 0 | ai2=dc2*ai2+ds2*ar2; |
441 | 0 | ar2=ar2h; |
442 | |
|
443 | 0 | t6=t1; |
444 | 0 | t7=t2; |
445 | 0 | t8=t4; |
446 | 0 | t9=t5; |
447 | 0 | for(ik=0;ik<idl1;ik++){ |
448 | 0 | ch2[t6++]+=ar2*c2[t8++]; |
449 | 0 | ch2[t7++]+=ai2*c2[t9++]; |
450 | 0 | } |
451 | 0 | } |
452 | 0 | } |
453 | |
|
454 | 0 | t1=0; |
455 | 0 | for(j=1;j<ipph;j++){ |
456 | 0 | t1+=idl1; |
457 | 0 | t2=t1; |
458 | 0 | for(ik=0;ik<idl1;ik++)ch2[ik]+=c2[t2++]; |
459 | 0 | } |
460 | |
|
461 | 0 | if(ido<l1)goto L132; |
462 | | |
463 | 0 | t1=0; |
464 | 0 | t2=0; |
465 | 0 | for(k=0;k<l1;k++){ |
466 | 0 | t3=t1; |
467 | 0 | t4=t2; |
468 | 0 | for(i=0;i<ido;i++)cc[t4++]=ch[t3++]; |
469 | 0 | t1+=ido; |
470 | 0 | t2+=t10; |
471 | 0 | } |
472 | |
|
473 | 0 | goto L135; |
474 | | |
475 | 0 | L132: |
476 | 0 | for(i=0;i<ido;i++){ |
477 | 0 | t1=i; |
478 | 0 | t2=i; |
479 | 0 | for(k=0;k<l1;k++){ |
480 | 0 | cc[t2]=ch[t1]; |
481 | 0 | t1+=ido; |
482 | 0 | t2+=t10; |
483 | 0 | } |
484 | 0 | } |
485 | |
|
486 | 0 | L135: |
487 | 0 | t1=0; |
488 | 0 | t2=ido<<1; |
489 | 0 | t3=0; |
490 | 0 | t4=ipp2*t0; |
491 | 0 | for(j=1;j<ipph;j++){ |
492 | |
|
493 | 0 | t1+=t2; |
494 | 0 | t3+=t0; |
495 | 0 | t4-=t0; |
496 | |
|
497 | 0 | t5=t1; |
498 | 0 | t6=t3; |
499 | 0 | t7=t4; |
500 | |
|
501 | 0 | for(k=0;k<l1;k++){ |
502 | 0 | cc[t5-1]=ch[t6]; |
503 | 0 | cc[t5]=ch[t7]; |
504 | 0 | t5+=t10; |
505 | 0 | t6+=ido; |
506 | 0 | t7+=ido; |
507 | 0 | } |
508 | 0 | } |
509 | |
|
510 | 0 | if(ido==1)return; |
511 | 0 | if(nbd<l1)goto L141; |
512 | | |
513 | 0 | t1=-ido; |
514 | 0 | t3=0; |
515 | 0 | t4=0; |
516 | 0 | t5=ipp2*t0; |
517 | 0 | for(j=1;j<ipph;j++){ |
518 | 0 | t1+=t2; |
519 | 0 | t3+=t2; |
520 | 0 | t4+=t0; |
521 | 0 | t5-=t0; |
522 | 0 | t6=t1; |
523 | 0 | t7=t3; |
524 | 0 | t8=t4; |
525 | 0 | t9=t5; |
526 | 0 | for(k=0;k<l1;k++){ |
527 | 0 | for(i=2;i<ido;i+=2){ |
528 | 0 | ic=idp2-i; |
529 | 0 | cc[i+t7-1]=ch[i+t8-1]+ch[i+t9-1]; |
530 | 0 | cc[ic+t6-1]=ch[i+t8-1]-ch[i+t9-1]; |
531 | 0 | cc[i+t7]=ch[i+t8]+ch[i+t9]; |
532 | 0 | cc[ic+t6]=ch[i+t9]-ch[i+t8]; |
533 | 0 | } |
534 | 0 | t6+=t10; |
535 | 0 | t7+=t10; |
536 | 0 | t8+=ido; |
537 | 0 | t9+=ido; |
538 | 0 | } |
539 | 0 | } |
540 | 0 | return; |
541 | | |
542 | 0 | L141: |
543 | |
|
544 | 0 | t1=-ido; |
545 | 0 | t3=0; |
546 | 0 | t4=0; |
547 | 0 | t5=ipp2*t0; |
548 | 0 | for(j=1;j<ipph;j++){ |
549 | 0 | t1+=t2; |
550 | 0 | t3+=t2; |
551 | 0 | t4+=t0; |
552 | 0 | t5-=t0; |
553 | 0 | for(i=2;i<ido;i+=2){ |
554 | 0 | t6=idp2+t1-i; |
555 | 0 | t7=i+t3; |
556 | 0 | t8=i+t4; |
557 | 0 | t9=i+t5; |
558 | 0 | for(k=0;k<l1;k++){ |
559 | 0 | cc[t7-1]=ch[t8-1]+ch[t9-1]; |
560 | 0 | cc[t6-1]=ch[t8-1]-ch[t9-1]; |
561 | 0 | cc[t7]=ch[t8]+ch[t9]; |
562 | 0 | cc[t6]=ch[t9]-ch[t8]; |
563 | 0 | t6+=t10; |
564 | 0 | t7+=t10; |
565 | 0 | t8+=ido; |
566 | 0 | t9+=ido; |
567 | 0 | } |
568 | 0 | } |
569 | 0 | } |
570 | 0 | } |
571 | | |
572 | 0 | static void drftf1(int n,float *c,float *ch,float *wa,int *ifac){ |
573 | 0 | int i,k1,l1,l2; |
574 | 0 | int na,kh,nf; |
575 | 0 | int ip,iw,ido,idl1,ix2,ix3; |
576 | |
|
577 | 0 | nf=ifac[1]; |
578 | 0 | na=1; |
579 | 0 | l2=n; |
580 | 0 | iw=n; |
581 | |
|
582 | 0 | for(k1=0;k1<nf;k1++){ |
583 | 0 | kh=nf-k1; |
584 | 0 | ip=ifac[kh+1]; |
585 | 0 | l1=l2/ip; |
586 | 0 | ido=n/l2; |
587 | 0 | idl1=ido*l1; |
588 | 0 | iw-=(ip-1)*ido; |
589 | 0 | na=1-na; |
590 | |
|
591 | 0 | if(ip!=4)goto L102; |
592 | | |
593 | 0 | ix2=iw+ido; |
594 | 0 | ix3=ix2+ido; |
595 | 0 | if(na!=0) |
596 | 0 | dradf4(ido,l1,ch,c,wa+iw-1,wa+ix2-1,wa+ix3-1); |
597 | 0 | else |
598 | 0 | dradf4(ido,l1,c,ch,wa+iw-1,wa+ix2-1,wa+ix3-1); |
599 | 0 | goto L110; |
600 | | |
601 | 0 | L102: |
602 | 0 | if(ip!=2)goto L104; |
603 | 0 | if(na!=0)goto L103; |
604 | | |
605 | 0 | dradf2(ido,l1,c,ch,wa+iw-1); |
606 | 0 | goto L110; |
607 | | |
608 | 0 | L103: |
609 | 0 | dradf2(ido,l1,ch,c,wa+iw-1); |
610 | 0 | goto L110; |
611 | | |
612 | 0 | L104: |
613 | 0 | if(ido==1)na=1-na; |
614 | 0 | if(na!=0)goto L109; |
615 | | |
616 | 0 | dradfg(ido,ip,l1,idl1,c,c,c,ch,ch,wa+iw-1); |
617 | 0 | na=1; |
618 | 0 | goto L110; |
619 | | |
620 | 0 | L109: |
621 | 0 | dradfg(ido,ip,l1,idl1,ch,ch,ch,c,c,wa+iw-1); |
622 | 0 | na=0; |
623 | |
|
624 | 0 | L110: |
625 | 0 | l2=l1; |
626 | 0 | } |
627 | | |
628 | 0 | if(na==1)return; |
629 | | |
630 | 0 | for(i=0;i<n;i++)c[i]=ch[i]; |
631 | 0 | } |
632 | | |
633 | 0 | static void dradb2(int ido,int l1,float *cc,float *ch,float *wa1){ |
634 | 0 | int i,k,t0,t1,t2,t3,t4,t5,t6; |
635 | 0 | float ti2,tr2; |
636 | |
|
637 | 0 | t0=l1*ido; |
638 | |
|
639 | 0 | t1=0; |
640 | 0 | t2=0; |
641 | 0 | t3=(ido<<1)-1; |
642 | 0 | for(k=0;k<l1;k++){ |
643 | 0 | ch[t1]=cc[t2]+cc[t3+t2]; |
644 | 0 | ch[t1+t0]=cc[t2]-cc[t3+t2]; |
645 | 0 | t2=(t1+=ido)<<1; |
646 | 0 | } |
647 | |
|
648 | 0 | if(ido<2)return; |
649 | 0 | if(ido==2)goto L105; |
650 | | |
651 | 0 | t1=0; |
652 | 0 | t2=0; |
653 | 0 | for(k=0;k<l1;k++){ |
654 | 0 | t3=t1; |
655 | 0 | t5=(t4=t2)+(ido<<1); |
656 | 0 | t6=t0+t1; |
657 | 0 | for(i=2;i<ido;i+=2){ |
658 | 0 | t3+=2; |
659 | 0 | t4+=2; |
660 | 0 | t5-=2; |
661 | 0 | t6+=2; |
662 | 0 | ch[t3-1]=cc[t4-1]+cc[t5-1]; |
663 | 0 | tr2=cc[t4-1]-cc[t5-1]; |
664 | 0 | ch[t3]=cc[t4]-cc[t5]; |
665 | 0 | ti2=cc[t4]+cc[t5]; |
666 | 0 | ch[t6-1]=wa1[i-2]*tr2-wa1[i-1]*ti2; |
667 | 0 | ch[t6]=wa1[i-2]*ti2+wa1[i-1]*tr2; |
668 | 0 | } |
669 | 0 | t2=(t1+=ido)<<1; |
670 | 0 | } |
671 | |
|
672 | 0 | if(ido%2==1)return; |
673 | | |
674 | 0 | L105: |
675 | 0 | t1=ido-1; |
676 | 0 | t2=ido-1; |
677 | 0 | for(k=0;k<l1;k++){ |
678 | 0 | ch[t1]=cc[t2]+cc[t2]; |
679 | 0 | ch[t1+t0]=-(cc[t2+1]+cc[t2+1]); |
680 | 0 | t1+=ido; |
681 | 0 | t2+=ido<<1; |
682 | 0 | } |
683 | 0 | } |
684 | | |
685 | | static void dradb3(int ido,int l1,float *cc,float *ch,float *wa1, |
686 | 0 | float *wa2){ |
687 | 0 | static float taur = -.5f; |
688 | 0 | static float taui = .8660254037844386f; |
689 | 0 | int i,k,t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10; |
690 | 0 | float ci2,ci3,di2,di3,cr2,cr3,dr2,dr3,ti2,tr2; |
691 | 0 | t0=l1*ido; |
692 | |
|
693 | 0 | t1=0; |
694 | 0 | t2=t0<<1; |
695 | 0 | t3=ido<<1; |
696 | 0 | t4=ido+(ido<<1); |
697 | 0 | t5=0; |
698 | 0 | for(k=0;k<l1;k++){ |
699 | 0 | tr2=cc[t3-1]+cc[t3-1]; |
700 | 0 | cr2=cc[t5]+(taur*tr2); |
701 | 0 | ch[t1]=cc[t5]+tr2; |
702 | 0 | ci3=taui*(cc[t3]+cc[t3]); |
703 | 0 | ch[t1+t0]=cr2-ci3; |
704 | 0 | ch[t1+t2]=cr2+ci3; |
705 | 0 | t1+=ido; |
706 | 0 | t3+=t4; |
707 | 0 | t5+=t4; |
708 | 0 | } |
709 | |
|
710 | 0 | if(ido==1)return; |
711 | | |
712 | 0 | t1=0; |
713 | 0 | t3=ido<<1; |
714 | 0 | for(k=0;k<l1;k++){ |
715 | 0 | t7=t1+(t1<<1); |
716 | 0 | t6=(t5=t7+t3); |
717 | 0 | t8=t1; |
718 | 0 | t10=(t9=t1+t0)+t0; |
719 | |
|
720 | 0 | for(i=2;i<ido;i+=2){ |
721 | 0 | t5+=2; |
722 | 0 | t6-=2; |
723 | 0 | t7+=2; |
724 | 0 | t8+=2; |
725 | 0 | t9+=2; |
726 | 0 | t10+=2; |
727 | 0 | tr2=cc[t5-1]+cc[t6-1]; |
728 | 0 | cr2=cc[t7-1]+(taur*tr2); |
729 | 0 | ch[t8-1]=cc[t7-1]+tr2; |
730 | 0 | ti2=cc[t5]-cc[t6]; |
731 | 0 | ci2=cc[t7]+(taur*ti2); |
732 | 0 | ch[t8]=cc[t7]+ti2; |
733 | 0 | cr3=taui*(cc[t5-1]-cc[t6-1]); |
734 | 0 | ci3=taui*(cc[t5]+cc[t6]); |
735 | 0 | dr2=cr2-ci3; |
736 | 0 | dr3=cr2+ci3; |
737 | 0 | di2=ci2+cr3; |
738 | 0 | di3=ci2-cr3; |
739 | 0 | ch[t9-1]=wa1[i-2]*dr2-wa1[i-1]*di2; |
740 | 0 | ch[t9]=wa1[i-2]*di2+wa1[i-1]*dr2; |
741 | 0 | ch[t10-1]=wa2[i-2]*dr3-wa2[i-1]*di3; |
742 | 0 | ch[t10]=wa2[i-2]*di3+wa2[i-1]*dr3; |
743 | 0 | } |
744 | 0 | t1+=ido; |
745 | 0 | } |
746 | 0 | } |
747 | | |
748 | | static void dradb4(int ido,int l1,float *cc,float *ch,float *wa1, |
749 | 0 | float *wa2,float *wa3){ |
750 | 0 | static float sqrt2=1.414213562373095f; |
751 | 0 | int i,k,t0,t1,t2,t3,t4,t5,t6,t7,t8; |
752 | 0 | float ci2,ci3,ci4,cr2,cr3,cr4,ti1,ti2,ti3,ti4,tr1,tr2,tr3,tr4; |
753 | 0 | t0=l1*ido; |
754 | |
|
755 | 0 | t1=0; |
756 | 0 | t2=ido<<2; |
757 | 0 | t3=0; |
758 | 0 | t6=ido<<1; |
759 | 0 | for(k=0;k<l1;k++){ |
760 | 0 | t4=t3+t6; |
761 | 0 | t5=t1; |
762 | 0 | tr3=cc[t4-1]+cc[t4-1]; |
763 | 0 | tr4=cc[t4]+cc[t4]; |
764 | 0 | tr1=cc[t3]-cc[(t4+=t6)-1]; |
765 | 0 | tr2=cc[t3]+cc[t4-1]; |
766 | 0 | ch[t5]=tr2+tr3; |
767 | 0 | ch[t5+=t0]=tr1-tr4; |
768 | 0 | ch[t5+=t0]=tr2-tr3; |
769 | 0 | ch[t5+=t0]=tr1+tr4; |
770 | 0 | t1+=ido; |
771 | 0 | t3+=t2; |
772 | 0 | } |
773 | |
|
774 | 0 | if(ido<2)return; |
775 | 0 | if(ido==2)goto L105; |
776 | | |
777 | 0 | t1=0; |
778 | 0 | for(k=0;k<l1;k++){ |
779 | 0 | t5=(t4=(t3=(t2=t1<<2)+t6))+t6; |
780 | 0 | t7=t1; |
781 | 0 | for(i=2;i<ido;i+=2){ |
782 | 0 | t2+=2; |
783 | 0 | t3+=2; |
784 | 0 | t4-=2; |
785 | 0 | t5-=2; |
786 | 0 | t7+=2; |
787 | 0 | ti1=cc[t2]+cc[t5]; |
788 | 0 | ti2=cc[t2]-cc[t5]; |
789 | 0 | ti3=cc[t3]-cc[t4]; |
790 | 0 | tr4=cc[t3]+cc[t4]; |
791 | 0 | tr1=cc[t2-1]-cc[t5-1]; |
792 | 0 | tr2=cc[t2-1]+cc[t5-1]; |
793 | 0 | ti4=cc[t3-1]-cc[t4-1]; |
794 | 0 | tr3=cc[t3-1]+cc[t4-1]; |
795 | 0 | ch[t7-1]=tr2+tr3; |
796 | 0 | cr3=tr2-tr3; |
797 | 0 | ch[t7]=ti2+ti3; |
798 | 0 | ci3=ti2-ti3; |
799 | 0 | cr2=tr1-tr4; |
800 | 0 | cr4=tr1+tr4; |
801 | 0 | ci2=ti1+ti4; |
802 | 0 | ci4=ti1-ti4; |
803 | |
|
804 | 0 | ch[(t8=t7+t0)-1]=wa1[i-2]*cr2-wa1[i-1]*ci2; |
805 | 0 | ch[t8]=wa1[i-2]*ci2+wa1[i-1]*cr2; |
806 | 0 | ch[(t8+=t0)-1]=wa2[i-2]*cr3-wa2[i-1]*ci3; |
807 | 0 | ch[t8]=wa2[i-2]*ci3+wa2[i-1]*cr3; |
808 | 0 | ch[(t8+=t0)-1]=wa3[i-2]*cr4-wa3[i-1]*ci4; |
809 | 0 | ch[t8]=wa3[i-2]*ci4+wa3[i-1]*cr4; |
810 | 0 | } |
811 | 0 | t1+=ido; |
812 | 0 | } |
813 | |
|
814 | 0 | if(ido%2 == 1)return; |
815 | | |
816 | 0 | L105: |
817 | |
|
818 | 0 | t1=ido; |
819 | 0 | t2=ido<<2; |
820 | 0 | t3=ido-1; |
821 | 0 | t4=ido+(ido<<1); |
822 | 0 | for(k=0;k<l1;k++){ |
823 | 0 | t5=t3; |
824 | 0 | ti1=cc[t1]+cc[t4]; |
825 | 0 | ti2=cc[t4]-cc[t1]; |
826 | 0 | tr1=cc[t1-1]-cc[t4-1]; |
827 | 0 | tr2=cc[t1-1]+cc[t4-1]; |
828 | 0 | ch[t5]=tr2+tr2; |
829 | 0 | ch[t5+=t0]=sqrt2*(tr1-ti1); |
830 | 0 | ch[t5+=t0]=ti2+ti2; |
831 | 0 | ch[t5+=t0]=-sqrt2*(tr1+ti1); |
832 | |
|
833 | 0 | t3+=ido; |
834 | 0 | t1+=t2; |
835 | 0 | t4+=t2; |
836 | 0 | } |
837 | 0 | } |
838 | | |
839 | | static void dradbg(int ido,int ip,int l1,int idl1,float *cc,float *c1, |
840 | 0 | float *c2,float *ch,float *ch2,float *wa){ |
841 | 0 | static float tpi=6.283185307179586f; |
842 | 0 | int idij,ipph,i,j,k,l,ik,is,t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10, |
843 | 0 | t11,t12; |
844 | 0 | float dc2,ai1,ai2,ar1,ar2,ds2; |
845 | 0 | int nbd; |
846 | 0 | float dcp,arg,dsp,ar1h,ar2h; |
847 | 0 | int ipp2; |
848 | |
|
849 | 0 | t10=ip*ido; |
850 | 0 | t0=l1*ido; |
851 | 0 | arg=tpi/(float)ip; |
852 | 0 | dcp=cos(arg); |
853 | 0 | dsp=sin(arg); |
854 | 0 | nbd=(ido-1)>>1; |
855 | 0 | ipp2=ip; |
856 | 0 | ipph=(ip+1)>>1; |
857 | 0 | if(ido<l1)goto L103; |
858 | | |
859 | 0 | t1=0; |
860 | 0 | t2=0; |
861 | 0 | for(k=0;k<l1;k++){ |
862 | 0 | t3=t1; |
863 | 0 | t4=t2; |
864 | 0 | for(i=0;i<ido;i++){ |
865 | 0 | ch[t3]=cc[t4]; |
866 | 0 | t3++; |
867 | 0 | t4++; |
868 | 0 | } |
869 | 0 | t1+=ido; |
870 | 0 | t2+=t10; |
871 | 0 | } |
872 | 0 | goto L106; |
873 | | |
874 | 0 | L103: |
875 | 0 | t1=0; |
876 | 0 | for(i=0;i<ido;i++){ |
877 | 0 | t2=t1; |
878 | 0 | t3=t1; |
879 | 0 | for(k=0;k<l1;k++){ |
880 | 0 | ch[t2]=cc[t3]; |
881 | 0 | t2+=ido; |
882 | 0 | t3+=t10; |
883 | 0 | } |
884 | 0 | t1++; |
885 | 0 | } |
886 | |
|
887 | 0 | L106: |
888 | 0 | t1=0; |
889 | 0 | t2=ipp2*t0; |
890 | 0 | t7=(t5=ido<<1); |
891 | 0 | for(j=1;j<ipph;j++){ |
892 | 0 | t1+=t0; |
893 | 0 | t2-=t0; |
894 | 0 | t3=t1; |
895 | 0 | t4=t2; |
896 | 0 | t6=t5; |
897 | 0 | for(k=0;k<l1;k++){ |
898 | 0 | ch[t3]=cc[t6-1]+cc[t6-1]; |
899 | 0 | ch[t4]=cc[t6]+cc[t6]; |
900 | 0 | t3+=ido; |
901 | 0 | t4+=ido; |
902 | 0 | t6+=t10; |
903 | 0 | } |
904 | 0 | t5+=t7; |
905 | 0 | } |
906 | |
|
907 | 0 | if (ido == 1)goto L116; |
908 | 0 | if(nbd<l1)goto L112; |
909 | | |
910 | 0 | t1=0; |
911 | 0 | t2=ipp2*t0; |
912 | 0 | t7=0; |
913 | 0 | for(j=1;j<ipph;j++){ |
914 | 0 | t1+=t0; |
915 | 0 | t2-=t0; |
916 | 0 | t3=t1; |
917 | 0 | t4=t2; |
918 | |
|
919 | 0 | t7+=(ido<<1); |
920 | 0 | t8=t7; |
921 | 0 | for(k=0;k<l1;k++){ |
922 | 0 | t5=t3; |
923 | 0 | t6=t4; |
924 | 0 | t9=t8; |
925 | 0 | t11=t8; |
926 | 0 | for(i=2;i<ido;i+=2){ |
927 | 0 | t5+=2; |
928 | 0 | t6+=2; |
929 | 0 | t9+=2; |
930 | 0 | t11-=2; |
931 | 0 | ch[t5-1]=cc[t9-1]+cc[t11-1]; |
932 | 0 | ch[t6-1]=cc[t9-1]-cc[t11-1]; |
933 | 0 | ch[t5]=cc[t9]-cc[t11]; |
934 | 0 | ch[t6]=cc[t9]+cc[t11]; |
935 | 0 | } |
936 | 0 | t3+=ido; |
937 | 0 | t4+=ido; |
938 | 0 | t8+=t10; |
939 | 0 | } |
940 | 0 | } |
941 | 0 | goto L116; |
942 | | |
943 | 0 | L112: |
944 | 0 | t1=0; |
945 | 0 | t2=ipp2*t0; |
946 | 0 | t7=0; |
947 | 0 | for(j=1;j<ipph;j++){ |
948 | 0 | t1+=t0; |
949 | 0 | t2-=t0; |
950 | 0 | t3=t1; |
951 | 0 | t4=t2; |
952 | 0 | t7+=(ido<<1); |
953 | 0 | t8=t7; |
954 | 0 | t9=t7; |
955 | 0 | for(i=2;i<ido;i+=2){ |
956 | 0 | t3+=2; |
957 | 0 | t4+=2; |
958 | 0 | t8+=2; |
959 | 0 | t9-=2; |
960 | 0 | t5=t3; |
961 | 0 | t6=t4; |
962 | 0 | t11=t8; |
963 | 0 | t12=t9; |
964 | 0 | for(k=0;k<l1;k++){ |
965 | 0 | ch[t5-1]=cc[t11-1]+cc[t12-1]; |
966 | 0 | ch[t6-1]=cc[t11-1]-cc[t12-1]; |
967 | 0 | ch[t5]=cc[t11]-cc[t12]; |
968 | 0 | ch[t6]=cc[t11]+cc[t12]; |
969 | 0 | t5+=ido; |
970 | 0 | t6+=ido; |
971 | 0 | t11+=t10; |
972 | 0 | t12+=t10; |
973 | 0 | } |
974 | 0 | } |
975 | 0 | } |
976 | |
|
977 | 0 | L116: |
978 | 0 | ar1=1.f; |
979 | 0 | ai1=0.f; |
980 | 0 | t1=0; |
981 | 0 | t9=(t2=ipp2*idl1); |
982 | 0 | t3=(ip-1)*idl1; |
983 | 0 | for(l=1;l<ipph;l++){ |
984 | 0 | t1+=idl1; |
985 | 0 | t2-=idl1; |
986 | |
|
987 | 0 | ar1h=dcp*ar1-dsp*ai1; |
988 | 0 | ai1=dcp*ai1+dsp*ar1; |
989 | 0 | ar1=ar1h; |
990 | 0 | t4=t1; |
991 | 0 | t5=t2; |
992 | 0 | t6=0; |
993 | 0 | t7=idl1; |
994 | 0 | t8=t3; |
995 | 0 | for(ik=0;ik<idl1;ik++){ |
996 | 0 | c2[t4++]=ch2[t6++]+ar1*ch2[t7++]; |
997 | 0 | c2[t5++]=ai1*ch2[t8++]; |
998 | 0 | } |
999 | 0 | dc2=ar1; |
1000 | 0 | ds2=ai1; |
1001 | 0 | ar2=ar1; |
1002 | 0 | ai2=ai1; |
1003 | |
|
1004 | 0 | t6=idl1; |
1005 | 0 | t7=t9-idl1; |
1006 | 0 | for(j=2;j<ipph;j++){ |
1007 | 0 | t6+=idl1; |
1008 | 0 | t7-=idl1; |
1009 | 0 | ar2h=dc2*ar2-ds2*ai2; |
1010 | 0 | ai2=dc2*ai2+ds2*ar2; |
1011 | 0 | ar2=ar2h; |
1012 | 0 | t4=t1; |
1013 | 0 | t5=t2; |
1014 | 0 | t11=t6; |
1015 | 0 | t12=t7; |
1016 | 0 | for(ik=0;ik<idl1;ik++){ |
1017 | 0 | c2[t4++]+=ar2*ch2[t11++]; |
1018 | 0 | c2[t5++]+=ai2*ch2[t12++]; |
1019 | 0 | } |
1020 | 0 | } |
1021 | 0 | } |
1022 | |
|
1023 | 0 | t1=0; |
1024 | 0 | for(j=1;j<ipph;j++){ |
1025 | 0 | t1+=idl1; |
1026 | 0 | t2=t1; |
1027 | 0 | for(ik=0;ik<idl1;ik++)ch2[ik]+=ch2[t2++]; |
1028 | 0 | } |
1029 | |
|
1030 | 0 | t1=0; |
1031 | 0 | t2=ipp2*t0; |
1032 | 0 | for(j=1;j<ipph;j++){ |
1033 | 0 | t1+=t0; |
1034 | 0 | t2-=t0; |
1035 | 0 | t3=t1; |
1036 | 0 | t4=t2; |
1037 | 0 | for(k=0;k<l1;k++){ |
1038 | 0 | ch[t3]=c1[t3]-c1[t4]; |
1039 | 0 | ch[t4]=c1[t3]+c1[t4]; |
1040 | 0 | t3+=ido; |
1041 | 0 | t4+=ido; |
1042 | 0 | } |
1043 | 0 | } |
1044 | |
|
1045 | 0 | if(ido==1)goto L132; |
1046 | 0 | if(nbd<l1)goto L128; |
1047 | | |
1048 | 0 | t1=0; |
1049 | 0 | t2=ipp2*t0; |
1050 | 0 | for(j=1;j<ipph;j++){ |
1051 | 0 | t1+=t0; |
1052 | 0 | t2-=t0; |
1053 | 0 | t3=t1; |
1054 | 0 | t4=t2; |
1055 | 0 | for(k=0;k<l1;k++){ |
1056 | 0 | t5=t3; |
1057 | 0 | t6=t4; |
1058 | 0 | for(i=2;i<ido;i+=2){ |
1059 | 0 | t5+=2; |
1060 | 0 | t6+=2; |
1061 | 0 | ch[t5-1]=c1[t5-1]-c1[t6]; |
1062 | 0 | ch[t6-1]=c1[t5-1]+c1[t6]; |
1063 | 0 | ch[t5]=c1[t5]+c1[t6-1]; |
1064 | 0 | ch[t6]=c1[t5]-c1[t6-1]; |
1065 | 0 | } |
1066 | 0 | t3+=ido; |
1067 | 0 | t4+=ido; |
1068 | 0 | } |
1069 | 0 | } |
1070 | 0 | goto L132; |
1071 | | |
1072 | 0 | L128: |
1073 | 0 | t1=0; |
1074 | 0 | t2=ipp2*t0; |
1075 | 0 | for(j=1;j<ipph;j++){ |
1076 | 0 | t1+=t0; |
1077 | 0 | t2-=t0; |
1078 | 0 | t3=t1; |
1079 | 0 | t4=t2; |
1080 | 0 | for(i=2;i<ido;i+=2){ |
1081 | 0 | t3+=2; |
1082 | 0 | t4+=2; |
1083 | 0 | t5=t3; |
1084 | 0 | t6=t4; |
1085 | 0 | for(k=0;k<l1;k++){ |
1086 | 0 | ch[t5-1]=c1[t5-1]-c1[t6]; |
1087 | 0 | ch[t6-1]=c1[t5-1]+c1[t6]; |
1088 | 0 | ch[t5]=c1[t5]+c1[t6-1]; |
1089 | 0 | ch[t6]=c1[t5]-c1[t6-1]; |
1090 | 0 | t5+=ido; |
1091 | 0 | t6+=ido; |
1092 | 0 | } |
1093 | 0 | } |
1094 | 0 | } |
1095 | |
|
1096 | 0 | L132: |
1097 | 0 | if(ido==1)return; |
1098 | | |
1099 | 0 | for(ik=0;ik<idl1;ik++)c2[ik]=ch2[ik]; |
1100 | |
|
1101 | 0 | t1=0; |
1102 | 0 | for(j=1;j<ip;j++){ |
1103 | 0 | t2=(t1+=t0); |
1104 | 0 | for(k=0;k<l1;k++){ |
1105 | 0 | c1[t2]=ch[t2]; |
1106 | 0 | t2+=ido; |
1107 | 0 | } |
1108 | 0 | } |
1109 | |
|
1110 | 0 | if(nbd>l1)goto L139; |
1111 | | |
1112 | 0 | is= -ido-1; |
1113 | 0 | t1=0; |
1114 | 0 | for(j=1;j<ip;j++){ |
1115 | 0 | is+=ido; |
1116 | 0 | t1+=t0; |
1117 | 0 | idij=is; |
1118 | 0 | t2=t1; |
1119 | 0 | for(i=2;i<ido;i+=2){ |
1120 | 0 | t2+=2; |
1121 | 0 | idij+=2; |
1122 | 0 | t3=t2; |
1123 | 0 | for(k=0;k<l1;k++){ |
1124 | 0 | c1[t3-1]=wa[idij-1]*ch[t3-1]-wa[idij]*ch[t3]; |
1125 | 0 | c1[t3]=wa[idij-1]*ch[t3]+wa[idij]*ch[t3-1]; |
1126 | 0 | t3+=ido; |
1127 | 0 | } |
1128 | 0 | } |
1129 | 0 | } |
1130 | 0 | return; |
1131 | | |
1132 | 0 | L139: |
1133 | 0 | is= -ido-1; |
1134 | 0 | t1=0; |
1135 | 0 | for(j=1;j<ip;j++){ |
1136 | 0 | is+=ido; |
1137 | 0 | t1+=t0; |
1138 | 0 | t2=t1; |
1139 | 0 | for(k=0;k<l1;k++){ |
1140 | 0 | idij=is; |
1141 | 0 | t3=t2; |
1142 | 0 | for(i=2;i<ido;i+=2){ |
1143 | 0 | idij+=2; |
1144 | 0 | t3+=2; |
1145 | 0 | c1[t3-1]=wa[idij-1]*ch[t3-1]-wa[idij]*ch[t3]; |
1146 | 0 | c1[t3]=wa[idij-1]*ch[t3]+wa[idij]*ch[t3-1]; |
1147 | 0 | } |
1148 | 0 | t2+=ido; |
1149 | 0 | } |
1150 | 0 | } |
1151 | 0 | } |
1152 | | |
1153 | 0 | static void drftb1(int n, float *c, float *ch, float *wa, int *ifac){ |
1154 | 0 | int i,k1,l1,l2; |
1155 | 0 | int na; |
1156 | 0 | int nf,ip,iw,ix2,ix3,ido,idl1; |
1157 | |
|
1158 | 0 | nf=ifac[1]; |
1159 | 0 | na=0; |
1160 | 0 | l1=1; |
1161 | 0 | iw=1; |
1162 | |
|
1163 | 0 | for(k1=0;k1<nf;k1++){ |
1164 | 0 | ip=ifac[k1 + 2]; |
1165 | 0 | l2=ip*l1; |
1166 | 0 | ido=n/l2; |
1167 | 0 | idl1=ido*l1; |
1168 | 0 | if(ip!=4)goto L103; |
1169 | 0 | ix2=iw+ido; |
1170 | 0 | ix3=ix2+ido; |
1171 | |
|
1172 | 0 | if(na!=0) |
1173 | 0 | dradb4(ido,l1,ch,c,wa+iw-1,wa+ix2-1,wa+ix3-1); |
1174 | 0 | else |
1175 | 0 | dradb4(ido,l1,c,ch,wa+iw-1,wa+ix2-1,wa+ix3-1); |
1176 | 0 | na=1-na; |
1177 | 0 | goto L115; |
1178 | | |
1179 | 0 | L103: |
1180 | 0 | if(ip!=2)goto L106; |
1181 | | |
1182 | 0 | if(na!=0) |
1183 | 0 | dradb2(ido,l1,ch,c,wa+iw-1); |
1184 | 0 | else |
1185 | 0 | dradb2(ido,l1,c,ch,wa+iw-1); |
1186 | 0 | na=1-na; |
1187 | 0 | goto L115; |
1188 | | |
1189 | 0 | L106: |
1190 | 0 | if(ip!=3)goto L109; |
1191 | | |
1192 | 0 | ix2=iw+ido; |
1193 | 0 | if(na!=0) |
1194 | 0 | dradb3(ido,l1,ch,c,wa+iw-1,wa+ix2-1); |
1195 | 0 | else |
1196 | 0 | dradb3(ido,l1,c,ch,wa+iw-1,wa+ix2-1); |
1197 | 0 | na=1-na; |
1198 | 0 | goto L115; |
1199 | | |
1200 | 0 | L109: |
1201 | | /* The radix five case can be translated later..... */ |
1202 | | /* if(ip!=5)goto L112; |
1203 | | |
1204 | | ix2=iw+ido; |
1205 | | ix3=ix2+ido; |
1206 | | ix4=ix3+ido; |
1207 | | if(na!=0) |
1208 | | dradb5(ido,l1,ch,c,wa+iw-1,wa+ix2-1,wa+ix3-1,wa+ix4-1); |
1209 | | else |
1210 | | dradb5(ido,l1,c,ch,wa+iw-1,wa+ix2-1,wa+ix3-1,wa+ix4-1); |
1211 | | na=1-na; |
1212 | | goto L115; |
1213 | | |
1214 | | L112:*/ |
1215 | 0 | if(na!=0) |
1216 | 0 | dradbg(ido,ip,l1,idl1,ch,ch,ch,c,c,wa+iw-1); |
1217 | 0 | else |
1218 | 0 | dradbg(ido,ip,l1,idl1,c,c,c,ch,ch,wa+iw-1); |
1219 | 0 | if(ido==1)na=1-na; |
1220 | |
|
1221 | 0 | L115: |
1222 | 0 | l1=l2; |
1223 | 0 | iw+=(ip-1)*ido; |
1224 | 0 | } |
1225 | | |
1226 | 0 | if(na==0)return; |
1227 | | |
1228 | 0 | for(i=0;i<n;i++)c[i]=ch[i]; |
1229 | 0 | } |
1230 | | |
1231 | 0 | void drft_forward(drft_lookup *l,float *data){ |
1232 | 0 | if(l->n==1)return; |
1233 | 0 | drftf1(l->n,data,l->trigcache,l->trigcache+l->n,l->splitcache); |
1234 | 0 | } |
1235 | | |
1236 | 0 | void drft_backward(drft_lookup *l,float *data){ |
1237 | 0 | if (l->n==1)return; |
1238 | 0 | drftb1(l->n,data,l->trigcache,l->trigcache+l->n,l->splitcache); |
1239 | 0 | } |
1240 | | |
1241 | 0 | void drft_init(drft_lookup *l,int n){ |
1242 | 0 | l->n=n; |
1243 | 0 | l->trigcache=_ogg_calloc(3*n,sizeof(*l->trigcache)); |
1244 | 0 | l->splitcache=_ogg_calloc(32,sizeof(*l->splitcache)); |
1245 | 0 | fdrffti(n, l->trigcache, l->splitcache); |
1246 | 0 | } |
1247 | | |
1248 | 0 | void drft_clear(drft_lookup *l){ |
1249 | 0 | if(l){ |
1250 | 0 | if(l->trigcache)_ogg_free(l->trigcache); |
1251 | 0 | if(l->splitcache)_ogg_free(l->splitcache); |
1252 | 0 | memset(l,0,sizeof(*l)); |
1253 | 0 | } |
1254 | 0 | } |