Coverage Report

Created: 2024-09-06 07:53

/src/zlib/deflate.c
Line
Count
Source (jump to first uncovered line)
1
/* deflate.c -- compress data using the deflation algorithm
2
 * Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
6
/*
7
 *  ALGORITHM
8
 *
9
 *      The "deflation" process depends on being able to identify portions
10
 *      of the input text which are identical to earlier input (within a
11
 *      sliding window trailing behind the input currently being processed).
12
 *
13
 *      The most straightforward technique turns out to be the fastest for
14
 *      most input files: try all possible matches and select the longest.
15
 *      The key feature of this algorithm is that insertions into the string
16
 *      dictionary are very simple and thus fast, and deletions are avoided
17
 *      completely. Insertions are performed at each input character, whereas
18
 *      string matches are performed only when the previous match ends. So it
19
 *      is preferable to spend more time in matches to allow very fast string
20
 *      insertions and avoid deletions. The matching algorithm for small
21
 *      strings is inspired from that of Rabin & Karp. A brute force approach
22
 *      is used to find longer strings when a small match has been found.
23
 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24
 *      (by Leonid Broukhis).
25
 *         A previous version of this file used a more sophisticated algorithm
26
 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27
 *      time, but has a larger average cost, uses more memory and is patented.
28
 *      However the F&G algorithm may be faster for some highly redundant
29
 *      files if the parameter max_chain_length (described below) is too large.
30
 *
31
 *  ACKNOWLEDGEMENTS
32
 *
33
 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34
 *      I found it in 'freeze' written by Leonid Broukhis.
35
 *      Thanks to many people for bug reports and testing.
36
 *
37
 *  REFERENCES
38
 *
39
 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40
 *      Available in http://tools.ietf.org/html/rfc1951
41
 *
42
 *      A description of the Rabin and Karp algorithm is given in the book
43
 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44
 *
45
 *      Fiala,E.R., and Greene,D.H.
46
 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47
 *
48
 */
49
50
/* @(#) $Id$ */
51
52
#include "deflate.h"
53
54
const char deflate_copyright[] =
55
   " deflate 1.3.1.1 Copyright 1995-2024 Jean-loup Gailly and Mark Adler ";
56
/*
57
  If you use the zlib library in a product, an acknowledgment is welcome
58
  in the documentation of your product. If for some reason you cannot
59
  include such an acknowledgment, I would appreciate that you keep this
60
  copyright string in the executable of your product.
61
 */
62
63
typedef enum {
64
    need_more,      /* block not completed, need more input or more output */
65
    block_done,     /* block flush performed */
66
    finish_started, /* finish started, need only more output at next deflate */
67
    finish_done     /* finish done, accept no more input or output */
68
} block_state;
69
70
typedef block_state (*compress_func)(deflate_state *s, int flush);
71
/* Compression function. Returns the block state after the call. */
72
73
local block_state deflate_stored(deflate_state *s, int flush);
74
local block_state deflate_fast(deflate_state *s, int flush);
75
#ifndef FASTEST
76
local block_state deflate_slow(deflate_state *s, int flush);
77
#endif
78
local block_state deflate_rle(deflate_state *s, int flush);
79
local block_state deflate_huff(deflate_state *s, int flush);
80
81
/* ===========================================================================
82
 * Local data
83
 */
84
85
1.71G
#define NIL 0
86
/* Tail of hash chains */
87
88
#ifndef TOO_FAR
89
5.25M
#  define TOO_FAR 4096
90
#endif
91
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
92
93
/* Values for max_lazy_match, good_match and max_chain_length, depending on
94
 * the desired pack level (0..9). The values given below have been tuned to
95
 * exclude worst case performance for pathological files. Better values may be
96
 * found for specific files.
97
 */
98
typedef struct config_s {
99
   ush good_length; /* reduce lazy search above this match length */
100
   ush max_lazy;    /* do not perform lazy search above this match length */
101
   ush nice_length; /* quit search above this match length */
102
   ush max_chain;
103
   compress_func func;
104
} config;
105
106
#ifdef FASTEST
107
local const config configuration_table[2] = {
108
/*      good lazy nice chain */
109
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
110
/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
111
#else
112
local const config configuration_table[10] = {
113
/*      good lazy nice chain */
114
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
115
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
116
/* 2 */ {4,    5, 16,    8, deflate_fast},
117
/* 3 */ {4,    6, 32,   32, deflate_fast},
118
119
/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
120
/* 5 */ {8,   16, 32,   32, deflate_slow},
121
/* 6 */ {8,   16, 128, 128, deflate_slow},
122
/* 7 */ {8,   32, 128, 256, deflate_slow},
123
/* 8 */ {32, 128, 258, 1024, deflate_slow},
124
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
125
#endif
126
127
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
128
 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
129
 * meaning.
130
 */
131
132
/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
133
13.0M
#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
134
135
/* ===========================================================================
136
 * Update a hash value with the given input byte
137
 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
138
 *    characters, so that a running hash key can be computed from the previous
139
 *    key instead of complete recalculation each time.
140
 */
141
1.55G
#define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
142
143
144
/* ===========================================================================
145
 * Insert string str in the dictionary and set match_head to the previous head
146
 * of the hash chain (the most recent string with same hash key). Return
147
 * the previous length of the hash chain.
148
 * If this file is compiled with -DFASTEST, the compression level is forced
149
 * to 1, and no hash chains are maintained.
150
 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
151
 *    characters and the first MIN_MATCH bytes of str are valid (except for
152
 *    the last MIN_MATCH-1 bytes of the input file).
153
 */
154
#ifdef FASTEST
155
#define INSERT_STRING(s, str, match_head) \
156
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
157
    match_head = s->head[s->ins_h], \
158
    s->head[s->ins_h] = (Pos)(str))
159
#else
160
#define INSERT_STRING(s, str, match_head) \
161
1.54G
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
162
1.54G
    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
163
1.54G
    s->head[s->ins_h] = (Pos)(str))
164
#endif
165
166
/* ===========================================================================
167
 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
168
 * prev[] will be initialized on the fly.
169
 */
170
#define CLEAR_HASH(s) \
171
154k
    do { \
172
154k
        s->head[s->hash_size - 1] = NIL; \
173
154k
        zmemzero((Bytef *)s->head, \
174
154k
                 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
175
154k
    } while (0)
176
177
/* ===========================================================================
178
 * Slide the hash table when sliding the window down (could be avoided with 32
179
 * bit values at the expense of memory usage). We slide even when level == 0 to
180
 * keep the hash table consistent if we switch back to level > 0 later.
181
 */
182
#if defined(__has_feature)
183
#  if __has_feature(memory_sanitizer)
184
     __attribute__((no_sanitize("memory")))
185
#  endif
186
#endif
187
33.7k
local void slide_hash(deflate_state *s) {
188
33.7k
    unsigned n, m;
189
33.7k
    Posf *p;
190
33.7k
    uInt wsize = s->w_size;
191
192
33.7k
    n = s->hash_size;
193
33.7k
    p = &s->head[n];
194
1.10G
    do {
195
1.10G
        m = *--p;
196
1.10G
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
197
1.10G
    } while (--n);
198
33.7k
    n = wsize;
199
33.7k
#ifndef FASTEST
200
33.7k
    p = &s->prev[n];
201
1.10G
    do {
202
1.10G
        m = *--p;
203
1.10G
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
204
        /* If n is not on any hash chain, prev[n] is garbage but
205
         * its value will never be used.
206
         */
207
1.10G
    } while (--n);
208
33.7k
#endif
209
33.7k
}
210
211
/* ===========================================================================
212
 * Read a new buffer from the current input stream, update the adler32
213
 * and total number of bytes read.  All deflate() input goes through
214
 * this function so some applications may wish to modify it to avoid
215
 * allocating a large strm->next_in buffer and copying from it.
216
 * (See also flush_pending()).
217
 */
218
12.8M
local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {
219
12.8M
    unsigned len = strm->avail_in;
220
221
12.8M
    if (len > size) len = size;
222
12.8M
    if (len == 0) return 0;
223
224
12.8M
    strm->avail_in  -= len;
225
226
12.8M
    zmemcpy(buf, strm->next_in, len);
227
12.8M
    if (strm->state->wrap == 1) {
228
12.8M
        strm->adler = adler32(strm->adler, buf, len);
229
12.8M
    }
230
0
#ifdef GZIP
231
0
    else if (strm->state->wrap == 2) {
232
0
        strm->adler = crc32(strm->adler, buf, len);
233
0
    }
234
12.8M
#endif
235
12.8M
    strm->next_in  += len;
236
12.8M
    strm->total_in += len;
237
238
12.8M
    return len;
239
12.8M
}
240
241
/* ===========================================================================
242
 * Fill the window when the lookahead becomes insufficient.
243
 * Updates strstart and lookahead.
244
 *
245
 * IN assertion: lookahead < MIN_LOOKAHEAD
246
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
247
 *    At least one byte has been read, or avail_in == 0; reads are
248
 *    performed for at least two bytes (required for the zip translate_eol
249
 *    option -- not supported here).
250
 */
251
26.5M
local void fill_window(deflate_state *s) {
252
26.5M
    unsigned n;
253
26.5M
    unsigned more;    /* Amount of free space at the end of the window. */
254
26.5M
    uInt wsize = s->w_size;
255
256
26.5M
    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
257
258
26.5M
    do {
259
26.5M
        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
260
261
        /* Deal with !@#$% 64K limit: */
262
26.5M
        if (sizeof(int) <= 2) {
263
0
            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
264
0
                more = wsize;
265
266
0
            } else if (more == (unsigned)(-1)) {
267
                /* Very unlikely, but possible on 16 bit machine if
268
                 * strstart == 0 && lookahead == 1 (input done a byte at time)
269
                 */
270
0
                more--;
271
0
            }
272
0
        }
273
274
        /* If the window is almost full and there is insufficient lookahead,
275
         * move the upper half to the lower one to make room in the upper half.
276
         */
277
26.5M
        if (s->strstart >= wsize + MAX_DIST(s)) {
278
279
33.7k
            zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
280
33.7k
            s->match_start -= wsize;
281
33.7k
            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
282
33.7k
            s->block_start -= (long) wsize;
283
33.7k
            if (s->insert > s->strstart)
284
0
                s->insert = s->strstart;
285
33.7k
            slide_hash(s);
286
33.7k
            more += wsize;
287
33.7k
        }
288
26.5M
        if (s->strm->avail_in == 0) break;
289
290
        /* If there was no sliding:
291
         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
292
         *    more == window_size - lookahead - strstart
293
         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
294
         * => more >= window_size - 2*WSIZE + 2
295
         * In the BIG_MEM or MMAP case (not yet supported),
296
         *   window_size == input_size + MIN_LOOKAHEAD  &&
297
         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
298
         * Otherwise, window_size == 2*WSIZE so more >= 2.
299
         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
300
         */
301
12.8M
        Assert(more >= 2, "more < 2");
302
303
12.8M
        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
304
12.8M
        s->lookahead += n;
305
306
        /* Initialize the hash value now that we have some input: */
307
12.8M
        if (s->lookahead + s->insert >= MIN_MATCH) {
308
12.8M
            uInt str = s->strstart - s->insert;
309
12.8M
            s->ins_h = s->window[str];
310
12.8M
            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
311
#if MIN_MATCH != 3
312
            Call UPDATE_HASH() MIN_MATCH-3 more times
313
#endif
314
12.9M
            while (s->insert) {
315
81.6k
                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
316
81.6k
#ifndef FASTEST
317
81.6k
                s->prev[str & s->w_mask] = s->head[s->ins_h];
318
81.6k
#endif
319
81.6k
                s->head[s->ins_h] = (Pos)str;
320
81.6k
                str++;
321
81.6k
                s->insert--;
322
81.6k
                if (s->lookahead + s->insert < MIN_MATCH)
323
275
                    break;
324
81.6k
            }
325
12.8M
        }
326
        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
327
         * but this is not important since only literal bytes will be emitted.
328
         */
329
330
12.8M
    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
331
332
    /* If the WIN_INIT bytes after the end of the current data have never been
333
     * written, then zero those bytes in order to avoid memory check reports of
334
     * the use of uninitialized (or uninitialised as Julian writes) bytes by
335
     * the longest match routines.  Update the high water mark for the next
336
     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
337
     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
338
     */
339
26.5M
    if (s->high_water < s->window_size) {
340
15.4M
        ulg curr = s->strstart + (ulg)(s->lookahead);
341
15.4M
        ulg init;
342
343
15.4M
        if (s->high_water < curr) {
344
            /* Previous high water mark below current data -- zero WIN_INIT
345
             * bytes or up to end of window, whichever is less.
346
             */
347
85.8k
            init = s->window_size - curr;
348
85.8k
            if (init > WIN_INIT)
349
84.5k
                init = WIN_INIT;
350
85.8k
            zmemzero(s->window + curr, (unsigned)init);
351
85.8k
            s->high_water = curr + init;
352
85.8k
        }
353
15.3M
        else if (s->high_water < (ulg)curr + WIN_INIT) {
354
            /* High water mark at or above current data, but below current data
355
             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
356
             * to end of window, whichever is less.
357
             */
358
2.13M
            init = (ulg)curr + WIN_INIT - s->high_water;
359
2.13M
            if (init > s->window_size - s->high_water)
360
357
                init = s->window_size - s->high_water;
361
2.13M
            zmemzero(s->window + s->high_water, (unsigned)init);
362
2.13M
            s->high_water += init;
363
2.13M
        }
364
15.4M
    }
365
366
26.5M
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
367
26.5M
           "not enough room for search");
368
26.5M
}
369
370
/* ========================================================================= */
371
int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
372
29.6k
                         int stream_size) {
373
29.6k
    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
374
29.6k
                         Z_DEFAULT_STRATEGY, version, stream_size);
375
    /* To do: ignore strm->next_in if we use it as window */
376
29.6k
}
377
378
/* ========================================================================= */
379
int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
380
                          int windowBits, int memLevel, int strategy,
381
29.6k
                          const char *version, int stream_size) {
382
29.6k
    deflate_state *s;
383
29.6k
    int wrap = 1;
384
29.6k
    static const char my_version[] = ZLIB_VERSION;
385
386
29.6k
    if (version == Z_NULL || version[0] != my_version[0] ||
387
29.6k
        stream_size != sizeof(z_stream)) {
388
0
        return Z_VERSION_ERROR;
389
0
    }
390
29.6k
    if (strm == Z_NULL) return Z_STREAM_ERROR;
391
392
29.6k
    strm->msg = Z_NULL;
393
29.6k
    if (strm->zalloc == (alloc_func)0) {
394
#ifdef Z_SOLO
395
        return Z_STREAM_ERROR;
396
#else
397
23.1k
        strm->zalloc = zcalloc;
398
23.1k
        strm->opaque = (voidpf)0;
399
23.1k
#endif
400
23.1k
    }
401
29.6k
    if (strm->zfree == (free_func)0)
402
#ifdef Z_SOLO
403
        return Z_STREAM_ERROR;
404
#else
405
23.1k
        strm->zfree = zcfree;
406
29.6k
#endif
407
408
#ifdef FASTEST
409
    if (level != 0) level = 1;
410
#else
411
29.6k
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
412
29.6k
#endif
413
414
29.6k
    if (windowBits < 0) { /* suppress zlib wrapper */
415
0
        wrap = 0;
416
0
        if (windowBits < -15)
417
0
            return Z_STREAM_ERROR;
418
0
        windowBits = -windowBits;
419
0
    }
420
29.6k
#ifdef GZIP
421
29.6k
    else if (windowBits > 15) {
422
0
        wrap = 2;       /* write gzip wrapper instead */
423
0
        windowBits -= 16;
424
0
    }
425
29.6k
#endif
426
29.6k
    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
427
29.6k
        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
428
29.6k
        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
429
0
        return Z_STREAM_ERROR;
430
0
    }
431
29.6k
    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
432
29.6k
    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
433
29.6k
    if (s == Z_NULL) return Z_MEM_ERROR;
434
29.6k
    strm->state = (struct internal_state FAR *)s;
435
29.6k
    s->strm = strm;
436
29.6k
    s->status = INIT_STATE;     /* to pass state test in deflateReset() */
437
438
29.6k
    s->wrap = wrap;
439
29.6k
    s->gzhead = Z_NULL;
440
29.6k
    s->w_bits = (uInt)windowBits;
441
29.6k
    s->w_size = 1 << s->w_bits;
442
29.6k
    s->w_mask = s->w_size - 1;
443
444
29.6k
    s->hash_bits = (uInt)memLevel + 7;
445
29.6k
    s->hash_size = 1 << s->hash_bits;
446
29.6k
    s->hash_mask = s->hash_size - 1;
447
29.6k
    s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
448
449
29.6k
    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
450
29.6k
    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
451
29.6k
    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
452
453
29.6k
    s->high_water = 0;      /* nothing written to s->window yet */
454
455
29.6k
    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
456
457
    /* We overlay pending_buf and sym_buf. This works since the average size
458
     * for length/distance pairs over any compressed block is assured to be 31
459
     * bits or less.
460
     *
461
     * Analysis: The longest fixed codes are a length code of 8 bits plus 5
462
     * extra bits, for lengths 131 to 257. The longest fixed distance codes are
463
     * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
464
     * possible fixed-codes length/distance pair is then 31 bits total.
465
     *
466
     * sym_buf starts one-fourth of the way into pending_buf. So there are
467
     * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
468
     * in sym_buf is three bytes -- two for the distance and one for the
469
     * literal/length. As each symbol is consumed, the pointer to the next
470
     * sym_buf value to read moves forward three bytes. From that symbol, up to
471
     * 31 bits are written to pending_buf. The closest the written pending_buf
472
     * bits gets to the next sym_buf symbol to read is just before the last
473
     * code is written. At that time, 31*(n - 2) bits have been written, just
474
     * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
475
     * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
476
     * symbols are written.) The closest the writing gets to what is unread is
477
     * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
478
     * can range from 128 to 32768.
479
     *
480
     * Therefore, at a minimum, there are 142 bits of space between what is
481
     * written and what is read in the overlain buffers, so the symbols cannot
482
     * be overwritten by the compressed data. That space is actually 139 bits,
483
     * due to the three-bit fixed-code block header.
484
     *
485
     * That covers the case where either Z_FIXED is specified, forcing fixed
486
     * codes, or when the use of fixed codes is chosen, because that choice
487
     * results in a smaller compressed block than dynamic codes. That latter
488
     * condition then assures that the above analysis also covers all dynamic
489
     * blocks. A dynamic-code block will only be chosen to be emitted if it has
490
     * fewer bits than a fixed-code block would for the same set of symbols.
491
     * Therefore its average symbol length is assured to be less than 31. So
492
     * the compressed data for a dynamic block also cannot overwrite the
493
     * symbols from which it is being constructed.
494
     */
495
496
29.6k
    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
497
29.6k
    s->pending_buf_size = (ulg)s->lit_bufsize * 4;
498
499
29.6k
    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
500
29.6k
        s->pending_buf == Z_NULL) {
501
0
        s->status = FINISH_STATE;
502
0
        strm->msg = ERR_MSG(Z_MEM_ERROR);
503
0
        deflateEnd (strm);
504
0
        return Z_MEM_ERROR;
505
0
    }
506
#ifdef LIT_MEM
507
    s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
508
    s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
509
    s->sym_end = s->lit_bufsize - 1;
510
#else
511
29.6k
    s->sym_buf = s->pending_buf + s->lit_bufsize;
512
29.6k
    s->sym_end = (s->lit_bufsize - 1) * 3;
513
29.6k
#endif
514
    /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
515
     * on 16 bit machines and because stored blocks are restricted to
516
     * 64K-1 bytes.
517
     */
518
519
29.6k
    s->level = level;
520
29.6k
    s->strategy = strategy;
521
29.6k
    s->method = (Byte)method;
522
523
29.6k
    return deflateReset(strm);
524
29.6k
}
525
526
/* =========================================================================
527
 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
528
 */
529
13.1M
local int deflateStateCheck(z_streamp strm) {
530
13.1M
    deflate_state *s;
531
13.1M
    if (strm == Z_NULL ||
532
13.1M
        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
533
0
        return 1;
534
13.1M
    s = strm->state;
535
13.1M
    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
536
13.1M
#ifdef GZIP
537
13.1M
                                           s->status != GZIP_STATE &&
538
13.1M
#endif
539
13.1M
                                           s->status != EXTRA_STATE &&
540
13.1M
                                           s->status != NAME_STATE &&
541
13.1M
                                           s->status != COMMENT_STATE &&
542
13.1M
                                           s->status != HCRC_STATE &&
543
13.1M
                                           s->status != BUSY_STATE &&
544
13.1M
                                           s->status != FINISH_STATE))
545
0
        return 1;
546
13.1M
    return 0;
547
13.1M
}
548
549
/* ========================================================================= */
550
int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
551
0
                                 uInt  dictLength) {
552
0
    deflate_state *s;
553
0
    uInt str, n;
554
0
    int wrap;
555
0
    unsigned avail;
556
0
    z_const unsigned char *next;
557
558
0
    if (deflateStateCheck(strm) || dictionary == Z_NULL)
559
0
        return Z_STREAM_ERROR;
560
0
    s = strm->state;
561
0
    wrap = s->wrap;
562
0
    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
563
0
        return Z_STREAM_ERROR;
564
565
    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
566
0
    if (wrap == 1)
567
0
        strm->adler = adler32(strm->adler, dictionary, dictLength);
568
0
    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
569
570
    /* if dictionary would fill window, just replace the history */
571
0
    if (dictLength >= s->w_size) {
572
0
        if (wrap == 0) {            /* already empty otherwise */
573
0
            CLEAR_HASH(s);
574
0
            s->strstart = 0;
575
0
            s->block_start = 0L;
576
0
            s->insert = 0;
577
0
        }
578
0
        dictionary += dictLength - s->w_size;  /* use the tail */
579
0
        dictLength = s->w_size;
580
0
    }
581
582
    /* insert dictionary into window and hash */
583
0
    avail = strm->avail_in;
584
0
    next = strm->next_in;
585
0
    strm->avail_in = dictLength;
586
0
    strm->next_in = (z_const Bytef *)dictionary;
587
0
    fill_window(s);
588
0
    while (s->lookahead >= MIN_MATCH) {
589
0
        str = s->strstart;
590
0
        n = s->lookahead - (MIN_MATCH-1);
591
0
        do {
592
0
            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
593
0
#ifndef FASTEST
594
0
            s->prev[str & s->w_mask] = s->head[s->ins_h];
595
0
#endif
596
0
            s->head[s->ins_h] = (Pos)str;
597
0
            str++;
598
0
        } while (--n);
599
0
        s->strstart = str;
600
0
        s->lookahead = MIN_MATCH-1;
601
0
        fill_window(s);
602
0
    }
603
0
    s->strstart += s->lookahead;
604
0
    s->block_start = (long)s->strstart;
605
0
    s->insert = s->lookahead;
606
0
    s->lookahead = 0;
607
0
    s->match_length = s->prev_length = MIN_MATCH-1;
608
0
    s->match_available = 0;
609
0
    strm->next_in = next;
610
0
    strm->avail_in = avail;
611
0
    s->wrap = wrap;
612
0
    return Z_OK;
613
0
}
614
615
/* ========================================================================= */
616
int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
617
0
                                 uInt *dictLength) {
618
0
    deflate_state *s;
619
0
    uInt len;
620
621
0
    if (deflateStateCheck(strm))
622
0
        return Z_STREAM_ERROR;
623
0
    s = strm->state;
624
0
    len = s->strstart + s->lookahead;
625
0
    if (len > s->w_size)
626
0
        len = s->w_size;
627
0
    if (dictionary != Z_NULL && len)
628
0
        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
629
0
    if (dictLength != Z_NULL)
630
0
        *dictLength = len;
631
0
    return Z_OK;
632
0
}
633
634
/* ========================================================================= */
635
154k
int ZEXPORT deflateResetKeep(z_streamp strm) {
636
154k
    deflate_state *s;
637
638
154k
    if (deflateStateCheck(strm)) {
639
0
        return Z_STREAM_ERROR;
640
0
    }
641
642
154k
    strm->total_in = strm->total_out = 0;
643
154k
    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
644
154k
    strm->data_type = Z_UNKNOWN;
645
646
154k
    s = (deflate_state *)strm->state;
647
154k
    s->pending = 0;
648
154k
    s->pending_out = s->pending_buf;
649
650
154k
    if (s->wrap < 0) {
651
120k
        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
652
120k
    }
653
154k
    s->status =
654
154k
#ifdef GZIP
655
154k
        s->wrap == 2 ? GZIP_STATE :
656
154k
#endif
657
154k
        INIT_STATE;
658
154k
    strm->adler =
659
154k
#ifdef GZIP
660
154k
        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
661
154k
#endif
662
154k
        adler32(0L, Z_NULL, 0);
663
154k
    s->last_flush = -2;
664
665
154k
    _tr_init(s);
666
667
154k
    return Z_OK;
668
154k
}
669
670
/* ===========================================================================
671
 * Initialize the "longest match" routines for a new zlib stream
672
 */
673
154k
local void lm_init(deflate_state *s) {
674
154k
    s->window_size = (ulg)2L*s->w_size;
675
676
154k
    CLEAR_HASH(s);
677
678
    /* Set the default configuration parameters:
679
     */
680
154k
    s->max_lazy_match   = configuration_table[s->level].max_lazy;
681
154k
    s->good_match       = configuration_table[s->level].good_length;
682
154k
    s->nice_match       = configuration_table[s->level].nice_length;
683
154k
    s->max_chain_length = configuration_table[s->level].max_chain;
684
685
154k
    s->strstart = 0;
686
154k
    s->block_start = 0L;
687
154k
    s->lookahead = 0;
688
154k
    s->insert = 0;
689
154k
    s->match_length = s->prev_length = MIN_MATCH-1;
690
154k
    s->match_available = 0;
691
154k
    s->ins_h = 0;
692
154k
}
693
694
/* ========================================================================= */
695
154k
int ZEXPORT deflateReset(z_streamp strm) {
696
154k
    int ret;
697
698
154k
    ret = deflateResetKeep(strm);
699
154k
    if (ret == Z_OK)
700
154k
        lm_init(strm->state);
701
154k
    return ret;
702
154k
}
703
704
/* ========================================================================= */
705
0
int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
706
0
    if (deflateStateCheck(strm) || strm->state->wrap != 2)
707
0
        return Z_STREAM_ERROR;
708
0
    strm->state->gzhead = head;
709
0
    return Z_OK;
710
0
}
711
712
/* ========================================================================= */
713
0
int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
714
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
715
0
    if (pending != Z_NULL)
716
0
        *pending = strm->state->pending;
717
0
    if (bits != Z_NULL)
718
0
        *bits = strm->state->bi_valid;
719
0
    return Z_OK;
720
0
}
721
722
/* ========================================================================= */
723
0
int ZEXPORT deflateUsed(z_streamp strm, int *bits) {
724
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
725
0
    if (bits != Z_NULL)
726
0
        *bits = strm->state->bi_used;
727
0
    return Z_OK;
728
0
}
729
730
/* ========================================================================= */
731
0
int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
732
0
    deflate_state *s;
733
0
    int put;
734
735
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
736
0
    s = strm->state;
737
#ifdef LIT_MEM
738
    if (bits < 0 || bits > 16 ||
739
        (uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
740
        return Z_BUF_ERROR;
741
#else
742
0
    if (bits < 0 || bits > 16 ||
743
0
        s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
744
0
        return Z_BUF_ERROR;
745
0
#endif
746
0
    do {
747
0
        put = Buf_size - s->bi_valid;
748
0
        if (put > bits)
749
0
            put = bits;
750
0
        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
751
0
        s->bi_valid += put;
752
0
        _tr_flush_bits(s);
753
0
        value >>= put;
754
0
        bits -= put;
755
0
    } while (bits);
756
0
    return Z_OK;
757
0
}
758
759
/* ========================================================================= */
760
0
int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
761
0
    deflate_state *s;
762
0
    compress_func func;
763
764
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
765
0
    s = strm->state;
766
767
#ifdef FASTEST
768
    if (level != 0) level = 1;
769
#else
770
0
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
771
0
#endif
772
0
    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
773
0
        return Z_STREAM_ERROR;
774
0
    }
775
0
    func = configuration_table[s->level].func;
776
777
0
    if ((strategy != s->strategy || func != configuration_table[level].func) &&
778
0
        s->last_flush != -2) {
779
        /* Flush the last buffer: */
780
0
        int err = deflate(strm, Z_BLOCK);
781
0
        if (err == Z_STREAM_ERROR)
782
0
            return err;
783
0
        if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
784
0
            return Z_BUF_ERROR;
785
0
    }
786
0
    if (s->level != level) {
787
0
        if (s->level == 0 && s->matches != 0) {
788
0
            if (s->matches == 1)
789
0
                slide_hash(s);
790
0
            else
791
0
                CLEAR_HASH(s);
792
0
            s->matches = 0;
793
0
        }
794
0
        s->level = level;
795
0
        s->max_lazy_match   = configuration_table[level].max_lazy;
796
0
        s->good_match       = configuration_table[level].good_length;
797
0
        s->nice_match       = configuration_table[level].nice_length;
798
0
        s->max_chain_length = configuration_table[level].max_chain;
799
0
    }
800
0
    s->strategy = strategy;
801
0
    return Z_OK;
802
0
}
803
804
/* ========================================================================= */
805
int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
806
0
                        int nice_length, int max_chain) {
807
0
    deflate_state *s;
808
809
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
810
0
    s = strm->state;
811
0
    s->good_match = (uInt)good_length;
812
0
    s->max_lazy_match = (uInt)max_lazy;
813
0
    s->nice_match = nice_length;
814
0
    s->max_chain_length = (uInt)max_chain;
815
0
    return Z_OK;
816
0
}
817
818
/* =========================================================================
819
 * For the default windowBits of 15 and memLevel of 8, this function returns a
820
 * close to exact, as well as small, upper bound on the compressed size. This
821
 * is an expansion of ~0.03%, plus a small constant.
822
 *
823
 * For any setting other than those defaults for windowBits and memLevel, one
824
 * of two worst case bounds is returned. This is at most an expansion of ~4% or
825
 * ~13%, plus a small constant.
826
 *
827
 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
828
 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
829
 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
830
 * expansion results from five bytes of header for each stored block.
831
 *
832
 * The larger expansion of 13% results from a window size less than or equal to
833
 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
834
 * the data being compressed may have slid out of the sliding window, impeding
835
 * a stored block from being emitted. Then the only choice is a fixed or
836
 * dynamic block, where a fixed block limits the maximum expansion to 9 bits
837
 * per 8-bit byte, plus 10 bits for every block. The smallest block size for
838
 * which this can occur is 255 (memLevel == 2).
839
 *
840
 * Shifts are used to approximate divisions, for speed.
841
 */
842
46.9k
uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {
843
46.9k
    deflate_state *s;
844
46.9k
    uLong fixedlen, storelen, wraplen;
845
846
    /* upper bound for fixed blocks with 9-bit literals and length 255
847
       (memLevel == 2, which is the lowest that may not use stored blocks) --
848
       ~13% overhead plus a small constant */
849
46.9k
    fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
850
46.9k
               (sourceLen >> 9) + 4;
851
852
    /* upper bound for stored blocks with length 127 (memLevel == 1) --
853
       ~4% overhead plus a small constant */
854
46.9k
    storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
855
46.9k
               (sourceLen >> 11) + 7;
856
857
    /* if can't get parameters, return larger bound plus a wrapper */
858
46.9k
    if (deflateStateCheck(strm))
859
0
        return (fixedlen > storelen ? fixedlen : storelen) + 18;
860
861
    /* compute wrapper length */
862
46.9k
    s = strm->state;
863
46.9k
    switch (s->wrap < 0 ? -s->wrap : s->wrap) {
864
0
    case 0:                                 /* raw deflate */
865
0
        wraplen = 0;
866
0
        break;
867
46.9k
    case 1:                                 /* zlib wrapper */
868
46.9k
        wraplen = 6 + (s->strstart ? 4 : 0);
869
46.9k
        break;
870
0
#ifdef GZIP
871
0
    case 2:                                 /* gzip wrapper */
872
0
        wraplen = 18;
873
0
        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
874
0
            Bytef *str;
875
0
            if (s->gzhead->extra != Z_NULL)
876
0
                wraplen += 2 + s->gzhead->extra_len;
877
0
            str = s->gzhead->name;
878
0
            if (str != Z_NULL)
879
0
                do {
880
0
                    wraplen++;
881
0
                } while (*str++);
882
0
            str = s->gzhead->comment;
883
0
            if (str != Z_NULL)
884
0
                do {
885
0
                    wraplen++;
886
0
                } while (*str++);
887
0
            if (s->gzhead->hcrc)
888
0
                wraplen += 2;
889
0
        }
890
0
        break;
891
0
#endif
892
0
    default:                                /* for compiler happiness */
893
0
        wraplen = 18;
894
46.9k
    }
895
896
    /* if not default parameters, return one of the conservative bounds */
897
46.9k
    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
898
0
        return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +
899
0
               wraplen;
900
901
    /* default settings: return tight bound for that case -- ~0.03% overhead
902
       plus a small constant */
903
46.9k
    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
904
46.9k
           (sourceLen >> 25) + 13 - 6 + wraplen;
905
46.9k
}
906
907
/* =========================================================================
908
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
909
 * IN assertion: the stream state is correct and there is enough room in
910
 * pending_buf.
911
 */
912
439k
local void putShortMSB(deflate_state *s, uInt b) {
913
439k
    put_byte(s, (Byte)(b >> 8));
914
439k
    put_byte(s, (Byte)(b & 0xff));
915
439k
}
916
917
/* =========================================================================
918
 * Flush as much pending output as possible. All deflate() output, except for
919
 * some deflate_stored() output, goes through this function so some
920
 * applications may wish to modify it to avoid allocating a large
921
 * strm->next_out buffer and copying into it. (See also read_buf()).
922
 */
923
551k
local void flush_pending(z_streamp strm) {
924
551k
    unsigned len;
925
551k
    deflate_state *s = strm->state;
926
927
551k
    _tr_flush_bits(s);
928
551k
    len = s->pending;
929
551k
    if (len > strm->avail_out) len = strm->avail_out;
930
551k
    if (len == 0) return;
931
932
551k
    zmemcpy(strm->next_out, s->pending_out, len);
933
551k
    strm->next_out  += len;
934
551k
    s->pending_out  += len;
935
551k
    strm->total_out += len;
936
551k
    strm->avail_out -= len;
937
551k
    s->pending      -= len;
938
551k
    if (s->pending == 0) {
939
531k
        s->pending_out = s->pending_buf;
940
531k
    }
941
551k
}
942
943
/* ===========================================================================
944
 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
945
 */
946
#define HCRC_UPDATE(beg) \
947
0
    do { \
948
0
        if (s->gzhead->hcrc && s->pending > (beg)) \
949
0
            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
950
0
                                s->pending - (beg)); \
951
0
    } while (0)
952
953
/* ========================================================================= */
954
12.9M
int ZEXPORT deflate(z_streamp strm, int flush) {
955
12.9M
    int old_flush; /* value of flush param for previous deflate call */
956
12.9M
    deflate_state *s;
957
958
12.9M
    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
959
0
        return Z_STREAM_ERROR;
960
0
    }
961
12.9M
    s = strm->state;
962
963
12.9M
    if (strm->next_out == Z_NULL ||
964
12.9M
        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
965
12.9M
        (s->status == FINISH_STATE && flush != Z_FINISH)) {
966
0
        ERR_RETURN(strm, Z_STREAM_ERROR);
967
0
    }
968
12.9M
    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
969
970
12.9M
    old_flush = s->last_flush;
971
12.9M
    s->last_flush = flush;
972
973
    /* Flush as much pending output as possible */
974
12.9M
    if (s->pending != 0) {
975
20.1k
        flush_pending(strm);
976
20.1k
        if (strm->avail_out == 0) {
977
            /* Since avail_out is 0, deflate will be called again with
978
             * more output space, but possibly with both pending and
979
             * avail_in equal to zero. There won't be anything to do,
980
             * but this is not an error situation so make sure we
981
             * return OK instead of BUF_ERROR at next call of deflate:
982
             */
983
12.9k
            s->last_flush = -1;
984
12.9k
            return Z_OK;
985
12.9k
        }
986
987
    /* Make sure there is something to do and avoid duplicate consecutive
988
     * flushes. For repeated and useless calls with Z_FINISH, we keep
989
     * returning Z_STREAM_END instead of Z_BUF_ERROR.
990
     */
991
12.8M
    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
992
12.8M
               flush != Z_FINISH) {
993
0
        ERR_RETURN(strm, Z_BUF_ERROR);
994
0
    }
995
996
    /* User must not provide more input after the first FINISH: */
997
12.9M
    if (s->status == FINISH_STATE && strm->avail_in != 0) {
998
0
        ERR_RETURN(strm, Z_BUF_ERROR);
999
0
    }
1000
1001
    /* Write the header */
1002
12.9M
    if (s->status == INIT_STATE && s->wrap == 0)
1003
0
        s->status = BUSY_STATE;
1004
12.9M
    if (s->status == INIT_STATE) {
1005
        /* zlib header */
1006
148k
        uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
1007
148k
        uInt level_flags;
1008
1009
148k
        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
1010
0
            level_flags = 0;
1011
148k
        else if (s->level < 6)
1012
0
            level_flags = 1;
1013
148k
        else if (s->level == 6)
1014
88.6k
            level_flags = 2;
1015
59.6k
        else
1016
59.6k
            level_flags = 3;
1017
148k
        header |= (level_flags << 6);
1018
148k
        if (s->strstart != 0) header |= PRESET_DICT;
1019
148k
        header += 31 - (header % 31);
1020
1021
148k
        putShortMSB(s, header);
1022
1023
        /* Save the adler32 of the preset dictionary: */
1024
148k
        if (s->strstart != 0) {
1025
0
            putShortMSB(s, (uInt)(strm->adler >> 16));
1026
0
            putShortMSB(s, (uInt)(strm->adler & 0xffff));
1027
0
        }
1028
148k
        strm->adler = adler32(0L, Z_NULL, 0);
1029
148k
        s->status = BUSY_STATE;
1030
1031
        /* Compression must start with an empty pending buffer */
1032
148k
        flush_pending(strm);
1033
148k
        if (s->pending != 0) {
1034
0
            s->last_flush = -1;
1035
0
            return Z_OK;
1036
0
        }
1037
148k
    }
1038
12.9M
#ifdef GZIP
1039
12.9M
    if (s->status == GZIP_STATE) {
1040
        /* gzip header */
1041
0
        strm->adler = crc32(0L, Z_NULL, 0);
1042
0
        put_byte(s, 31);
1043
0
        put_byte(s, 139);
1044
0
        put_byte(s, 8);
1045
0
        if (s->gzhead == Z_NULL) {
1046
0
            put_byte(s, 0);
1047
0
            put_byte(s, 0);
1048
0
            put_byte(s, 0);
1049
0
            put_byte(s, 0);
1050
0
            put_byte(s, 0);
1051
0
            put_byte(s, s->level == 9 ? 2 :
1052
0
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1053
0
                      4 : 0));
1054
0
            put_byte(s, OS_CODE);
1055
0
            s->status = BUSY_STATE;
1056
1057
            /* Compression must start with an empty pending buffer */
1058
0
            flush_pending(strm);
1059
0
            if (s->pending != 0) {
1060
0
                s->last_flush = -1;
1061
0
                return Z_OK;
1062
0
            }
1063
0
        }
1064
0
        else {
1065
0
            put_byte(s, (s->gzhead->text ? 1 : 0) +
1066
0
                     (s->gzhead->hcrc ? 2 : 0) +
1067
0
                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
1068
0
                     (s->gzhead->name == Z_NULL ? 0 : 8) +
1069
0
                     (s->gzhead->comment == Z_NULL ? 0 : 16)
1070
0
                     );
1071
0
            put_byte(s, (Byte)(s->gzhead->time & 0xff));
1072
0
            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
1073
0
            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
1074
0
            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
1075
0
            put_byte(s, s->level == 9 ? 2 :
1076
0
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1077
0
                      4 : 0));
1078
0
            put_byte(s, s->gzhead->os & 0xff);
1079
0
            if (s->gzhead->extra != Z_NULL) {
1080
0
                put_byte(s, s->gzhead->extra_len & 0xff);
1081
0
                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
1082
0
            }
1083
0
            if (s->gzhead->hcrc)
1084
0
                strm->adler = crc32(strm->adler, s->pending_buf,
1085
0
                                    s->pending);
1086
0
            s->gzindex = 0;
1087
0
            s->status = EXTRA_STATE;
1088
0
        }
1089
0
    }
1090
12.9M
    if (s->status == EXTRA_STATE) {
1091
0
        if (s->gzhead->extra != Z_NULL) {
1092
0
            ulg beg = s->pending;   /* start of bytes to update crc */
1093
0
            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
1094
0
            while (s->pending + left > s->pending_buf_size) {
1095
0
                uInt copy = s->pending_buf_size - s->pending;
1096
0
                zmemcpy(s->pending_buf + s->pending,
1097
0
                        s->gzhead->extra + s->gzindex, copy);
1098
0
                s->pending = s->pending_buf_size;
1099
0
                HCRC_UPDATE(beg);
1100
0
                s->gzindex += copy;
1101
0
                flush_pending(strm);
1102
0
                if (s->pending != 0) {
1103
0
                    s->last_flush = -1;
1104
0
                    return Z_OK;
1105
0
                }
1106
0
                beg = 0;
1107
0
                left -= copy;
1108
0
            }
1109
0
            zmemcpy(s->pending_buf + s->pending,
1110
0
                    s->gzhead->extra + s->gzindex, left);
1111
0
            s->pending += left;
1112
0
            HCRC_UPDATE(beg);
1113
0
            s->gzindex = 0;
1114
0
        }
1115
0
        s->status = NAME_STATE;
1116
0
    }
1117
12.9M
    if (s->status == NAME_STATE) {
1118
0
        if (s->gzhead->name != Z_NULL) {
1119
0
            ulg beg = s->pending;   /* start of bytes to update crc */
1120
0
            int val;
1121
0
            do {
1122
0
                if (s->pending == s->pending_buf_size) {
1123
0
                    HCRC_UPDATE(beg);
1124
0
                    flush_pending(strm);
1125
0
                    if (s->pending != 0) {
1126
0
                        s->last_flush = -1;
1127
0
                        return Z_OK;
1128
0
                    }
1129
0
                    beg = 0;
1130
0
                }
1131
0
                val = s->gzhead->name[s->gzindex++];
1132
0
                put_byte(s, val);
1133
0
            } while (val != 0);
1134
0
            HCRC_UPDATE(beg);
1135
0
            s->gzindex = 0;
1136
0
        }
1137
0
        s->status = COMMENT_STATE;
1138
0
    }
1139
12.9M
    if (s->status == COMMENT_STATE) {
1140
0
        if (s->gzhead->comment != Z_NULL) {
1141
0
            ulg beg = s->pending;   /* start of bytes to update crc */
1142
0
            int val;
1143
0
            do {
1144
0
                if (s->pending == s->pending_buf_size) {
1145
0
                    HCRC_UPDATE(beg);
1146
0
                    flush_pending(strm);
1147
0
                    if (s->pending != 0) {
1148
0
                        s->last_flush = -1;
1149
0
                        return Z_OK;
1150
0
                    }
1151
0
                    beg = 0;
1152
0
                }
1153
0
                val = s->gzhead->comment[s->gzindex++];
1154
0
                put_byte(s, val);
1155
0
            } while (val != 0);
1156
0
            HCRC_UPDATE(beg);
1157
0
        }
1158
0
        s->status = HCRC_STATE;
1159
0
    }
1160
12.9M
    if (s->status == HCRC_STATE) {
1161
0
        if (s->gzhead->hcrc) {
1162
0
            if (s->pending + 2 > s->pending_buf_size) {
1163
0
                flush_pending(strm);
1164
0
                if (s->pending != 0) {
1165
0
                    s->last_flush = -1;
1166
0
                    return Z_OK;
1167
0
                }
1168
0
            }
1169
0
            put_byte(s, (Byte)(strm->adler & 0xff));
1170
0
            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1171
0
            strm->adler = crc32(0L, Z_NULL, 0);
1172
0
        }
1173
0
        s->status = BUSY_STATE;
1174
1175
        /* Compression must start with an empty pending buffer */
1176
0
        flush_pending(strm);
1177
0
        if (s->pending != 0) {
1178
0
            s->last_flush = -1;
1179
0
            return Z_OK;
1180
0
        }
1181
0
    }
1182
12.9M
#endif
1183
1184
    /* Start a new block or continue the current one.
1185
     */
1186
12.9M
    if (strm->avail_in != 0 || s->lookahead != 0 ||
1187
12.9M
        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1188
12.9M
        block_state bstate;
1189
1190
12.9M
        bstate = s->level == 0 ? deflate_stored(s, flush) :
1191
12.9M
                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1192
12.9M
                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1193
12.9M
                 (*(configuration_table[s->level].func))(s, flush);
1194
1195
12.9M
        if (bstate == finish_started || bstate == finish_done) {
1196
145k
            s->status = FINISH_STATE;
1197
145k
        }
1198
12.9M
        if (bstate == need_more || bstate == finish_started) {
1199
12.7M
            if (strm->avail_out == 0) {
1200
7.35k
                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1201
7.35k
            }
1202
12.7M
            return Z_OK;
1203
            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1204
             * of deflate should use the same flush parameter to make sure
1205
             * that the flush is complete. So we don't have to output an
1206
             * empty block here, this will be done at next call. This also
1207
             * ensures that for a very small output buffer, we emit at most
1208
             * one empty block.
1209
             */
1210
12.7M
        }
1211
185k
        if (bstate == block_done) {
1212
43.4k
            if (flush == Z_PARTIAL_FLUSH) {
1213
0
                _tr_align(s);
1214
43.4k
            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1215
43.4k
                _tr_stored_block(s, (char*)0, 0L, 0);
1216
                /* For a full flush, this empty block will be recognized
1217
                 * as a special marker by inflate_sync().
1218
                 */
1219
43.4k
                if (flush == Z_FULL_FLUSH) {
1220
0
                    CLEAR_HASH(s);             /* forget history */
1221
0
                    if (s->lookahead == 0) {
1222
0
                        s->strstart = 0;
1223
0
                        s->block_start = 0L;
1224
0
                        s->insert = 0;
1225
0
                    }
1226
0
                }
1227
43.4k
            }
1228
43.4k
            flush_pending(strm);
1229
43.4k
            if (strm->avail_out == 0) {
1230
0
              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1231
0
              return Z_OK;
1232
0
            }
1233
43.4k
        }
1234
185k
    }
1235
1236
189k
    if (flush != Z_FINISH) return Z_OK;
1237
145k
    if (s->wrap <= 0) return Z_STREAM_END;
1238
1239
    /* Write the trailer */
1240
145k
#ifdef GZIP
1241
145k
    if (s->wrap == 2) {
1242
0
        put_byte(s, (Byte)(strm->adler & 0xff));
1243
0
        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1244
0
        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1245
0
        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1246
0
        put_byte(s, (Byte)(strm->total_in & 0xff));
1247
0
        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1248
0
        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1249
0
        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1250
0
    }
1251
145k
    else
1252
145k
#endif
1253
145k
    {
1254
145k
        putShortMSB(s, (uInt)(strm->adler >> 16));
1255
145k
        putShortMSB(s, (uInt)(strm->adler & 0xffff));
1256
145k
    }
1257
145k
    flush_pending(strm);
1258
    /* If avail_out is zero, the application will call deflate again
1259
     * to flush the rest.
1260
     */
1261
145k
    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1262
145k
    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1263
145k
}
1264
1265
/* ========================================================================= */
1266
29.6k
int ZEXPORT deflateEnd(z_streamp strm) {
1267
29.6k
    int status;
1268
1269
29.6k
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1270
1271
29.6k
    status = strm->state->status;
1272
1273
    /* Deallocate in reverse order of allocations: */
1274
29.6k
    TRY_FREE(strm, strm->state->pending_buf);
1275
29.6k
    TRY_FREE(strm, strm->state->head);
1276
29.6k
    TRY_FREE(strm, strm->state->prev);
1277
29.6k
    TRY_FREE(strm, strm->state->window);
1278
1279
29.6k
    ZFREE(strm, strm->state);
1280
29.6k
    strm->state = Z_NULL;
1281
1282
29.6k
    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1283
29.6k
}
1284
1285
/* =========================================================================
1286
 * Copy the source state to the destination state.
1287
 * To simplify the source, this is not supported for 16-bit MSDOS (which
1288
 * doesn't have enough memory anyway to duplicate compression states).
1289
 */
1290
0
int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
1291
#ifdef MAXSEG_64K
1292
    (void)dest;
1293
    (void)source;
1294
    return Z_STREAM_ERROR;
1295
#else
1296
0
    deflate_state *ds;
1297
0
    deflate_state *ss;
1298
1299
1300
0
    if (deflateStateCheck(source) || dest == Z_NULL) {
1301
0
        return Z_STREAM_ERROR;
1302
0
    }
1303
1304
0
    ss = source->state;
1305
1306
0
    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1307
1308
0
    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1309
0
    if (ds == Z_NULL) return Z_MEM_ERROR;
1310
0
    dest->state = (struct internal_state FAR *) ds;
1311
0
    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1312
0
    ds->strm = dest;
1313
1314
0
    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1315
0
    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1316
0
    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1317
0
    ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
1318
1319
0
    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1320
0
        ds->pending_buf == Z_NULL) {
1321
0
        deflateEnd (dest);
1322
0
        return Z_MEM_ERROR;
1323
0
    }
1324
    /* following zmemcpy do not work for 16-bit MSDOS */
1325
0
    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1326
0
    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1327
0
    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1328
0
    zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS);
1329
1330
0
    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1331
#ifdef LIT_MEM
1332
    ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
1333
    ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
1334
#else
1335
0
    ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1336
0
#endif
1337
1338
0
    ds->l_desc.dyn_tree = ds->dyn_ltree;
1339
0
    ds->d_desc.dyn_tree = ds->dyn_dtree;
1340
0
    ds->bl_desc.dyn_tree = ds->bl_tree;
1341
1342
0
    return Z_OK;
1343
0
#endif /* MAXSEG_64K */
1344
0
}
1345
1346
#ifndef FASTEST
1347
/* ===========================================================================
1348
 * Set match_start to the longest match starting at the given string and
1349
 * return its length. Matches shorter or equal to prev_length are discarded,
1350
 * in which case the result is equal to prev_length and match_start is
1351
 * garbage.
1352
 * IN assertions: cur_match is the head of the hash chain for the current
1353
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1354
 * OUT assertion: the match length is not greater than s->lookahead.
1355
 */
1356
74.6M
local uInt longest_match(deflate_state *s, IPos cur_match) {
1357
74.6M
    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1358
74.6M
    register Bytef *scan = s->window + s->strstart; /* current string */
1359
74.6M
    register Bytef *match;                      /* matched string */
1360
74.6M
    register int len;                           /* length of current match */
1361
74.6M
    int best_len = (int)s->prev_length;         /* best match length so far */
1362
74.6M
    int nice_match = s->nice_match;             /* stop if match long enough */
1363
74.6M
    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1364
41.1M
        s->strstart - (IPos)MAX_DIST(s) : NIL;
1365
    /* Stop when cur_match becomes <= limit. To simplify the code,
1366
     * we prevent matches with the string of window index 0.
1367
     */
1368
74.6M
    Posf *prev = s->prev;
1369
74.6M
    uInt wmask = s->w_mask;
1370
1371
#ifdef UNALIGNED_OK
1372
    /* Compare two bytes at a time. Note: this is not always beneficial.
1373
     * Try with and without -DUNALIGNED_OK to check.
1374
     */
1375
    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1376
    register ush scan_start = *(ushf*)scan;
1377
    register ush scan_end   = *(ushf*)(scan + best_len - 1);
1378
#else
1379
74.6M
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1380
74.6M
    register Byte scan_end1  = scan[best_len - 1];
1381
74.6M
    register Byte scan_end   = scan[best_len];
1382
74.6M
#endif
1383
1384
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1385
     * It is easy to get rid of this optimization if necessary.
1386
     */
1387
74.6M
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1388
1389
    /* Do not waste too much time if we already have a good match: */
1390
74.6M
    if (s->prev_length >= s->good_match) {
1391
1.32M
        chain_length >>= 2;
1392
1.32M
    }
1393
    /* Do not look for matches beyond the end of the input. This is necessary
1394
     * to make deflate deterministic.
1395
     */
1396
74.6M
    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1397
1398
74.6M
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1399
74.6M
           "need lookahead");
1400
1401
1.98G
    do {
1402
1.98G
        Assert(cur_match < s->strstart, "no future");
1403
1.98G
        match = s->window + cur_match;
1404
1405
        /* Skip to next match if the match length cannot increase
1406
         * or if the match length is less than 2.  Note that the checks below
1407
         * for insufficient lookahead only occur occasionally for performance
1408
         * reasons.  Therefore uninitialized memory will be accessed, and
1409
         * conditional jumps will be made that depend on those values.
1410
         * However the length of the match is limited to the lookahead, so
1411
         * the output of deflate is not affected by the uninitialized values.
1412
         */
1413
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1414
        /* This code assumes sizeof(unsigned short) == 2. Do not use
1415
         * UNALIGNED_OK if your compiler uses a different size.
1416
         */
1417
        if (*(ushf*)(match + best_len - 1) != scan_end ||
1418
            *(ushf*)match != scan_start) continue;
1419
1420
        /* It is not necessary to compare scan[2] and match[2] since they are
1421
         * always equal when the other bytes match, given that the hash keys
1422
         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1423
         * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1424
         * lookahead only every 4th comparison; the 128th check will be made
1425
         * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1426
         * necessary to put more guard bytes at the end of the window, or
1427
         * to check more often for insufficient lookahead.
1428
         */
1429
        Assert(scan[2] == match[2], "scan[2]?");
1430
        scan++, match++;
1431
        do {
1432
        } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1433
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1434
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1435
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1436
                 scan < strend);
1437
        /* The funny "do {}" generates better code on most compilers */
1438
1439
        /* Here, scan <= window + strstart + 257 */
1440
        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1441
               "wild scan");
1442
        if (*scan == *match) scan++;
1443
1444
        len = (MAX_MATCH - 1) - (int)(strend - scan);
1445
        scan = strend - (MAX_MATCH-1);
1446
1447
#else /* UNALIGNED_OK */
1448
1449
1.98G
        if (match[best_len]     != scan_end  ||
1450
1.98G
            match[best_len - 1] != scan_end1 ||
1451
1.98G
            *match              != *scan     ||
1452
1.98G
            *++match            != scan[1])      continue;
1453
1454
        /* The check at best_len - 1 can be removed because it will be made
1455
         * again later. (This heuristic is not always a win.)
1456
         * It is not necessary to compare scan[2] and match[2] since they
1457
         * are always equal when the other bytes match, given that
1458
         * the hash keys are equal and that HASH_BITS >= 8.
1459
         */
1460
119M
        scan += 2, match++;
1461
119M
        Assert(*scan == *match, "match[2]?");
1462
1463
        /* We check for insufficient lookahead only every 8th comparison;
1464
         * the 256th check will be made at strstart + 258.
1465
         */
1466
412M
        do {
1467
412M
        } while (*++scan == *++match && *++scan == *++match &&
1468
412M
                 *++scan == *++match && *++scan == *++match &&
1469
412M
                 *++scan == *++match && *++scan == *++match &&
1470
412M
                 *++scan == *++match && *++scan == *++match &&
1471
412M
                 scan < strend);
1472
1473
119M
        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1474
119M
               "wild scan");
1475
1476
119M
        len = MAX_MATCH - (int)(strend - scan);
1477
119M
        scan = strend - MAX_MATCH;
1478
1479
119M
#endif /* UNALIGNED_OK */
1480
1481
119M
        if (len > best_len) {
1482
34.0M
            s->match_start = cur_match;
1483
34.0M
            best_len = len;
1484
34.0M
            if (len >= nice_match) break;
1485
#ifdef UNALIGNED_OK
1486
            scan_end = *(ushf*)(scan + best_len - 1);
1487
#else
1488
29.0M
            scan_end1  = scan[best_len - 1];
1489
29.0M
            scan_end   = scan[best_len];
1490
29.0M
#endif
1491
29.0M
        }
1492
1.98G
    } while ((cur_match = prev[cur_match & wmask]) > limit
1493
1.98G
             && --chain_length != 0);
1494
1495
74.6M
    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1496
130k
    return s->lookahead;
1497
74.6M
}
1498
1499
#else /* FASTEST */
1500
1501
/* ---------------------------------------------------------------------------
1502
 * Optimized version for FASTEST only
1503
 */
1504
local uInt longest_match(deflate_state *s, IPos cur_match) {
1505
    register Bytef *scan = s->window + s->strstart; /* current string */
1506
    register Bytef *match;                       /* matched string */
1507
    register int len;                           /* length of current match */
1508
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1509
1510
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1511
     * It is easy to get rid of this optimization if necessary.
1512
     */
1513
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1514
1515
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1516
           "need lookahead");
1517
1518
    Assert(cur_match < s->strstart, "no future");
1519
1520
    match = s->window + cur_match;
1521
1522
    /* Return failure if the match length is less than 2:
1523
     */
1524
    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1525
1526
    /* The check at best_len - 1 can be removed because it will be made
1527
     * again later. (This heuristic is not always a win.)
1528
     * It is not necessary to compare scan[2] and match[2] since they
1529
     * are always equal when the other bytes match, given that
1530
     * the hash keys are equal and that HASH_BITS >= 8.
1531
     */
1532
    scan += 2, match += 2;
1533
    Assert(*scan == *match, "match[2]?");
1534
1535
    /* We check for insufficient lookahead only every 8th comparison;
1536
     * the 256th check will be made at strstart + 258.
1537
     */
1538
    do {
1539
    } while (*++scan == *++match && *++scan == *++match &&
1540
             *++scan == *++match && *++scan == *++match &&
1541
             *++scan == *++match && *++scan == *++match &&
1542
             *++scan == *++match && *++scan == *++match &&
1543
             scan < strend);
1544
1545
    Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1546
1547
    len = MAX_MATCH - (int)(strend - scan);
1548
1549
    if (len < MIN_MATCH) return MIN_MATCH - 1;
1550
1551
    s->match_start = cur_match;
1552
    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1553
}
1554
1555
#endif /* FASTEST */
1556
1557
#ifdef ZLIB_DEBUG
1558
1559
#define EQUAL 0
1560
/* result of memcmp for equal strings */
1561
1562
/* ===========================================================================
1563
 * Check that the match at match_start is indeed a match.
1564
 */
1565
local void check_match(deflate_state *s, IPos start, IPos match, int length) {
1566
    /* check that the match is indeed a match */
1567
    Bytef *back = s->window + (int)match, *here = s->window + start;
1568
    IPos len = length;
1569
    if (match == (IPos)-1) {
1570
        /* match starts one byte before the current window -- just compare the
1571
           subsequent length-1 bytes */
1572
        back++;
1573
        here++;
1574
        len--;
1575
    }
1576
    if (zmemcmp(back, here, len) != EQUAL) {
1577
        fprintf(stderr, " start %u, match %d, length %d\n",
1578
                start, (int)match, length);
1579
        do {
1580
            fprintf(stderr, "(%02x %02x)", *back++, *here++);
1581
        } while (--len != 0);
1582
        z_error("invalid match");
1583
    }
1584
    if (z_verbose > 1) {
1585
        fprintf(stderr,"\\[%d,%d]", start - match, length);
1586
        do { putc(s->window[start++], stderr); } while (--length != 0);
1587
    }
1588
}
1589
#else
1590
#  define check_match(s, start, match, length)
1591
#endif /* ZLIB_DEBUG */
1592
1593
/* ===========================================================================
1594
 * Flush the current block, with given end-of-file flag.
1595
 * IN assertion: strstart is set to the end of the current match.
1596
 */
1597
194k
#define FLUSH_BLOCK_ONLY(s, last) { \
1598
194k
   _tr_flush_block(s, (s->block_start >= 0L ? \
1599
194k
                   (charf *)&s->window[(unsigned)s->block_start] : \
1600
194k
                   (charf *)Z_NULL), \
1601
194k
                (ulg)((long)s->strstart - s->block_start), \
1602
194k
                (last)); \
1603
194k
   s->block_start = s->strstart; \
1604
194k
   flush_pending(s->strm); \
1605
194k
   Tracev((stderr,"[FLUSH]")); \
1606
194k
}
1607
1608
/* Same but force premature exit if necessary. */
1609
189k
#define FLUSH_BLOCK(s, last) { \
1610
189k
   FLUSH_BLOCK_ONLY(s, last); \
1611
189k
   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1612
189k
}
1613
1614
/* Maximum stored block length in deflate format (not including header). */
1615
0
#define MAX_STORED 65535
1616
1617
/* Minimum of a and b. */
1618
0
#define MIN(a, b) ((a) > (b) ? (b) : (a))
1619
1620
/* ===========================================================================
1621
 * Copy without compression as much as possible from the input stream, return
1622
 * the current block state.
1623
 *
1624
 * In case deflateParams() is used to later switch to a non-zero compression
1625
 * level, s->matches (otherwise unused when storing) keeps track of the number
1626
 * of hash table slides to perform. If s->matches is 1, then one hash table
1627
 * slide will be done when switching. If s->matches is 2, the maximum value
1628
 * allowed here, then the hash table will be cleared, since two or more slides
1629
 * is the same as a clear.
1630
 *
1631
 * deflate_stored() is written to minimize the number of times an input byte is
1632
 * copied. It is most efficient with large input and output buffers, which
1633
 * maximizes the opportunities to have a single copy from next_in to next_out.
1634
 */
1635
0
local block_state deflate_stored(deflate_state *s, int flush) {
1636
    /* Smallest worthy block size when not flushing or finishing. By default
1637
     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1638
     * large input and output buffers, the stored block size will be larger.
1639
     */
1640
0
    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1641
1642
    /* Copy as many min_block or larger stored blocks directly to next_out as
1643
     * possible. If flushing, copy the remaining available input to next_out as
1644
     * stored blocks, if there is enough space.
1645
     */
1646
0
    int last = 0;
1647
0
    unsigned len, left, have;
1648
0
    unsigned used = s->strm->avail_in;
1649
0
    do {
1650
        /* Set len to the maximum size block that we can copy directly with the
1651
         * available input data and output space. Set left to how much of that
1652
         * would be copied from what's left in the window.
1653
         */
1654
0
        len = MAX_STORED;       /* maximum deflate stored block length */
1655
0
        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1656
0
        if (s->strm->avail_out < have)          /* need room for header */
1657
0
            break;
1658
            /* maximum stored block length that will fit in avail_out: */
1659
0
        have = s->strm->avail_out - have;
1660
0
        left = s->strstart - s->block_start;    /* bytes left in window */
1661
0
        if (len > (ulg)left + s->strm->avail_in)
1662
0
            len = left + s->strm->avail_in;     /* limit len to the input */
1663
0
        if (len > have)
1664
0
            len = have;                         /* limit len to the output */
1665
1666
        /* If the stored block would be less than min_block in length, or if
1667
         * unable to copy all of the available input when flushing, then try
1668
         * copying to the window and the pending buffer instead. Also don't
1669
         * write an empty block when flushing -- deflate() does that.
1670
         */
1671
0
        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1672
0
                                flush == Z_NO_FLUSH ||
1673
0
                                len != left + s->strm->avail_in))
1674
0
            break;
1675
1676
        /* Make a dummy stored block in pending to get the header bytes,
1677
         * including any pending bits. This also updates the debugging counts.
1678
         */
1679
0
        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1680
0
        _tr_stored_block(s, (char *)0, 0L, last);
1681
1682
        /* Replace the lengths in the dummy stored block with len. */
1683
0
        s->pending_buf[s->pending - 4] = (Bytef)len;
1684
0
        s->pending_buf[s->pending - 3] = (Bytef)(len >> 8);
1685
0
        s->pending_buf[s->pending - 2] = (Bytef)~len;
1686
0
        s->pending_buf[s->pending - 1] = (Bytef)(~len >> 8);
1687
1688
        /* Write the stored block header bytes. */
1689
0
        flush_pending(s->strm);
1690
1691
#ifdef ZLIB_DEBUG
1692
        /* Update debugging counts for the data about to be copied. */
1693
        s->compressed_len += len << 3;
1694
        s->bits_sent += len << 3;
1695
#endif
1696
1697
        /* Copy uncompressed bytes from the window to next_out. */
1698
0
        if (left) {
1699
0
            if (left > len)
1700
0
                left = len;
1701
0
            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1702
0
            s->strm->next_out += left;
1703
0
            s->strm->avail_out -= left;
1704
0
            s->strm->total_out += left;
1705
0
            s->block_start += left;
1706
0
            len -= left;
1707
0
        }
1708
1709
        /* Copy uncompressed bytes directly from next_in to next_out, updating
1710
         * the check value.
1711
         */
1712
0
        if (len) {
1713
0
            read_buf(s->strm, s->strm->next_out, len);
1714
0
            s->strm->next_out += len;
1715
0
            s->strm->avail_out -= len;
1716
0
            s->strm->total_out += len;
1717
0
        }
1718
0
    } while (last == 0);
1719
1720
    /* Update the sliding window with the last s->w_size bytes of the copied
1721
     * data, or append all of the copied data to the existing window if less
1722
     * than s->w_size bytes were copied. Also update the number of bytes to
1723
     * insert in the hash tables, in the event that deflateParams() switches to
1724
     * a non-zero compression level.
1725
     */
1726
0
    used -= s->strm->avail_in;      /* number of input bytes directly copied */
1727
0
    if (used) {
1728
        /* If any input was used, then no unused input remains in the window,
1729
         * therefore s->block_start == s->strstart.
1730
         */
1731
0
        if (used >= s->w_size) {    /* supplant the previous history */
1732
0
            s->matches = 2;         /* clear hash */
1733
0
            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1734
0
            s->strstart = s->w_size;
1735
0
            s->insert = s->strstart;
1736
0
        }
1737
0
        else {
1738
0
            if (s->window_size - s->strstart <= used) {
1739
                /* Slide the window down. */
1740
0
                s->strstart -= s->w_size;
1741
0
                zmemcpy(s->window, s->window + s->w_size, s->strstart);
1742
0
                if (s->matches < 2)
1743
0
                    s->matches++;   /* add a pending slide_hash() */
1744
0
                if (s->insert > s->strstart)
1745
0
                    s->insert = s->strstart;
1746
0
            }
1747
0
            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1748
0
            s->strstart += used;
1749
0
            s->insert += MIN(used, s->w_size - s->insert);
1750
0
        }
1751
0
        s->block_start = s->strstart;
1752
0
    }
1753
0
    if (s->high_water < s->strstart)
1754
0
        s->high_water = s->strstart;
1755
1756
    /* If the last block was written to next_out, then done. */
1757
0
    if (last) {
1758
0
        s->bi_used = 8;
1759
0
        return finish_done;
1760
0
    }
1761
1762
    /* If flushing and all input has been consumed, then done. */
1763
0
    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1764
0
        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1765
0
        return block_done;
1766
1767
    /* Fill the window with any remaining input. */
1768
0
    have = s->window_size - s->strstart;
1769
0
    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1770
        /* Slide the window down. */
1771
0
        s->block_start -= s->w_size;
1772
0
        s->strstart -= s->w_size;
1773
0
        zmemcpy(s->window, s->window + s->w_size, s->strstart);
1774
0
        if (s->matches < 2)
1775
0
            s->matches++;           /* add a pending slide_hash() */
1776
0
        have += s->w_size;          /* more space now */
1777
0
        if (s->insert > s->strstart)
1778
0
            s->insert = s->strstart;
1779
0
    }
1780
0
    if (have > s->strm->avail_in)
1781
0
        have = s->strm->avail_in;
1782
0
    if (have) {
1783
0
        read_buf(s->strm, s->window + s->strstart, have);
1784
0
        s->strstart += have;
1785
0
        s->insert += MIN(have, s->w_size - s->insert);
1786
0
    }
1787
0
    if (s->high_water < s->strstart)
1788
0
        s->high_water = s->strstart;
1789
1790
    /* There was not enough avail_out to write a complete worthy or flushed
1791
     * stored block to next_out. Write a stored block to pending instead, if we
1792
     * have enough input for a worthy block, or if flushing and there is enough
1793
     * room for the remaining input as a stored block in the pending buffer.
1794
     */
1795
0
    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1796
        /* maximum stored block length that will fit in pending: */
1797
0
    have = MIN(s->pending_buf_size - have, MAX_STORED);
1798
0
    min_block = MIN(have, s->w_size);
1799
0
    left = s->strstart - s->block_start;
1800
0
    if (left >= min_block ||
1801
0
        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1802
0
         s->strm->avail_in == 0 && left <= have)) {
1803
0
        len = MIN(left, have);
1804
0
        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1805
0
               len == left ? 1 : 0;
1806
0
        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1807
0
        s->block_start += len;
1808
0
        flush_pending(s->strm);
1809
0
    }
1810
1811
    /* We've done all we can with the available input and output. */
1812
0
    if (last)
1813
0
        s->bi_used = 8;
1814
0
    return last ? finish_started : need_more;
1815
0
}
1816
1817
/* ===========================================================================
1818
 * Compress as much as possible from the input stream, return the current
1819
 * block state.
1820
 * This function does not perform lazy evaluation of matches and inserts
1821
 * new strings in the dictionary only for unmatched strings or for short
1822
 * matches. It is used only for the fast compression options.
1823
 */
1824
0
local block_state deflate_fast(deflate_state *s, int flush) {
1825
0
    IPos hash_head;       /* head of the hash chain */
1826
0
    int bflush;           /* set if current block must be flushed */
1827
1828
0
    for (;;) {
1829
        /* Make sure that we always have enough lookahead, except
1830
         * at the end of the input file. We need MAX_MATCH bytes
1831
         * for the next match, plus MIN_MATCH bytes to insert the
1832
         * string following the next match.
1833
         */
1834
0
        if (s->lookahead < MIN_LOOKAHEAD) {
1835
0
            fill_window(s);
1836
0
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1837
0
                return need_more;
1838
0
            }
1839
0
            if (s->lookahead == 0) break; /* flush the current block */
1840
0
        }
1841
1842
        /* Insert the string window[strstart .. strstart + 2] in the
1843
         * dictionary, and set hash_head to the head of the hash chain:
1844
         */
1845
0
        hash_head = NIL;
1846
0
        if (s->lookahead >= MIN_MATCH) {
1847
0
            INSERT_STRING(s, s->strstart, hash_head);
1848
0
        }
1849
1850
        /* Find the longest match, discarding those <= prev_length.
1851
         * At this point we have always match_length < MIN_MATCH
1852
         */
1853
0
        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1854
            /* To simplify the code, we prevent matches with the string
1855
             * of window index 0 (in particular we have to avoid a match
1856
             * of the string with itself at the start of the input file).
1857
             */
1858
0
            s->match_length = longest_match (s, hash_head);
1859
            /* longest_match() sets match_start */
1860
0
        }
1861
0
        if (s->match_length >= MIN_MATCH) {
1862
0
            check_match(s, s->strstart, s->match_start, s->match_length);
1863
1864
0
            _tr_tally_dist(s, s->strstart - s->match_start,
1865
0
                           s->match_length - MIN_MATCH, bflush);
1866
1867
0
            s->lookahead -= s->match_length;
1868
1869
            /* Insert new strings in the hash table only if the match length
1870
             * is not too large. This saves time but degrades compression.
1871
             */
1872
0
#ifndef FASTEST
1873
0
            if (s->match_length <= s->max_insert_length &&
1874
0
                s->lookahead >= MIN_MATCH) {
1875
0
                s->match_length--; /* string at strstart already in table */
1876
0
                do {
1877
0
                    s->strstart++;
1878
0
                    INSERT_STRING(s, s->strstart, hash_head);
1879
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1880
                     * always MIN_MATCH bytes ahead.
1881
                     */
1882
0
                } while (--s->match_length != 0);
1883
0
                s->strstart++;
1884
0
            } else
1885
0
#endif
1886
0
            {
1887
0
                s->strstart += s->match_length;
1888
0
                s->match_length = 0;
1889
0
                s->ins_h = s->window[s->strstart];
1890
0
                UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1891
#if MIN_MATCH != 3
1892
                Call UPDATE_HASH() MIN_MATCH-3 more times
1893
#endif
1894
                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1895
                 * matter since it will be recomputed at next deflate call.
1896
                 */
1897
0
            }
1898
0
        } else {
1899
            /* No match, output a literal byte */
1900
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
1901
0
            _tr_tally_lit(s, s->window[s->strstart], bflush);
1902
0
            s->lookahead--;
1903
0
            s->strstart++;
1904
0
        }
1905
0
        if (bflush) FLUSH_BLOCK(s, 0);
1906
0
    }
1907
0
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1908
0
    if (flush == Z_FINISH) {
1909
0
        FLUSH_BLOCK(s, 1);
1910
0
        return finish_done;
1911
0
    }
1912
0
    if (s->sym_next)
1913
0
        FLUSH_BLOCK(s, 0);
1914
0
    return block_done;
1915
0
}
1916
1917
#ifndef FASTEST
1918
/* ===========================================================================
1919
 * Same as above, but achieves better compression. We use a lazy
1920
 * evaluation for matches: a match is finally adopted only if there is
1921
 * no better match at the next window position.
1922
 */
1923
12.9M
local block_state deflate_slow(deflate_state *s, int flush) {
1924
12.9M
    IPos hash_head;          /* head of hash chain */
1925
12.9M
    int bflush;              /* set if current block must be flushed */
1926
1927
    /* Process the input block. */
1928
203M
    for (;;) {
1929
        /* Make sure that we always have enough lookahead, except
1930
         * at the end of the input file. We need MAX_MATCH bytes
1931
         * for the next match, plus MIN_MATCH bytes to insert the
1932
         * string following the next match.
1933
         */
1934
203M
        if (s->lookahead < MIN_LOOKAHEAD) {
1935
26.5M
            fill_window(s);
1936
26.5M
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1937
12.7M
                return need_more;
1938
12.7M
            }
1939
13.8M
            if (s->lookahead == 0) break; /* flush the current block */
1940
13.8M
        }
1941
1942
        /* Insert the string window[strstart .. strstart + 2] in the
1943
         * dictionary, and set hash_head to the head of the hash chain:
1944
         */
1945
190M
        hash_head = NIL;
1946
190M
        if (s->lookahead >= MIN_MATCH) {
1947
190M
            INSERT_STRING(s, s->strstart, hash_head);
1948
190M
        }
1949
1950
        /* Find the longest match, discarding those <= prev_length.
1951
         */
1952
190M
        s->prev_length = s->match_length, s->prev_match = s->match_start;
1953
190M
        s->match_length = MIN_MATCH-1;
1954
1955
190M
        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1956
190M
            s->strstart - hash_head <= MAX_DIST(s)) {
1957
            /* To simplify the code, we prevent matches with the string
1958
             * of window index 0 (in particular we have to avoid a match
1959
             * of the string with itself at the start of the input file).
1960
             */
1961
74.6M
            s->match_length = longest_match (s, hash_head);
1962
            /* longest_match() sets match_start */
1963
1964
74.6M
            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1965
61.5M
#if TOO_FAR <= 32767
1966
61.5M
                || (s->match_length == MIN_MATCH &&
1967
61.5M
                    s->strstart - s->match_start > TOO_FAR)
1968
61.5M
#endif
1969
61.5M
                )) {
1970
1971
                /* If prev_match is also MIN_MATCH, match_start is garbage
1972
                 * but we will ignore the current match anyway.
1973
                 */
1974
1.03M
                s->match_length = MIN_MATCH-1;
1975
1.03M
            }
1976
74.6M
        }
1977
        /* If there was a match at the previous step and the current
1978
         * match is not better, output the previous match:
1979
         */
1980
190M
        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1981
15.8M
            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1982
            /* Do not insert strings in hash table beyond this. */
1983
1984
15.8M
            check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
1985
1986
15.8M
            _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
1987
15.8M
                           s->prev_length - MIN_MATCH, bflush);
1988
1989
            /* Insert in hash table all strings up to the end of the match.
1990
             * strstart - 1 and strstart are already inserted. If there is not
1991
             * enough lookahead, the last two strings are not inserted in
1992
             * the hash table.
1993
             */
1994
15.8M
            s->lookahead -= s->prev_length - 1;
1995
15.8M
            s->prev_length -= 2;
1996
1.35G
            do {
1997
1.35G
                if (++s->strstart <= max_insert) {
1998
1.35G
                    INSERT_STRING(s, s->strstart, hash_head);
1999
1.35G
                }
2000
1.35G
            } while (--s->prev_length != 0);
2001
15.8M
            s->match_available = 0;
2002
15.8M
            s->match_length = MIN_MATCH-1;
2003
15.8M
            s->strstart++;
2004
2005
15.8M
            if (bflush) FLUSH_BLOCK(s, 0);
2006
2007
175M
        } else if (s->match_available) {
2008
            /* If there was no match at the previous position, output a
2009
             * single literal. If there was a match but the current match
2010
             * is longer, truncate the previous match to a single literal.
2011
             */
2012
159M
            Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2013
159M
            _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2014
159M
            if (bflush) {
2015
4.38k
                FLUSH_BLOCK_ONLY(s, 0);
2016
4.38k
            }
2017
159M
            s->strstart++;
2018
159M
            s->lookahead--;
2019
159M
            if (s->strm->avail_out == 0) return need_more;
2020
159M
        } else {
2021
            /* There is no previous match to compare with, wait for
2022
             * the next step to decide.
2023
             */
2024
15.8M
            s->match_available = 1;
2025
15.8M
            s->strstart++;
2026
15.8M
            s->lookahead--;
2027
15.8M
        }
2028
190M
    }
2029
189k
    Assert (flush != Z_NO_FLUSH, "no flush?");
2030
189k
    if (s->match_available) {
2031
83.3k
        Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2032
83.3k
        _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2033
83.3k
        s->match_available = 0;
2034
83.3k
    }
2035
189k
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2036
189k
    if (flush == Z_FINISH) {
2037
145k
        FLUSH_BLOCK(s, 1);
2038
142k
        return finish_done;
2039
145k
    }
2040
43.4k
    if (s->sym_next)
2041
43.4k
        FLUSH_BLOCK(s, 0);
2042
43.4k
    return block_done;
2043
43.4k
}
2044
#endif /* FASTEST */
2045
2046
/* ===========================================================================
2047
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2048
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2049
 * deflate switches away from Z_RLE.)
2050
 */
2051
0
local block_state deflate_rle(deflate_state *s, int flush) {
2052
0
    int bflush;             /* set if current block must be flushed */
2053
0
    uInt prev;              /* byte at distance one to match */
2054
0
    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2055
2056
0
    for (;;) {
2057
        /* Make sure that we always have enough lookahead, except
2058
         * at the end of the input file. We need MAX_MATCH bytes
2059
         * for the longest run, plus one for the unrolled loop.
2060
         */
2061
0
        if (s->lookahead <= MAX_MATCH) {
2062
0
            fill_window(s);
2063
0
            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2064
0
                return need_more;
2065
0
            }
2066
0
            if (s->lookahead == 0) break; /* flush the current block */
2067
0
        }
2068
2069
        /* See how many times the previous byte repeats */
2070
0
        s->match_length = 0;
2071
0
        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2072
0
            scan = s->window + s->strstart - 1;
2073
0
            prev = *scan;
2074
0
            if (prev == *++scan && prev == *++scan && prev == *++scan) {
2075
0
                strend = s->window + s->strstart + MAX_MATCH;
2076
0
                do {
2077
0
                } while (prev == *++scan && prev == *++scan &&
2078
0
                         prev == *++scan && prev == *++scan &&
2079
0
                         prev == *++scan && prev == *++scan &&
2080
0
                         prev == *++scan && prev == *++scan &&
2081
0
                         scan < strend);
2082
0
                s->match_length = MAX_MATCH - (uInt)(strend - scan);
2083
0
                if (s->match_length > s->lookahead)
2084
0
                    s->match_length = s->lookahead;
2085
0
            }
2086
0
            Assert(scan <= s->window + (uInt)(s->window_size - 1),
2087
0
                   "wild scan");
2088
0
        }
2089
2090
        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2091
0
        if (s->match_length >= MIN_MATCH) {
2092
0
            check_match(s, s->strstart, s->strstart - 1, s->match_length);
2093
2094
0
            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2095
2096
0
            s->lookahead -= s->match_length;
2097
0
            s->strstart += s->match_length;
2098
0
            s->match_length = 0;
2099
0
        } else {
2100
            /* No match, output a literal byte */
2101
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
2102
0
            _tr_tally_lit(s, s->window[s->strstart], bflush);
2103
0
            s->lookahead--;
2104
0
            s->strstart++;
2105
0
        }
2106
0
        if (bflush) FLUSH_BLOCK(s, 0);
2107
0
    }
2108
0
    s->insert = 0;
2109
0
    if (flush == Z_FINISH) {
2110
0
        FLUSH_BLOCK(s, 1);
2111
0
        return finish_done;
2112
0
    }
2113
0
    if (s->sym_next)
2114
0
        FLUSH_BLOCK(s, 0);
2115
0
    return block_done;
2116
0
}
2117
2118
/* ===========================================================================
2119
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2120
 * (It will be regenerated if this run of deflate switches away from Huffman.)
2121
 */
2122
0
local block_state deflate_huff(deflate_state *s, int flush) {
2123
0
    int bflush;             /* set if current block must be flushed */
2124
2125
0
    for (;;) {
2126
        /* Make sure that we have a literal to write. */
2127
0
        if (s->lookahead == 0) {
2128
0
            fill_window(s);
2129
0
            if (s->lookahead == 0) {
2130
0
                if (flush == Z_NO_FLUSH)
2131
0
                    return need_more;
2132
0
                break;      /* flush the current block */
2133
0
            }
2134
0
        }
2135
2136
        /* Output a literal byte */
2137
0
        s->match_length = 0;
2138
0
        Tracevv((stderr,"%c", s->window[s->strstart]));
2139
0
        _tr_tally_lit(s, s->window[s->strstart], bflush);
2140
0
        s->lookahead--;
2141
0
        s->strstart++;
2142
0
        if (bflush) FLUSH_BLOCK(s, 0);
2143
0
    }
2144
0
    s->insert = 0;
2145
0
    if (flush == Z_FINISH) {
2146
0
        FLUSH_BLOCK(s, 1);
2147
0
        return finish_done;
2148
0
    }
2149
0
    if (s->sym_next)
2150
0
        FLUSH_BLOCK(s, 0);
2151
0
    return block_done;
2152
0
}