Coverage Report

Created: 2025-08-28 07:12

/src/fdk-aac/libAACdec/src/rvlcconceal.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** AAC decoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  rvlc concealment
106
  \author Josef Hoepfl
107
*/
108
109
#include "rvlcconceal.h"
110
111
#include "block.h"
112
#include "rvlc.h"
113
114
/*---------------------------------------------------------------------------------------------
115
  function:      calcRefValFwd
116
117
  description:   The function determines the scalefactor which is closed to the
118
scalefactorband conceal_min. The same is done for intensity data and noise
119
energies.
120
-----------------------------------------------------------------------------------------------
121
  output:        - reference value scf
122
                 - reference value internsity data
123
                 - reference value noise energy
124
-----------------------------------------------------------------------------------------------
125
  return:        -
126
--------------------------------------------------------------------------------------------
127
*/
128
129
static void calcRefValFwd(CErRvlcInfo *pRvlc,
130
                          CAacDecoderChannelInfo *pAacDecoderChannelInfo,
131
53.0k
                          int *refIsFwd, int *refNrgFwd, int *refScfFwd) {
132
53.0k
  int band, bnds, group, startBand;
133
53.0k
  int idIs, idNrg, idScf;
134
53.0k
  int conceal_min, conceal_group_min;
135
53.0k
  int MaximumScaleFactorBands;
136
137
53.0k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
138
421
    MaximumScaleFactorBands = 16;
139
52.6k
  else
140
52.6k
    MaximumScaleFactorBands = 64;
141
142
53.0k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
143
53.0k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
144
145
  /* calculate first reference value for approach in forward direction */
146
53.0k
  idIs = idNrg = idScf = 1;
147
148
  /* set reference values */
149
53.0k
  *refIsFwd = -SF_OFFSET;
150
53.0k
  *refNrgFwd = pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain -
151
53.0k
               SF_OFFSET - 90 - 256;
152
53.0k
  *refScfFwd =
153
53.0k
      pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - SF_OFFSET;
154
155
53.0k
  startBand = conceal_min - 1;
156
107k
  for (group = conceal_group_min; group >= 0; group--) {
157
79.6k
    for (band = startBand; band >= 0; band--) {
158
24.9k
      bnds = 16 * group + band;
159
24.9k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
160
11.1k
        case ZERO_HCB:
161
11.1k
          break;
162
4.35k
        case INTENSITY_HCB:
163
4.82k
        case INTENSITY_HCB2:
164
4.82k
          if (idIs) {
165
1.09k
            *refIsFwd =
166
1.09k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
167
1.09k
            idIs = 0; /* reference value has been set */
168
1.09k
          }
169
4.82k
          break;
170
1.27k
        case NOISE_HCB:
171
1.27k
          if (idNrg) {
172
442
            *refNrgFwd =
173
442
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
174
442
            idNrg = 0; /* reference value has been set */
175
442
          }
176
1.27k
          break;
177
7.72k
        default:
178
7.72k
          if (idScf) {
179
970
            *refScfFwd =
180
970
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
181
970
            idScf = 0; /* reference value has been set */
182
970
          }
183
7.72k
          break;
184
24.9k
      }
185
24.9k
    }
186
54.6k
    startBand = pRvlc->maxSfbTransmitted - 1;
187
54.6k
  }
188
53.0k
}
189
190
/*---------------------------------------------------------------------------------------------
191
  function:      calcRefValBwd
192
193
  description:   The function determines the scalefactor which is closed to the
194
scalefactorband conceal_max. The same is done for intensity data and noise
195
energies.
196
-----------------------------------------------------------------------------------------------
197
  output:        - reference value scf
198
                 - reference value internsity data
199
                 - reference value noise energy
200
-----------------------------------------------------------------------------------------------
201
  return:        -
202
--------------------------------------------------------------------------------------------
203
*/
204
205
static void calcRefValBwd(CErRvlcInfo *pRvlc,
206
                          CAacDecoderChannelInfo *pAacDecoderChannelInfo,
207
53.0k
                          int *refIsBwd, int *refNrgBwd, int *refScfBwd) {
208
53.0k
  int band, bnds, group, startBand;
209
53.0k
  int idIs, idNrg, idScf;
210
53.0k
  int conceal_max, conceal_group_max;
211
53.0k
  int MaximumScaleFactorBands;
212
213
53.0k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
214
421
    MaximumScaleFactorBands = 16;
215
52.6k
  else
216
52.6k
    MaximumScaleFactorBands = 64;
217
218
53.0k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
219
53.0k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
220
221
  /* calculate first reference value for approach in backward direction */
222
53.0k
  idIs = idNrg = idScf = 1;
223
224
  /* set reference values */
225
53.0k
  *refIsBwd = pRvlc->dpcm_is_last_position - SF_OFFSET;
226
53.0k
  *refNrgBwd = pRvlc->rev_global_gain + pRvlc->dpcm_noise_last_position -
227
53.0k
               SF_OFFSET - 90 - 256 + pRvlc->dpcm_noise_nrg;
228
53.0k
  *refScfBwd = pRvlc->rev_global_gain - SF_OFFSET;
229
230
53.0k
  startBand = conceal_max + 1;
231
232
  /* if needed, re-set reference values */
233
106k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
234
70.8k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
235
17.3k
      bnds = 16 * group + band;
236
17.3k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
237
4.43k
        case ZERO_HCB:
238
4.43k
          break;
239
4.05k
        case INTENSITY_HCB:
240
4.52k
        case INTENSITY_HCB2:
241
4.52k
          if (idIs) {
242
542
            *refIsBwd =
243
542
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
244
542
            idIs = 0; /* reference value has been set */
245
542
          }
246
4.52k
          break;
247
246
        case NOISE_HCB:
248
246
          if (idNrg) {
249
46
            *refNrgBwd =
250
46
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
251
46
            idNrg = 0; /* reference value has been set */
252
46
          }
253
246
          break;
254
8.10k
        default:
255
8.10k
          if (idScf) {
256
1.61k
            *refScfBwd =
257
1.61k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
258
1.61k
            idScf = 0; /* reference value has been set */
259
1.61k
          }
260
8.10k
          break;
261
17.3k
      }
262
17.3k
    }
263
53.5k
    startBand = 0;
264
53.5k
  }
265
53.0k
}
266
267
/*---------------------------------------------------------------------------------------------
268
  function:      BidirectionalEstimation_UseLowerScfOfCurrentFrame
269
270
  description:   This approach by means of bidirectional estimation is generally
271
performed when a single bit error has been detected, the bit error can be
272
isolated between 'conceal_min' and 'conceal_max' and the 'sf_concealment' flag
273
is not set. The sets of scalefactors decoded in forward and backward direction
274
are compared with each other. The smaller scalefactor will be considered as the
275
correct one respectively. The reconstruction of the scalefactors with this
276
approach archieve good results in audio quality. The strategy must be applied to
277
scalefactors, intensity data and noise energy seperately.
278
-----------------------------------------------------------------------------------------------
279
  output:        Concealed scalefactor, noise energy and intensity data between
280
conceal_min and conceal_max
281
-----------------------------------------------------------------------------------------------
282
  return:        -
283
--------------------------------------------------------------------------------------------
284
*/
285
286
void BidirectionalEstimation_UseLowerScfOfCurrentFrame(
287
75.5k
    CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
288
75.5k
  CErRvlcInfo *pRvlc =
289
75.5k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
290
75.5k
  int band, bnds, startBand, endBand, group;
291
75.5k
  int conceal_min, conceal_max;
292
75.5k
  int conceal_group_min, conceal_group_max;
293
75.5k
  int MaximumScaleFactorBands;
294
295
75.5k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
296
895
    MaximumScaleFactorBands = 16;
297
74.6k
  } else {
298
74.6k
    MaximumScaleFactorBands = 64;
299
74.6k
  }
300
301
  /* If an error was detected just in forward or backward direction, set the
302
     corresponding border for concealment to a appropriate scalefactor band. The
303
     border is set to first or last sfb respectively, because the error will
304
     possibly not follow directly after the corrupt bit but just after decoding
305
     some more (wrong) scalefactors. */
306
75.5k
  if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
307
308
75.5k
  if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
309
5.60k
    pRvlc->conceal_max =
310
5.60k
        (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
311
312
75.5k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
313
75.5k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
314
75.5k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
315
75.5k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
316
317
75.5k
  if (pRvlc->conceal_min == pRvlc->conceal_max) {
318
53.0k
    int refIsFwd, refNrgFwd, refScfFwd;
319
53.0k
    int refIsBwd, refNrgBwd, refScfBwd;
320
321
53.0k
    bnds = pRvlc->conceal_min;
322
53.0k
    calcRefValFwd(pRvlc, pAacDecoderChannelInfo, &refIsFwd, &refNrgFwd,
323
53.0k
                  &refScfFwd);
324
53.0k
    calcRefValBwd(pRvlc, pAacDecoderChannelInfo, &refIsBwd, &refNrgBwd,
325
53.0k
                  &refScfBwd);
326
327
53.0k
    switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
328
49.2k
      case ZERO_HCB:
329
49.2k
        break;
330
1.13k
      case INTENSITY_HCB:
331
1.17k
      case INTENSITY_HCB2:
332
1.17k
        if (refIsFwd < refIsBwd)
333
61
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsFwd;
334
1.11k
        else
335
1.11k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsBwd;
336
1.17k
        break;
337
446
      case NOISE_HCB:
338
446
        if (refNrgFwd < refNrgBwd)
339
29
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgFwd;
340
417
        else
341
417
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgBwd;
342
446
        break;
343
2.20k
      default:
344
2.20k
        if (refScfFwd < refScfBwd)
345
707
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfFwd;
346
1.49k
        else
347
1.49k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfBwd;
348
2.20k
        break;
349
53.0k
    }
350
53.0k
  } else {
351
22.5k
    pAacDecoderChannelInfo->pComData->overlay.aac
352
22.5k
        .aRvlcScfFwd[pRvlc->conceal_max] =
353
22.5k
        pAacDecoderChannelInfo->pComData->overlay.aac
354
22.5k
            .aRvlcScfBwd[pRvlc->conceal_max];
355
22.5k
    pAacDecoderChannelInfo->pComData->overlay.aac
356
22.5k
        .aRvlcScfBwd[pRvlc->conceal_min] =
357
22.5k
        pAacDecoderChannelInfo->pComData->overlay.aac
358
22.5k
            .aRvlcScfFwd[pRvlc->conceal_min];
359
360
    /* consider the smaller of the forward and backward decoded value as the
361
     * correct one */
362
22.5k
    startBand = conceal_min;
363
22.5k
    if (conceal_group_min == conceal_group_max)
364
22.0k
      endBand = conceal_max;
365
428
    else
366
428
      endBand = pRvlc->maxSfbTransmitted - 1;
367
368
45.9k
    for (group = conceal_group_min; group <= conceal_group_max; group++) {
369
179k
      for (band = startBand; band <= endBand; band++) {
370
155k
        bnds = 16 * group + band;
371
155k
        if (pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds] <
372
155k
            pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds])
373
46.6k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
374
46.6k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
375
108k
        else
376
108k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
377
108k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
378
155k
      }
379
23.4k
      startBand = 0;
380
23.4k
      if ((group + 1) == conceal_group_max) endBand = conceal_max;
381
23.4k
    }
382
22.5k
  }
383
384
  /* now copy all data to the output buffer which needs not to be concealed */
385
75.5k
  if (conceal_group_min == 0)
386
74.9k
    endBand = conceal_min;
387
609
  else
388
609
    endBand = pRvlc->maxSfbTransmitted;
389
153k
  for (group = 0; group <= conceal_group_min; group++) {
390
239k
    for (band = 0; band < endBand; band++) {
391
161k
      bnds = 16 * group + band;
392
161k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
393
161k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
394
161k
    }
395
77.9k
    if ((group + 1) == conceal_group_min) endBand = conceal_min;
396
77.9k
  }
397
398
75.5k
  startBand = conceal_max + 1;
399
152k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
400
238k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
401
161k
      bnds = 16 * group + band;
402
161k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
403
161k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
404
161k
    }
405
76.6k
    startBand = 0;
406
76.6k
  }
407
75.5k
}
408
409
/*---------------------------------------------------------------------------------------------
410
  function:      BidirectionalEstimation_UseScfOfPrevFrameAsReference
411
412
  description:   This approach by means of bidirectional estimation is generally
413
performed when a single bit error has been detected, the bit error can be
414
isolated between 'conceal_min' and 'conceal_max', the 'sf_concealment' flag is
415
set and the previous frame has the same block type as the current frame. The
416
scalefactor decoded in forward and backward direction and the scalefactor of the
417
previous frame are compared with each other. The smaller scalefactor will be
418
considered as the correct one. At this the codebook of the previous and current
419
frame must be of the same set (scf, nrg, is) in each scalefactorband. Otherwise
420
the scalefactor of the previous frame is not considered in the minimum
421
calculation. The reconstruction of the scalefactors with this approach archieve
422
good results in audio quality. The strategy must be applied to scalefactors,
423
intensity data and noise energy seperately.
424
-----------------------------------------------------------------------------------------------
425
  output:        Concealed scalefactor, noise energy and intensity data between
426
conceal_min and conceal_max
427
-----------------------------------------------------------------------------------------------
428
  return:        -
429
--------------------------------------------------------------------------------------------
430
*/
431
432
void BidirectionalEstimation_UseScfOfPrevFrameAsReference(
433
    CAacDecoderChannelInfo *pAacDecoderChannelInfo,
434
12.0k
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
435
12.0k
  CErRvlcInfo *pRvlc =
436
12.0k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
437
12.0k
  int band, bnds, startBand, endBand, group;
438
12.0k
  int conceal_min, conceal_max;
439
12.0k
  int conceal_group_min, conceal_group_max;
440
12.0k
  int MaximumScaleFactorBands;
441
12.0k
  SHORT commonMin;
442
443
12.0k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
444
353
    MaximumScaleFactorBands = 16;
445
11.7k
  } else {
446
11.7k
    MaximumScaleFactorBands = 64;
447
11.7k
  }
448
449
  /* If an error was detected just in forward or backward direction, set the
450
     corresponding border for concealment to a appropriate scalefactor band. The
451
     border is set to first or last sfb respectively, because the error will
452
     possibly not follow directly after the corrupt bit but just after decoding
453
     some more (wrong) scalefactors. */
454
12.0k
  if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
455
456
12.0k
  if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
457
3.11k
    pRvlc->conceal_max =
458
3.11k
        (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
459
460
12.0k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
461
12.0k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
462
12.0k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
463
12.0k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
464
465
12.0k
  pAacDecoderChannelInfo->pComData->overlay.aac
466
12.0k
      .aRvlcScfFwd[pRvlc->conceal_max] =
467
12.0k
      pAacDecoderChannelInfo->pComData->overlay.aac
468
12.0k
          .aRvlcScfBwd[pRvlc->conceal_max];
469
12.0k
  pAacDecoderChannelInfo->pComData->overlay.aac
470
12.0k
      .aRvlcScfBwd[pRvlc->conceal_min] =
471
12.0k
      pAacDecoderChannelInfo->pComData->overlay.aac
472
12.0k
          .aRvlcScfFwd[pRvlc->conceal_min];
473
474
  /* consider the smaller of the forward and backward decoded value as the
475
   * correct one */
476
12.0k
  startBand = conceal_min;
477
12.0k
  if (conceal_group_min == conceal_group_max)
478
11.7k
    endBand = conceal_max;
479
339
  else
480
339
    endBand = pRvlc->maxSfbTransmitted - 1;
481
482
24.9k
  for (group = conceal_group_min; group <= conceal_group_max; group++) {
483
60.7k
    for (band = startBand; band <= endBand; band++) {
484
47.9k
      bnds = 16 * group + band;
485
47.9k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
486
10.6k
        case ZERO_HCB:
487
10.6k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
488
10.6k
          break;
489
490
11.2k
        case INTENSITY_HCB:
491
11.4k
        case INTENSITY_HCB2:
492
11.4k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
493
11.4k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
494
11.4k
              (pAacDecoderStaticChannelInfo->concealmentInfo
495
11.3k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
496
131
            commonMin = fMin(
497
131
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
498
131
                pAacDecoderChannelInfo->pComData->overlay.aac
499
131
                    .aRvlcScfBwd[bnds]);
500
131
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
501
131
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
502
131
                                    .aRvlcPreviousScaleFactor[bnds]);
503
11.3k
          } else {
504
11.3k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
505
11.3k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
506
11.3k
                pAacDecoderChannelInfo->pComData->overlay.aac
507
11.3k
                    .aRvlcScfBwd[bnds]);
508
11.3k
          }
509
11.4k
          break;
510
511
1.33k
        case NOISE_HCB:
512
1.33k
          if (pAacDecoderStaticChannelInfo->concealmentInfo
513
1.33k
                  .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
514
0
            commonMin = fMin(
515
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
516
0
                pAacDecoderChannelInfo->pComData->overlay.aac
517
0
                    .aRvlcScfBwd[bnds]);
518
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
519
0
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
520
0
                                    .aRvlcPreviousScaleFactor[bnds]);
521
1.33k
          } else {
522
1.33k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
523
1.33k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
524
1.33k
                pAacDecoderChannelInfo->pComData->overlay.aac
525
1.33k
                    .aRvlcScfBwd[bnds]);
526
1.33k
          }
527
1.33k
          break;
528
529
24.4k
        default:
530
24.4k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
531
24.4k
                   .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
532
24.4k
              (pAacDecoderStaticChannelInfo->concealmentInfo
533
275
                   .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
534
24.4k
              (pAacDecoderStaticChannelInfo->concealmentInfo
535
275
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
536
24.4k
              (pAacDecoderStaticChannelInfo->concealmentInfo
537
97
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
538
77
            commonMin = fMin(
539
77
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
540
77
                pAacDecoderChannelInfo->pComData->overlay.aac
541
77
                    .aRvlcScfBwd[bnds]);
542
77
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
543
77
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
544
77
                                    .aRvlcPreviousScaleFactor[bnds]);
545
24.4k
          } else {
546
24.4k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
547
24.4k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
548
24.4k
                pAacDecoderChannelInfo->pComData->overlay.aac
549
24.4k
                    .aRvlcScfBwd[bnds]);
550
24.4k
          }
551
24.4k
          break;
552
47.9k
      }
553
47.9k
    }
554
12.8k
    startBand = 0;
555
12.8k
    if ((group + 1) == conceal_group_max) endBand = conceal_max;
556
12.8k
  }
557
558
  /* now copy all data to the output buffer which needs not to be concealed */
559
12.0k
  if (conceal_group_min == 0)
560
11.7k
    endBand = conceal_min;
561
292
  else
562
292
    endBand = pRvlc->maxSfbTransmitted;
563
24.6k
  for (group = 0; group <= conceal_group_min; group++) {
564
71.8k
    for (band = 0; band < endBand; band++) {
565
59.3k
      bnds = 16 * group + band;
566
59.3k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
567
59.3k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
568
59.3k
    }
569
12.5k
    if ((group + 1) == conceal_group_min) endBand = conceal_min;
570
12.5k
  }
571
572
12.0k
  startBand = conceal_max + 1;
573
24.3k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
574
40.2k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
575
28.0k
      bnds = 16 * group + band;
576
28.0k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
577
28.0k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
578
28.0k
    }
579
12.2k
    startBand = 0;
580
12.2k
  }
581
12.0k
}
582
583
/*---------------------------------------------------------------------------------------------
584
  function:      StatisticalEstimation
585
586
  description:   This approach by means of statistical estimation is generally
587
performed when both the start value and the end value are different and no
588
further errors have been detected. Considering the forward and backward decoded
589
scalefactors, the set with the lower scalefactors in sum will be considered as
590
the correct one. The scalefactors are differentially encoded. Normally it would
591
reach to compare one pair of the forward and backward decoded scalefactors to
592
specify the lower set. But having detected no further errors does not
593
necessarily mean the absence of errors. Therefore all scalefactors decoded in
594
forward and backward direction are summed up seperately. The set with the lower
595
sum will be used. The strategy must be applied to scalefactors, intensity data
596
and noise energy seperately.
597
-----------------------------------------------------------------------------------------------
598
  output:        Concealed scalefactor, noise energy and intensity data
599
-----------------------------------------------------------------------------------------------
600
  return:        -
601
--------------------------------------------------------------------------------------------
602
*/
603
604
1.86k
void StatisticalEstimation(CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
605
1.86k
  CErRvlcInfo *pRvlc =
606
1.86k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
607
1.86k
  int band, bnds, group;
608
1.86k
  int sumIsFwd, sumIsBwd;   /* sum of intensity data forward/backward */
609
1.86k
  int sumNrgFwd, sumNrgBwd; /* sum of noise energy data forward/backward */
610
1.86k
  int sumScfFwd, sumScfBwd; /* sum of scalefactor data forward/backward */
611
1.86k
  int useIsFwd, useNrgFwd, useScfFwd; /* the flags signals the elements which
612
                                         are used for the final result */
613
614
1.86k
  sumIsFwd = sumIsBwd = sumNrgFwd = sumNrgBwd = sumScfFwd = sumScfBwd = 0;
615
1.86k
  useIsFwd = useNrgFwd = useScfFwd = 0;
616
617
  /* calculate sum of each group (scf,nrg,is) of forward and backward direction
618
   */
619
3.90k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
620
21.5k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
621
19.4k
      bnds = 16 * group + band;
622
19.4k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
623
6.90k
        case ZERO_HCB:
624
6.90k
          break;
625
626
842
        case INTENSITY_HCB:
627
1.00k
        case INTENSITY_HCB2:
628
1.00k
          sumIsFwd +=
629
1.00k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
630
1.00k
          sumIsBwd +=
631
1.00k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
632
1.00k
          break;
633
634
934
        case NOISE_HCB:
635
934
          sumNrgFwd +=
636
934
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
637
934
          sumNrgBwd +=
638
934
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
639
934
          break;
640
641
10.6k
        default:
642
10.6k
          sumScfFwd +=
643
10.6k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
644
10.6k
          sumScfBwd +=
645
10.6k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
646
10.6k
          break;
647
19.4k
      }
648
19.4k
    }
649
2.04k
  }
650
651
  /* find for each group (scf,nrg,is) the correct direction */
652
1.86k
  if (sumIsFwd < sumIsBwd) useIsFwd = 1;
653
654
1.86k
  if (sumNrgFwd < sumNrgBwd) useNrgFwd = 1;
655
656
1.86k
  if (sumScfFwd < sumScfBwd) useScfFwd = 1;
657
658
  /* conceal each group (scf,nrg,is) */
659
3.90k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
660
21.5k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
661
19.4k
      bnds = 16 * group + band;
662
19.4k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
663
6.90k
        case ZERO_HCB:
664
6.90k
          break;
665
666
842
        case INTENSITY_HCB:
667
1.00k
        case INTENSITY_HCB2:
668
1.00k
          if (useIsFwd)
669
576
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
670
576
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
671
433
          else
672
433
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
673
433
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
674
1.00k
          break;
675
676
934
        case NOISE_HCB:
677
934
          if (useNrgFwd)
678
56
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
679
56
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
680
878
          else
681
878
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
682
878
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
683
934
          break;
684
685
10.6k
        default:
686
10.6k
          if (useScfFwd)
687
4.54k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
688
4.54k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
689
6.07k
          else
690
6.07k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
691
6.07k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
692
10.6k
          break;
693
19.4k
      }
694
19.4k
    }
695
2.04k
  }
696
1.86k
}
697
698
/*---------------------------------------------------------------------------------------------
699
  description:   Approach by means of predictive interpolation
700
                 This approach by means of predictive estimation is generally
701
performed when the error cannot be isolated between 'conceal_min' and
702
'conceal_max', the 'sf_concealment' flag is set and the previous frame has the
703
same block type as the current frame. Check for each scalefactorband if the same
704
type of data (scalefactor, internsity data, noise energies) is transmitted. If
705
so use the scalefactor (intensity data, noise energy) in the current frame.
706
Otherwise set the scalefactor (intensity data, noise energy) for this
707
scalefactorband to zero.
708
-----------------------------------------------------------------------------------------------
709
  output:        Concealed scalefactor, noise energy and intensity data
710
-----------------------------------------------------------------------------------------------
711
  return:        -
712
--------------------------------------------------------------------------------------------
713
*/
714
715
void PredictiveInterpolation(
716
    CAacDecoderChannelInfo *pAacDecoderChannelInfo,
717
2.16k
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
718
2.16k
  CErRvlcInfo *pRvlc =
719
2.16k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
720
2.16k
  int band, bnds, group;
721
2.16k
  SHORT commonMin;
722
723
4.97k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
724
15.9k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
725
13.1k
      bnds = 16 * group + band;
726
13.1k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
727
10.4k
        case ZERO_HCB:
728
10.4k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
729
10.4k
          break;
730
731
597
        case INTENSITY_HCB:
732
1.08k
        case INTENSITY_HCB2:
733
1.08k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
734
1.08k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
735
1.08k
              (pAacDecoderStaticChannelInfo->concealmentInfo
736
882
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
737
207
            commonMin = fMin(
738
207
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
739
207
                pAacDecoderChannelInfo->pComData->overlay.aac
740
207
                    .aRvlcScfBwd[bnds]);
741
207
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
742
207
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
743
207
                                    .aRvlcPreviousScaleFactor[bnds]);
744
876
          } else {
745
876
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
746
876
          }
747
1.08k
          break;
748
749
1.09k
        case NOISE_HCB:
750
1.09k
          if (pAacDecoderStaticChannelInfo->concealmentInfo
751
1.09k
                  .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
752
0
            commonMin = fMin(
753
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
754
0
                pAacDecoderChannelInfo->pComData->overlay.aac
755
0
                    .aRvlcScfBwd[bnds]);
756
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
757
0
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
758
0
                                    .aRvlcPreviousScaleFactor[bnds]);
759
1.09k
          } else {
760
1.09k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
761
1.09k
          }
762
1.09k
          break;
763
764
519
        default:
765
519
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
766
519
                   .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
767
519
              (pAacDecoderStaticChannelInfo->concealmentInfo
768
98
                   .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
769
519
              (pAacDecoderStaticChannelInfo->concealmentInfo
770
98
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
771
519
              (pAacDecoderStaticChannelInfo->concealmentInfo
772
60
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
773
42
            commonMin = fMin(
774
42
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
775
42
                pAacDecoderChannelInfo->pComData->overlay.aac
776
42
                    .aRvlcScfBwd[bnds]);
777
42
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
778
42
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
779
42
                                    .aRvlcPreviousScaleFactor[bnds]);
780
477
          } else {
781
477
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
782
477
          }
783
519
          break;
784
13.1k
      }
785
13.1k
    }
786
2.80k
  }
787
2.16k
}