Coverage Report

Created: 2024-09-06 07:53

/src/zlib/crc32.c
Line
Count
Source (jump to first uncovered line)
1
/* crc32.c -- compute the CRC-32 of a data stream
2
 * Copyright (C) 1995-2022 Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 *
5
 * This interleaved implementation of a CRC makes use of pipelined multiple
6
 * arithmetic-logic units, commonly found in modern CPU cores. It is due to
7
 * Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution.
8
 */
9
10
/* @(#) $Id$ */
11
12
/*
13
  Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
14
  protection on the static variables used to control the first-use generation
15
  of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
16
  first call get_crc_table() to initialize the tables before allowing more than
17
  one thread to use crc32().
18
19
  MAKECRCH can be #defined to write out crc32.h. A main() routine is also
20
  produced, so that this one source file can be compiled to an executable.
21
 */
22
23
#ifdef MAKECRCH
24
#  include <stdio.h>
25
#  ifndef DYNAMIC_CRC_TABLE
26
#    define DYNAMIC_CRC_TABLE
27
#  endif /* !DYNAMIC_CRC_TABLE */
28
#endif /* MAKECRCH */
29
30
#include "zutil.h"      /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */
31
32
 /*
33
  A CRC of a message is computed on N braids of words in the message, where
34
  each word consists of W bytes (4 or 8). If N is 3, for example, then three
35
  running sparse CRCs are calculated respectively on each braid, at these
36
  indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ...
37
  This is done starting at a word boundary, and continues until as many blocks
38
  of N * W bytes as are available have been processed. The results are combined
39
  into a single CRC at the end. For this code, N must be in the range 1..6 and
40
  W must be 4 or 8. The upper limit on N can be increased if desired by adding
41
  more #if blocks, extending the patterns apparent in the code. In addition,
42
  crc32.h would need to be regenerated, if the maximum N value is increased.
43
44
  N and W are chosen empirically by benchmarking the execution time on a given
45
  processor. The choices for N and W below were based on testing on Intel Kaby
46
  Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64
47
  Octeon II processors. The Intel, AMD, and ARM processors were all fastest
48
  with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4.
49
  They were all tested with either gcc or clang, all using the -O3 optimization
50
  level. Your mileage may vary.
51
 */
52
53
/* Define N */
54
#ifdef Z_TESTN
55
#  define N Z_TESTN
56
#else
57
0
#  define N 5
58
#endif
59
#if N < 1 || N > 6
60
#  error N must be in 1..6
61
#endif
62
63
/*
64
  z_crc_t must be at least 32 bits. z_word_t must be at least as long as
65
  z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and
66
  that bytes are eight bits.
67
 */
68
69
/*
70
  Define W and the associated z_word_t type. If W is not defined, then a
71
  braided calculation is not used, and the associated tables and code are not
72
  compiled.
73
 */
74
#ifdef Z_TESTW
75
#  if Z_TESTW-1 != -1
76
#    define W Z_TESTW
77
#  endif
78
#else
79
#  ifdef MAKECRCH
80
#    define W 8         /* required for MAKECRCH */
81
#  else
82
#    if defined(__x86_64__) || defined(__aarch64__)
83
0
#      define W 8
84
#    else
85
#      define W 4
86
#    endif
87
#  endif
88
#endif
89
#ifdef W
90
#  if W == 8 && defined(Z_U8)
91
     typedef Z_U8 z_word_t;
92
#  elif defined(Z_U4)
93
#    undef W
94
#    define W 4
95
     typedef Z_U4 z_word_t;
96
#  else
97
#    undef W
98
#  endif
99
#endif
100
101
/* If available, use the ARM processor CRC32 instruction. */
102
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8
103
#  define ARMCRC32
104
#endif
105
106
#if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
107
/*
108
  Swap the bytes in a z_word_t to convert between little and big endian. Any
109
  self-respecting compiler will optimize this to a single machine byte-swap
110
  instruction, if one is available. This assumes that word_t is either 32 bits
111
  or 64 bits.
112
 */
113
0
local z_word_t byte_swap(z_word_t word) {
114
0
#  if W == 8
115
0
    return
116
0
        (word & 0xff00000000000000) >> 56 |
117
0
        (word & 0xff000000000000) >> 40 |
118
0
        (word & 0xff0000000000) >> 24 |
119
0
        (word & 0xff00000000) >> 8 |
120
0
        (word & 0xff000000) << 8 |
121
0
        (word & 0xff0000) << 24 |
122
0
        (word & 0xff00) << 40 |
123
0
        (word & 0xff) << 56;
124
#  else   /* W == 4 */
125
    return
126
        (word & 0xff000000) >> 24 |
127
        (word & 0xff0000) >> 8 |
128
        (word & 0xff00) << 8 |
129
        (word & 0xff) << 24;
130
#  endif
131
0
}
132
#endif
133
134
#ifdef DYNAMIC_CRC_TABLE
135
/* =========================================================================
136
 * Table of powers of x for combining CRC-32s, filled in by make_crc_table()
137
 * below.
138
 */
139
   local z_crc_t FAR x2n_table[32];
140
#else
141
/* =========================================================================
142
 * Tables for byte-wise and braided CRC-32 calculations, and a table of powers
143
 * of x for combining CRC-32s, all made by make_crc_table().
144
 */
145
#  include "crc32.h"
146
#endif
147
148
/* CRC polynomial. */
149
0
#define POLY 0xedb88320         /* p(x) reflected, with x^32 implied */
150
151
/*
152
  Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial,
153
  reflected. For speed, this requires that a not be zero.
154
 */
155
0
local z_crc_t multmodp(z_crc_t a, z_crc_t b) {
156
0
    z_crc_t m, p;
157
158
0
    m = (z_crc_t)1 << 31;
159
0
    p = 0;
160
0
    for (;;) {
161
0
        if (a & m) {
162
0
            p ^= b;
163
0
            if ((a & (m - 1)) == 0)
164
0
                break;
165
0
        }
166
0
        m >>= 1;
167
0
        b = b & 1 ? (b >> 1) ^ POLY : b >> 1;
168
0
    }
169
0
    return p;
170
0
}
171
172
/*
173
  Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been
174
  initialized.
175
 */
176
0
local z_crc_t x2nmodp(z_off64_t n, unsigned k) {
177
0
    z_crc_t p;
178
179
0
    p = (z_crc_t)1 << 31;           /* x^0 == 1 */
180
0
    while (n) {
181
0
        if (n & 1)
182
0
            p = multmodp(x2n_table[k & 31], p);
183
0
        n >>= 1;
184
0
        k++;
185
0
    }
186
0
    return p;
187
0
}
188
189
#ifdef DYNAMIC_CRC_TABLE
190
/* =========================================================================
191
 * Build the tables for byte-wise and braided CRC-32 calculations, and a table
192
 * of powers of x for combining CRC-32s.
193
 */
194
local z_crc_t FAR crc_table[256];
195
#ifdef W
196
   local z_word_t FAR crc_big_table[256];
197
   local z_crc_t FAR crc_braid_table[W][256];
198
   local z_word_t FAR crc_braid_big_table[W][256];
199
   local void braid(z_crc_t [][256], z_word_t [][256], int, int);
200
#endif
201
#ifdef MAKECRCH
202
   local void write_table(FILE *, const z_crc_t FAR *, int);
203
   local void write_table32hi(FILE *, const z_word_t FAR *, int);
204
   local void write_table64(FILE *, const z_word_t FAR *, int);
205
#endif /* MAKECRCH */
206
207
/*
208
  Define a once() function depending on the availability of atomics. If this is
209
  compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in
210
  multiple threads, and if atomics are not available, then get_crc_table() must
211
  be called to initialize the tables and must return before any threads are
212
  allowed to compute or combine CRCs.
213
 */
214
215
/* Definition of once functionality. */
216
typedef struct once_s once_t;
217
218
/* Check for the availability of atomics. */
219
#if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \
220
    !defined(__STDC_NO_ATOMICS__)
221
222
#include <stdatomic.h>
223
224
/* Structure for once(), which must be initialized with ONCE_INIT. */
225
struct once_s {
226
    atomic_flag begun;
227
    atomic_int done;
228
};
229
#define ONCE_INIT {ATOMIC_FLAG_INIT, 0}
230
231
/*
232
  Run the provided init() function exactly once, even if multiple threads
233
  invoke once() at the same time. The state must be a once_t initialized with
234
  ONCE_INIT.
235
 */
236
local void once(once_t *state, void (*init)(void)) {
237
    if (!atomic_load(&state->done)) {
238
        if (atomic_flag_test_and_set(&state->begun))
239
            while (!atomic_load(&state->done))
240
                ;
241
        else {
242
            init();
243
            atomic_store(&state->done, 1);
244
        }
245
    }
246
}
247
248
#else   /* no atomics */
249
250
/* Structure for once(), which must be initialized with ONCE_INIT. */
251
struct once_s {
252
    volatile int begun;
253
    volatile int done;
254
};
255
#define ONCE_INIT {0, 0}
256
257
/* Test and set. Alas, not atomic, but tries to minimize the period of
258
   vulnerability. */
259
local int test_and_set(int volatile *flag) {
260
    int was;
261
262
    was = *flag;
263
    *flag = 1;
264
    return was;
265
}
266
267
/* Run the provided init() function once. This is not thread-safe. */
268
local void once(once_t *state, void (*init)(void)) {
269
    if (!state->done) {
270
        if (test_and_set(&state->begun))
271
            while (!state->done)
272
                ;
273
        else {
274
            init();
275
            state->done = 1;
276
        }
277
    }
278
}
279
280
#endif
281
282
/* State for once(). */
283
local once_t made = ONCE_INIT;
284
285
/*
286
  Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
287
  x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
288
289
  Polynomials over GF(2) are represented in binary, one bit per coefficient,
290
  with the lowest powers in the most significant bit. Then adding polynomials
291
  is just exclusive-or, and multiplying a polynomial by x is a right shift by
292
  one. If we call the above polynomial p, and represent a byte as the
293
  polynomial q, also with the lowest power in the most significant bit (so the
294
  byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p,
295
  where a mod b means the remainder after dividing a by b.
296
297
  This calculation is done using the shift-register method of multiplying and
298
  taking the remainder. The register is initialized to zero, and for each
299
  incoming bit, x^32 is added mod p to the register if the bit is a one (where
300
  x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x
301
  (which is shifting right by one and adding x^32 mod p if the bit shifted out
302
  is a one). We start with the highest power (least significant bit) of q and
303
  repeat for all eight bits of q.
304
305
  The table is simply the CRC of all possible eight bit values. This is all the
306
  information needed to generate CRCs on data a byte at a time for all
307
  combinations of CRC register values and incoming bytes.
308
 */
309
310
local void make_crc_table(void) {
311
    unsigned i, j, n;
312
    z_crc_t p;
313
314
    /* initialize the CRC of bytes tables */
315
    for (i = 0; i < 256; i++) {
316
        p = i;
317
        for (j = 0; j < 8; j++)
318
            p = p & 1 ? (p >> 1) ^ POLY : p >> 1;
319
        crc_table[i] = p;
320
#ifdef W
321
        crc_big_table[i] = byte_swap(p);
322
#endif
323
    }
324
325
    /* initialize the x^2^n mod p(x) table */
326
    p = (z_crc_t)1 << 30;         /* x^1 */
327
    x2n_table[0] = p;
328
    for (n = 1; n < 32; n++)
329
        x2n_table[n] = p = multmodp(p, p);
330
331
#ifdef W
332
    /* initialize the braiding tables -- needs x2n_table[] */
333
    braid(crc_braid_table, crc_braid_big_table, N, W);
334
#endif
335
336
#ifdef MAKECRCH
337
    {
338
        /*
339
          The crc32.h header file contains tables for both 32-bit and 64-bit
340
          z_word_t's, and so requires a 64-bit type be available. In that case,
341
          z_word_t must be defined to be 64-bits. This code then also generates
342
          and writes out the tables for the case that z_word_t is 32 bits.
343
         */
344
#if !defined(W) || W != 8
345
#  error Need a 64-bit integer type in order to generate crc32.h.
346
#endif
347
        FILE *out;
348
        int k, n;
349
        z_crc_t ltl[8][256];
350
        z_word_t big[8][256];
351
352
        out = fopen("crc32.h", "w");
353
        if (out == NULL) return;
354
355
        /* write out little-endian CRC table to crc32.h */
356
        fprintf(out,
357
            "/* crc32.h -- tables for rapid CRC calculation\n"
358
            " * Generated automatically by crc32.c\n */\n"
359
            "\n"
360
            "local const z_crc_t FAR crc_table[] = {\n"
361
            "    ");
362
        write_table(out, crc_table, 256);
363
        fprintf(out,
364
            "};\n");
365
366
        /* write out big-endian CRC table for 64-bit z_word_t to crc32.h */
367
        fprintf(out,
368
            "\n"
369
            "#ifdef W\n"
370
            "\n"
371
            "#if W == 8\n"
372
            "\n"
373
            "local const z_word_t FAR crc_big_table[] = {\n"
374
            "    ");
375
        write_table64(out, crc_big_table, 256);
376
        fprintf(out,
377
            "};\n");
378
379
        /* write out big-endian CRC table for 32-bit z_word_t to crc32.h */
380
        fprintf(out,
381
            "\n"
382
            "#else /* W == 4 */\n"
383
            "\n"
384
            "local const z_word_t FAR crc_big_table[] = {\n"
385
            "    ");
386
        write_table32hi(out, crc_big_table, 256);
387
        fprintf(out,
388
            "};\n"
389
            "\n"
390
            "#endif\n");
391
392
        /* write out braid tables for each value of N */
393
        for (n = 1; n <= 6; n++) {
394
            fprintf(out,
395
            "\n"
396
            "#if N == %d\n", n);
397
398
            /* compute braid tables for this N and 64-bit word_t */
399
            braid(ltl, big, n, 8);
400
401
            /* write out braid tables for 64-bit z_word_t to crc32.h */
402
            fprintf(out,
403
            "\n"
404
            "#if W == 8\n"
405
            "\n"
406
            "local const z_crc_t FAR crc_braid_table[][256] = {\n");
407
            for (k = 0; k < 8; k++) {
408
                fprintf(out, "   {");
409
                write_table(out, ltl[k], 256);
410
                fprintf(out, "}%s", k < 7 ? ",\n" : "");
411
            }
412
            fprintf(out,
413
            "};\n"
414
            "\n"
415
            "local const z_word_t FAR crc_braid_big_table[][256] = {\n");
416
            for (k = 0; k < 8; k++) {
417
                fprintf(out, "   {");
418
                write_table64(out, big[k], 256);
419
                fprintf(out, "}%s", k < 7 ? ",\n" : "");
420
            }
421
            fprintf(out,
422
            "};\n");
423
424
            /* compute braid tables for this N and 32-bit word_t */
425
            braid(ltl, big, n, 4);
426
427
            /* write out braid tables for 32-bit z_word_t to crc32.h */
428
            fprintf(out,
429
            "\n"
430
            "#else /* W == 4 */\n"
431
            "\n"
432
            "local const z_crc_t FAR crc_braid_table[][256] = {\n");
433
            for (k = 0; k < 4; k++) {
434
                fprintf(out, "   {");
435
                write_table(out, ltl[k], 256);
436
                fprintf(out, "}%s", k < 3 ? ",\n" : "");
437
            }
438
            fprintf(out,
439
            "};\n"
440
            "\n"
441
            "local const z_word_t FAR crc_braid_big_table[][256] = {\n");
442
            for (k = 0; k < 4; k++) {
443
                fprintf(out, "   {");
444
                write_table32hi(out, big[k], 256);
445
                fprintf(out, "}%s", k < 3 ? ",\n" : "");
446
            }
447
            fprintf(out,
448
            "};\n"
449
            "\n"
450
            "#endif\n"
451
            "\n"
452
            "#endif\n");
453
        }
454
        fprintf(out,
455
            "\n"
456
            "#endif\n");
457
458
        /* write out zeros operator table to crc32.h */
459
        fprintf(out,
460
            "\n"
461
            "local const z_crc_t FAR x2n_table[] = {\n"
462
            "    ");
463
        write_table(out, x2n_table, 32);
464
        fprintf(out,
465
            "};\n");
466
        fclose(out);
467
    }
468
#endif /* MAKECRCH */
469
}
470
471
#ifdef MAKECRCH
472
473
/*
474
   Write the 32-bit values in table[0..k-1] to out, five per line in
475
   hexadecimal separated by commas.
476
 */
477
local void write_table(FILE *out, const z_crc_t FAR *table, int k) {
478
    int n;
479
480
    for (n = 0; n < k; n++)
481
        fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : "    ",
482
                (unsigned long)(table[n]),
483
                n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
484
}
485
486
/*
487
   Write the high 32-bits of each value in table[0..k-1] to out, five per line
488
   in hexadecimal separated by commas.
489
 */
490
local void write_table32hi(FILE *out, const z_word_t FAR *table, int k) {
491
    int n;
492
493
    for (n = 0; n < k; n++)
494
        fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : "    ",
495
                (unsigned long)(table[n] >> 32),
496
                n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
497
}
498
499
/*
500
  Write the 64-bit values in table[0..k-1] to out, three per line in
501
  hexadecimal separated by commas. This assumes that if there is a 64-bit
502
  type, then there is also a long long integer type, and it is at least 64
503
  bits. If not, then the type cast and format string can be adjusted
504
  accordingly.
505
 */
506
local void write_table64(FILE *out, const z_word_t FAR *table, int k) {
507
    int n;
508
509
    for (n = 0; n < k; n++)
510
        fprintf(out, "%s0x%016llx%s", n == 0 || n % 3 ? "" : "    ",
511
                (unsigned long long)(table[n]),
512
                n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", "));
513
}
514
515
/* Actually do the deed. */
516
int main(void) {
517
    make_crc_table();
518
    return 0;
519
}
520
521
#endif /* MAKECRCH */
522
523
#ifdef W
524
/*
525
  Generate the little and big-endian braid tables for the given n and z_word_t
526
  size w. Each array must have room for w blocks of 256 elements.
527
 */
528
local void braid(z_crc_t ltl[][256], z_word_t big[][256], int n, int w) {
529
    int k;
530
    z_crc_t i, p, q;
531
    for (k = 0; k < w; k++) {
532
        p = x2nmodp((n * w + 3 - k) << 3, 0);
533
        ltl[k][0] = 0;
534
        big[w - 1 - k][0] = 0;
535
        for (i = 1; i < 256; i++) {
536
            ltl[k][i] = q = multmodp(i << 24, p);
537
            big[w - 1 - k][i] = byte_swap(q);
538
        }
539
    }
540
}
541
#endif
542
543
#endif /* DYNAMIC_CRC_TABLE */
544
545
/* =========================================================================
546
 * This function can be used by asm versions of crc32(), and to force the
547
 * generation of the CRC tables in a threaded application.
548
 */
549
0
const z_crc_t FAR * ZEXPORT get_crc_table(void) {
550
#ifdef DYNAMIC_CRC_TABLE
551
    once(&made, make_crc_table);
552
#endif /* DYNAMIC_CRC_TABLE */
553
0
    return (const z_crc_t FAR *)crc_table;
554
0
}
555
556
/* =========================================================================
557
 * Use ARM machine instructions if available. This will compute the CRC about
558
 * ten times faster than the braided calculation. This code does not check for
559
 * the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will
560
 * only be defined if the compilation specifies an ARM processor architecture
561
 * that has the instructions. For example, compiling with -march=armv8.1-a or
562
 * -march=armv8-a+crc, or -march=native if the compile machine has the crc32
563
 * instructions.
564
 */
565
#ifdef ARMCRC32
566
567
/*
568
   Constants empirically determined to maximize speed. These values are from
569
   measurements on a Cortex-A57. Your mileage may vary.
570
 */
571
#define Z_BATCH 3990                /* number of words in a batch */
572
#define Z_BATCH_ZEROS 0xa10d3d0c    /* computed from Z_BATCH = 3990 */
573
#define Z_BATCH_MIN 800             /* fewest words in a final batch */
574
575
unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,
576
                              z_size_t len) {
577
    z_crc_t val;
578
    z_word_t crc1, crc2;
579
    const z_word_t *word;
580
    z_word_t val0, val1, val2;
581
    z_size_t last, last2, i;
582
    z_size_t num;
583
584
    /* Return initial CRC, if requested. */
585
    if (buf == Z_NULL) return 0;
586
587
#ifdef DYNAMIC_CRC_TABLE
588
    once(&made, make_crc_table);
589
#endif /* DYNAMIC_CRC_TABLE */
590
591
    /* Pre-condition the CRC */
592
    crc = (~crc) & 0xffffffff;
593
594
    /* Compute the CRC up to a word boundary. */
595
    while (len && ((z_size_t)buf & 7) != 0) {
596
        len--;
597
        val = *buf++;
598
        __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val));
599
    }
600
601
    /* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */
602
    word = (z_word_t const *)buf;
603
    num = len >> 3;
604
    len &= 7;
605
606
    /* Do three interleaved CRCs to realize the throughput of one crc32x
607
       instruction per cycle. Each CRC is calculated on Z_BATCH words. The
608
       three CRCs are combined into a single CRC after each set of batches. */
609
    while (num >= 3 * Z_BATCH) {
610
        crc1 = 0;
611
        crc2 = 0;
612
        for (i = 0; i < Z_BATCH; i++) {
613
            val0 = word[i];
614
            val1 = word[i + Z_BATCH];
615
            val2 = word[i + 2 * Z_BATCH];
616
            __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
617
            __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1));
618
            __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2));
619
        }
620
        word += 3 * Z_BATCH;
621
        num -= 3 * Z_BATCH;
622
        crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1;
623
        crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2;
624
    }
625
626
    /* Do one last smaller batch with the remaining words, if there are enough
627
       to pay for the combination of CRCs. */
628
    last = num / 3;
629
    if (last >= Z_BATCH_MIN) {
630
        last2 = last << 1;
631
        crc1 = 0;
632
        crc2 = 0;
633
        for (i = 0; i < last; i++) {
634
            val0 = word[i];
635
            val1 = word[i + last];
636
            val2 = word[i + last2];
637
            __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
638
            __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1));
639
            __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2));
640
        }
641
        word += 3 * last;
642
        num -= 3 * last;
643
        val = x2nmodp(last, 6);
644
        crc = multmodp(val, crc) ^ crc1;
645
        crc = multmodp(val, crc) ^ crc2;
646
    }
647
648
    /* Compute the CRC on any remaining words. */
649
    for (i = 0; i < num; i++) {
650
        val0 = word[i];
651
        __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
652
    }
653
    word += num;
654
655
    /* Complete the CRC on any remaining bytes. */
656
    buf = (const unsigned char FAR *)word;
657
    while (len) {
658
        len--;
659
        val = *buf++;
660
        __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val));
661
    }
662
663
    /* Return the CRC, post-conditioned. */
664
    return crc ^ 0xffffffff;
665
}
666
667
#else
668
669
#ifdef W
670
671
/*
672
  Return the CRC of the W bytes in the word_t data, taking the
673
  least-significant byte of the word as the first byte of data, without any pre
674
  or post conditioning. This is used to combine the CRCs of each braid.
675
 */
676
0
local z_crc_t crc_word(z_word_t data) {
677
0
    int k;
678
0
    for (k = 0; k < W; k++)
679
0
        data = (data >> 8) ^ crc_table[data & 0xff];
680
0
    return (z_crc_t)data;
681
0
}
682
683
0
local z_word_t crc_word_big(z_word_t data) {
684
0
    int k;
685
0
    for (k = 0; k < W; k++)
686
0
        data = (data << 8) ^
687
0
            crc_big_table[(data >> ((W - 1) << 3)) & 0xff];
688
0
    return data;
689
0
}
690
691
#endif
692
693
/* ========================================================================= */
694
unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf,
695
0
                              z_size_t len) {
696
    /* Return initial CRC, if requested. */
697
0
    if (buf == Z_NULL) return 0;
698
699
#ifdef DYNAMIC_CRC_TABLE
700
    once(&made, make_crc_table);
701
#endif /* DYNAMIC_CRC_TABLE */
702
703
    /* Pre-condition the CRC */
704
0
    crc = (~crc) & 0xffffffff;
705
706
0
#ifdef W
707
708
    /* If provided enough bytes, do a braided CRC calculation. */
709
0
    if (len >= N * W + W - 1) {
710
0
        z_size_t blks;
711
0
        z_word_t const *words;
712
0
        unsigned endian;
713
0
        int k;
714
715
        /* Compute the CRC up to a z_word_t boundary. */
716
0
        while (len && ((z_size_t)buf & (W - 1)) != 0) {
717
0
            len--;
718
0
            crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
719
0
        }
720
721
        /* Compute the CRC on as many N z_word_t blocks as are available. */
722
0
        blks = len / (N * W);
723
0
        len -= blks * N * W;
724
0
        words = (z_word_t const *)buf;
725
726
        /* Do endian check at execution time instead of compile time, since ARM
727
           processors can change the endianness at execution time. If the
728
           compiler knows what the endianness will be, it can optimize out the
729
           check and the unused branch. */
730
0
        endian = 1;
731
0
        if (*(unsigned char *)&endian) {
732
            /* Little endian. */
733
734
0
            z_crc_t crc0;
735
0
            z_word_t word0;
736
0
#if N > 1
737
0
            z_crc_t crc1;
738
0
            z_word_t word1;
739
0
#if N > 2
740
0
            z_crc_t crc2;
741
0
            z_word_t word2;
742
0
#if N > 3
743
0
            z_crc_t crc3;
744
0
            z_word_t word3;
745
0
#if N > 4
746
0
            z_crc_t crc4;
747
0
            z_word_t word4;
748
#if N > 5
749
            z_crc_t crc5;
750
            z_word_t word5;
751
#endif
752
0
#endif
753
0
#endif
754
0
#endif
755
0
#endif
756
757
            /* Initialize the CRC for each braid. */
758
0
            crc0 = crc;
759
0
#if N > 1
760
0
            crc1 = 0;
761
0
#if N > 2
762
0
            crc2 = 0;
763
0
#if N > 3
764
0
            crc3 = 0;
765
0
#if N > 4
766
0
            crc4 = 0;
767
#if N > 5
768
            crc5 = 0;
769
#endif
770
0
#endif
771
0
#endif
772
0
#endif
773
0
#endif
774
775
            /*
776
              Process the first blks-1 blocks, computing the CRCs on each braid
777
              independently.
778
             */
779
0
            while (--blks) {
780
                /* Load the word for each braid into registers. */
781
0
                word0 = crc0 ^ words[0];
782
0
#if N > 1
783
0
                word1 = crc1 ^ words[1];
784
0
#if N > 2
785
0
                word2 = crc2 ^ words[2];
786
0
#if N > 3
787
0
                word3 = crc3 ^ words[3];
788
0
#if N > 4
789
0
                word4 = crc4 ^ words[4];
790
#if N > 5
791
                word5 = crc5 ^ words[5];
792
#endif
793
0
#endif
794
0
#endif
795
0
#endif
796
0
#endif
797
0
                words += N;
798
799
                /* Compute and update the CRC for each word. The loop should
800
                   get unrolled. */
801
0
                crc0 = crc_braid_table[0][word0 & 0xff];
802
0
#if N > 1
803
0
                crc1 = crc_braid_table[0][word1 & 0xff];
804
0
#if N > 2
805
0
                crc2 = crc_braid_table[0][word2 & 0xff];
806
0
#if N > 3
807
0
                crc3 = crc_braid_table[0][word3 & 0xff];
808
0
#if N > 4
809
0
                crc4 = crc_braid_table[0][word4 & 0xff];
810
#if N > 5
811
                crc5 = crc_braid_table[0][word5 & 0xff];
812
#endif
813
0
#endif
814
0
#endif
815
0
#endif
816
0
#endif
817
0
                for (k = 1; k < W; k++) {
818
0
                    crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff];
819
0
#if N > 1
820
0
                    crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff];
821
0
#if N > 2
822
0
                    crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff];
823
0
#if N > 3
824
0
                    crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff];
825
0
#if N > 4
826
0
                    crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff];
827
#if N > 5
828
                    crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff];
829
#endif
830
0
#endif
831
0
#endif
832
0
#endif
833
0
#endif
834
0
                }
835
0
            }
836
837
            /*
838
              Process the last block, combining the CRCs of the N braids at the
839
              same time.
840
             */
841
0
            crc = crc_word(crc0 ^ words[0]);
842
0
#if N > 1
843
0
            crc = crc_word(crc1 ^ words[1] ^ crc);
844
0
#if N > 2
845
0
            crc = crc_word(crc2 ^ words[2] ^ crc);
846
0
#if N > 3
847
0
            crc = crc_word(crc3 ^ words[3] ^ crc);
848
0
#if N > 4
849
0
            crc = crc_word(crc4 ^ words[4] ^ crc);
850
#if N > 5
851
            crc = crc_word(crc5 ^ words[5] ^ crc);
852
#endif
853
0
#endif
854
0
#endif
855
0
#endif
856
0
#endif
857
0
            words += N;
858
0
        }
859
0
        else {
860
            /* Big endian. */
861
862
0
            z_word_t crc0, word0, comb;
863
0
#if N > 1
864
0
            z_word_t crc1, word1;
865
0
#if N > 2
866
0
            z_word_t crc2, word2;
867
0
#if N > 3
868
0
            z_word_t crc3, word3;
869
0
#if N > 4
870
0
            z_word_t crc4, word4;
871
#if N > 5
872
            z_word_t crc5, word5;
873
#endif
874
0
#endif
875
0
#endif
876
0
#endif
877
0
#endif
878
879
            /* Initialize the CRC for each braid. */
880
0
            crc0 = byte_swap(crc);
881
0
#if N > 1
882
0
            crc1 = 0;
883
0
#if N > 2
884
0
            crc2 = 0;
885
0
#if N > 3
886
0
            crc3 = 0;
887
0
#if N > 4
888
0
            crc4 = 0;
889
#if N > 5
890
            crc5 = 0;
891
#endif
892
0
#endif
893
0
#endif
894
0
#endif
895
0
#endif
896
897
            /*
898
              Process the first blks-1 blocks, computing the CRCs on each braid
899
              independently.
900
             */
901
0
            while (--blks) {
902
                /* Load the word for each braid into registers. */
903
0
                word0 = crc0 ^ words[0];
904
0
#if N > 1
905
0
                word1 = crc1 ^ words[1];
906
0
#if N > 2
907
0
                word2 = crc2 ^ words[2];
908
0
#if N > 3
909
0
                word3 = crc3 ^ words[3];
910
0
#if N > 4
911
0
                word4 = crc4 ^ words[4];
912
#if N > 5
913
                word5 = crc5 ^ words[5];
914
#endif
915
0
#endif
916
0
#endif
917
0
#endif
918
0
#endif
919
0
                words += N;
920
921
                /* Compute and update the CRC for each word. The loop should
922
                   get unrolled. */
923
0
                crc0 = crc_braid_big_table[0][word0 & 0xff];
924
0
#if N > 1
925
0
                crc1 = crc_braid_big_table[0][word1 & 0xff];
926
0
#if N > 2
927
0
                crc2 = crc_braid_big_table[0][word2 & 0xff];
928
0
#if N > 3
929
0
                crc3 = crc_braid_big_table[0][word3 & 0xff];
930
0
#if N > 4
931
0
                crc4 = crc_braid_big_table[0][word4 & 0xff];
932
#if N > 5
933
                crc5 = crc_braid_big_table[0][word5 & 0xff];
934
#endif
935
0
#endif
936
0
#endif
937
0
#endif
938
0
#endif
939
0
                for (k = 1; k < W; k++) {
940
0
                    crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff];
941
0
#if N > 1
942
0
                    crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff];
943
0
#if N > 2
944
0
                    crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff];
945
0
#if N > 3
946
0
                    crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff];
947
0
#if N > 4
948
0
                    crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff];
949
#if N > 5
950
                    crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff];
951
#endif
952
0
#endif
953
0
#endif
954
0
#endif
955
0
#endif
956
0
                }
957
0
            }
958
959
            /*
960
              Process the last block, combining the CRCs of the N braids at the
961
              same time.
962
             */
963
0
            comb = crc_word_big(crc0 ^ words[0]);
964
0
#if N > 1
965
0
            comb = crc_word_big(crc1 ^ words[1] ^ comb);
966
0
#if N > 2
967
0
            comb = crc_word_big(crc2 ^ words[2] ^ comb);
968
0
#if N > 3
969
0
            comb = crc_word_big(crc3 ^ words[3] ^ comb);
970
0
#if N > 4
971
0
            comb = crc_word_big(crc4 ^ words[4] ^ comb);
972
#if N > 5
973
            comb = crc_word_big(crc5 ^ words[5] ^ comb);
974
#endif
975
0
#endif
976
0
#endif
977
0
#endif
978
0
#endif
979
0
            words += N;
980
0
            crc = byte_swap(comb);
981
0
        }
982
983
        /*
984
          Update the pointer to the remaining bytes to process.
985
         */
986
0
        buf = (unsigned char const *)words;
987
0
    }
988
989
0
#endif /* W */
990
991
    /* Complete the computation of the CRC on any remaining bytes. */
992
0
    while (len >= 8) {
993
0
        len -= 8;
994
0
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
995
0
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
996
0
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
997
0
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
998
0
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
999
0
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1000
0
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1001
0
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1002
0
    }
1003
0
    while (len) {
1004
0
        len--;
1005
0
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
1006
0
    }
1007
1008
    /* Return the CRC, post-conditioned. */
1009
0
    return crc ^ 0xffffffff;
1010
0
}
1011
1012
#endif
1013
1014
/* ========================================================================= */
1015
unsigned long ZEXPORT crc32(unsigned long crc, const unsigned char FAR *buf,
1016
0
                            uInt len) {
1017
0
    return crc32_z(crc, buf, len);
1018
0
}
1019
1020
/* ========================================================================= */
1021
0
uLong ZEXPORT crc32_combine64(uLong crc1, uLong crc2, z_off64_t len2) {
1022
#ifdef DYNAMIC_CRC_TABLE
1023
    once(&made, make_crc_table);
1024
#endif /* DYNAMIC_CRC_TABLE */
1025
0
    return multmodp(x2nmodp(len2, 3), crc1) ^ (crc2 & 0xffffffff);
1026
0
}
1027
1028
/* ========================================================================= */
1029
0
uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2) {
1030
0
    return crc32_combine64(crc1, crc2, (z_off64_t)len2);
1031
0
}
1032
1033
/* ========================================================================= */
1034
0
uLong ZEXPORT crc32_combine_gen64(z_off64_t len2) {
1035
#ifdef DYNAMIC_CRC_TABLE
1036
    once(&made, make_crc_table);
1037
#endif /* DYNAMIC_CRC_TABLE */
1038
0
    return x2nmodp(len2, 3);
1039
0
}
1040
1041
/* ========================================================================= */
1042
0
uLong ZEXPORT crc32_combine_gen(z_off_t len2) {
1043
0
    return crc32_combine_gen64((z_off64_t)len2);
1044
0
}
1045
1046
/* ========================================================================= */
1047
0
uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op) {
1048
0
    return multmodp(op, crc1) ^ (crc2 & 0xffffffff);
1049
0
}