Coverage Report

Created: 2025-08-28 07:12

/src/fdk-aac/libSBRdec/src/sbrdec_freq_sca.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2021 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** SBR decoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  Frequency scale calculation
106
*/
107
108
#include "sbrdec_freq_sca.h"
109
110
#include "transcendent.h"
111
#include "sbr_rom.h"
112
#include "env_extr.h"
113
114
#include "genericStds.h" /* need log() for debug-code only */
115
116
949k
#define MAX_OCTAVE 29
117
#define MAX_SECOND_REGION 50
118
119
static int numberOfBands(FIXP_SGL bpo_div16, int start, int stop, int warpFlag);
120
static void CalcBands(UCHAR *diff, UCHAR start, UCHAR stop, UCHAR num_bands);
121
static SBR_ERROR modifyBands(UCHAR max_band, UCHAR *diff, UCHAR length);
122
static void cumSum(UCHAR start_value, UCHAR *diff, UCHAR length,
123
                   UCHAR *start_adress);
124
125
/*!
126
  \brief     Retrieve QMF-band where the SBR range starts
127
128
  Convert startFreq which was read from the bitstream into a
129
  QMF-channel number.
130
131
  \return  Number of start band
132
*/
133
static UCHAR getStartBand(
134
    UINT fs,              /*!< Output sampling frequency */
135
    UCHAR startFreq,      /*!< Index to table of possible start bands */
136
    UINT headerDataFlags) /*!< Info to SBR mode */
137
495k
{
138
495k
  INT band;
139
495k
  UINT fsMapped = fs;
140
495k
  SBR_RATE rate = DUAL;
141
142
495k
  if (headerDataFlags & (SBRDEC_SYNTAX_USAC | SBRDEC_SYNTAX_RSVD50)) {
143
256k
    if (headerDataFlags & SBRDEC_QUAD_RATE) {
144
9.03k
      rate = QUAD;
145
9.03k
    }
146
256k
    fsMapped = sbrdec_mapToStdSampleRate(fs, 1);
147
256k
  }
148
149
495k
  FDK_ASSERT(2 * (rate + 1) <= (4));
150
151
495k
  switch (fsMapped) {
152
6
    case 192000:
153
6
      band = FDK_sbrDecoder_sbr_start_freq_192[startFreq];
154
6
      break;
155
286
    case 176400:
156
286
      band = FDK_sbrDecoder_sbr_start_freq_176[startFreq];
157
286
      break;
158
6
    case 128000:
159
6
      band = FDK_sbrDecoder_sbr_start_freq_128[startFreq];
160
6
      break;
161
82.1k
    case 96000:
162
140k
    case 88200:
163
140k
      band = FDK_sbrDecoder_sbr_start_freq_88[rate][startFreq];
164
140k
      break;
165
66.8k
    case 64000:
166
66.8k
      band = FDK_sbrDecoder_sbr_start_freq_64[rate][startFreq];
167
66.8k
      break;
168
9.07k
    case 48000:
169
9.07k
      band = FDK_sbrDecoder_sbr_start_freq_48[rate][startFreq];
170
9.07k
      break;
171
7.97k
    case 44100:
172
7.97k
      band = FDK_sbrDecoder_sbr_start_freq_44[rate][startFreq];
173
7.97k
      break;
174
103k
    case 40000:
175
103k
      band = FDK_sbrDecoder_sbr_start_freq_40[rate][startFreq];
176
103k
      break;
177
62.7k
    case 32000:
178
62.7k
      band = FDK_sbrDecoder_sbr_start_freq_32[rate][startFreq];
179
62.7k
      break;
180
59.4k
    case 24000:
181
59.4k
      band = FDK_sbrDecoder_sbr_start_freq_24[rate][startFreq];
182
59.4k
      break;
183
2.57k
    case 22050:
184
2.57k
      band = FDK_sbrDecoder_sbr_start_freq_22[rate][startFreq];
185
2.57k
      break;
186
43.3k
    case 16000:
187
43.3k
      band = FDK_sbrDecoder_sbr_start_freq_16[rate][startFreq];
188
43.3k
      break;
189
0
    default:
190
0
      band = 255;
191
495k
  }
192
193
495k
  return band;
194
495k
}
195
196
/*!
197
  \brief     Retrieve QMF-band where the SBR range starts
198
199
  Convert startFreq which was read from the bitstream into a
200
  QMF-channel number.
201
202
  \return  Number of start band
203
*/
204
static UCHAR getStopBand(
205
    UINT fs,              /*!< Output sampling frequency */
206
    UCHAR stopFreq,       /*!< Index to table of possible start bands */
207
    UINT headerDataFlags, /*!< Info to SBR mode */
208
    UCHAR k0)             /*!< Start freq index */
209
495k
{
210
495k
  UCHAR k2;
211
212
495k
  if (stopFreq < 14) {
213
454k
    INT stopMin;
214
454k
    INT num = 2 * (64);
215
454k
    UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
216
454k
    UCHAR *diff0 = diff_tot;
217
454k
    UCHAR *diff1 = diff_tot + MAX_OCTAVE;
218
219
454k
    if (headerDataFlags & SBRDEC_QUAD_RATE) {
220
8.89k
      num >>= 1;
221
8.89k
    }
222
223
454k
    if (fs < 32000) {
224
127k
      stopMin = (((2 * 6000 * num) / fs) + 1) >> 1;
225
326k
    } else {
226
326k
      if (fs < 64000) {
227
196k
        stopMin = (((2 * 8000 * num) / fs) + 1) >> 1;
228
196k
      } else {
229
130k
        stopMin = (((2 * 10000 * num) / fs) + 1) >> 1;
230
130k
      }
231
326k
    }
232
233
454k
    stopMin = fMin(stopMin, 64);
234
235
    /*
236
      Choose a stop band between k1 and 64 depending on stopFreq (0..13),
237
      based on a logarithmic scale.
238
      The vectors diff0 and diff1 are used temporarily here.
239
    */
240
454k
    CalcBands(diff0, stopMin, 64, 13);
241
454k
    shellsort(diff0, 13);
242
454k
    cumSum(stopMin, diff0, 13, diff1);
243
454k
    k2 = diff1[stopFreq];
244
454k
  } else if (stopFreq == 14)
245
5.15k
    k2 = 2 * k0;
246
36.7k
  else
247
36.7k
    k2 = 3 * k0;
248
249
  /* Limit to Nyquist */
250
495k
  if (k2 > (64)) k2 = (64);
251
252
  /* Range checks */
253
  /* 1 <= difference <= 48; 1 <= fs <= 96000 */
254
495k
  {
255
495k
    UCHAR max_freq_coeffs = (headerDataFlags & SBRDEC_QUAD_RATE)
256
495k
                                ? MAX_FREQ_COEFFS_QUAD_RATE
257
495k
                                : MAX_FREQ_COEFFS;
258
495k
    if (((k2 - k0) > max_freq_coeffs) || (k2 <= k0)) {
259
4.48k
      return 255;
260
4.48k
    }
261
495k
  }
262
263
491k
  if (headerDataFlags & SBRDEC_QUAD_RATE) {
264
8.62k
    return k2; /* skip other checks: (k2 - k0) must be <=
265
                  MAX_FREQ_COEFFS_QUAD_RATE for all fs */
266
8.62k
  }
267
482k
  if (headerDataFlags & (SBRDEC_SYNTAX_USAC | SBRDEC_SYNTAX_RSVD50)) {
268
    /* 1 <= difference <= 35; 42000 <= fs <= 96000 */
269
245k
    if ((fs >= 42000) && ((k2 - k0) > MAX_FREQ_COEFFS_FS44100)) {
270
1.34k
      return 255;
271
1.34k
    }
272
    /* 1 <= difference <= 32; 46009 <= fs <= 96000 */
273
244k
    if ((fs >= 46009) && ((k2 - k0) > MAX_FREQ_COEFFS_FS48000)) {
274
3.20k
      return 255;
275
3.20k
    }
276
244k
  } else {
277
    /* 1 <= difference <= 35; fs == 44100 */
278
237k
    if ((fs == 44100) && ((k2 - k0) > MAX_FREQ_COEFFS_FS44100)) {
279
72
      return 255;
280
72
    }
281
    /* 1 <= difference <= 32; 48000 <= fs <= 96000 */
282
237k
    if ((fs >= 48000) && ((k2 - k0) > MAX_FREQ_COEFFS_FS48000)) {
283
1.51k
      return 255;
284
1.51k
    }
285
237k
  }
286
287
476k
  return k2;
288
482k
}
289
290
/*!
291
  \brief     Generates master frequency tables
292
293
  Frequency tables are calculated according to the selected domain
294
  (linear/logarithmic) and granularity.
295
  IEC 14496-3 4.6.18.3.2.1
296
297
  \return  errorCode, 0 if successful
298
*/
299
SBR_ERROR
300
sbrdecUpdateFreqScale(
301
    UCHAR *v_k_master, /*!< Master table to be created */
302
    UCHAR *numMaster,  /*!< Number of entries in master table */
303
    UINT fs,           /*!< SBR working sampling rate */
304
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Control data from bitstream */
305
495k
    UINT flags) {
306
495k
  FIXP_SGL bpo_div16; /* bands_per_octave divided by 16 */
307
495k
  INT dk = 0;
308
309
  /* Internal variables */
310
495k
  UCHAR k0, k2, i;
311
495k
  UCHAR num_bands0 = 0;
312
495k
  UCHAR num_bands1 = 0;
313
495k
  UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
314
495k
  UCHAR *diff0 = diff_tot;
315
495k
  UCHAR *diff1 = diff_tot + MAX_OCTAVE;
316
495k
  INT k2_achived;
317
495k
  INT k2_diff;
318
495k
  INT incr = 0;
319
320
  /*
321
    Determine start band
322
  */
323
495k
  if (flags & SBRDEC_QUAD_RATE) {
324
9.03k
    fs >>= 1;
325
9.03k
  }
326
327
495k
  k0 = getStartBand(fs, hHeaderData->bs_data.startFreq, flags);
328
495k
  if (k0 == 255) {
329
0
    return SBRDEC_UNSUPPORTED_CONFIG;
330
0
  }
331
332
  /*
333
    Determine stop band
334
  */
335
495k
  k2 = getStopBand(fs, hHeaderData->bs_data.stopFreq, flags, k0);
336
495k
  if (k2 == 255) {
337
10.6k
    return SBRDEC_UNSUPPORTED_CONFIG;
338
10.6k
  }
339
340
485k
  if (hHeaderData->bs_data.freqScale > 0) { /* Bark */
341
238k
    INT k1;
342
343
238k
    if (hHeaderData->bs_data.freqScale == 1) {
344
10.8k
      bpo_div16 = FL2FXCONST_SGL(12.0f / 16.0f);
345
227k
    } else if (hHeaderData->bs_data.freqScale == 2) {
346
191k
      bpo_div16 = FL2FXCONST_SGL(10.0f / 16.0f);
347
191k
    } else {
348
36.1k
      bpo_div16 = FL2FXCONST_SGL(8.0f / 16.0f);
349
36.1k
    }
350
351
    /* Ref: ISO/IEC 23003-3, Figure 12 - Flowchart calculation of fMaster for
352
     * 4:1 system when bs_freq_scale > 0 */
353
238k
    if (flags & SBRDEC_QUAD_RATE) {
354
4.65k
      if ((SHORT)k0 < (SHORT)(bpo_div16 >> ((FRACT_BITS - 1) - 4))) {
355
1.19k
        bpo_div16 = (FIXP_SGL)(k0 & (UCHAR)0xfe)
356
1.19k
                    << ((FRACT_BITS - 1) - 4); /* bpo_div16 = floor(k0/2)*2 */
357
1.19k
      }
358
4.65k
    }
359
360
238k
    if (1000 * k2 > 2245 * k0) { /* Two or more regions */
361
147k
      k1 = 2 * k0;
362
363
147k
      num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
364
147k
      num_bands1 =
365
147k
          numberOfBands(bpo_div16, k1, k2, hHeaderData->bs_data.alterScale);
366
147k
      if (num_bands0 < 1) {
367
556
        return SBRDEC_UNSUPPORTED_CONFIG;
368
556
      }
369
146k
      if (num_bands1 < 1) {
370
22
        return SBRDEC_UNSUPPORTED_CONFIG;
371
22
      }
372
373
146k
      CalcBands(diff0, k0, k1, num_bands0);
374
146k
      shellsort(diff0, num_bands0);
375
146k
      if (diff0[0] == 0) {
376
36.4k
        return SBRDEC_UNSUPPORTED_CONFIG;
377
36.4k
      }
378
379
110k
      cumSum(k0, diff0, num_bands0, v_k_master);
380
381
110k
      CalcBands(diff1, k1, k2, num_bands1);
382
110k
      shellsort(diff1, num_bands1);
383
110k
      if (diff0[num_bands0 - 1] > diff1[0]) {
384
15.0k
        SBR_ERROR err;
385
386
15.0k
        err = modifyBands(diff0[num_bands0 - 1], diff1, num_bands1);
387
15.0k
        if (err) return SBRDEC_UNSUPPORTED_CONFIG;
388
15.0k
      }
389
390
      /* Add 2nd region */
391
110k
      cumSum(k1, diff1, num_bands1, &v_k_master[num_bands0]);
392
110k
      *numMaster = num_bands0 + num_bands1; /* Output nr of bands */
393
394
110k
    } else { /* Only one region */
395
91.0k
      k1 = k2;
396
397
91.0k
      num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
398
91.0k
      if (num_bands0 < 1) {
399
579
        return SBRDEC_UNSUPPORTED_CONFIG;
400
579
      }
401
90.5k
      CalcBands(diff0, k0, k1, num_bands0);
402
90.5k
      shellsort(diff0, num_bands0);
403
90.5k
      if (diff0[0] == 0) {
404
1.79k
        return SBRDEC_UNSUPPORTED_CONFIG;
405
1.79k
      }
406
407
88.7k
      cumSum(k0, diff0, num_bands0, v_k_master);
408
88.7k
      *numMaster = num_bands0; /* Output nr of bands */
409
88.7k
    }
410
246k
  } else { /* Linear mode */
411
246k
    if (hHeaderData->bs_data.alterScale == 0) {
412
42.9k
      dk = 1;
413
      /* FLOOR to get to few number of bands (next lower even number) */
414
42.9k
      num_bands0 = (k2 - k0) & 254;
415
203k
    } else {
416
203k
      dk = 2;
417
203k
      num_bands0 = (((k2 - k0) >> 1) + 1) & 254; /* ROUND to the closest fit */
418
203k
    }
419
420
246k
    if (num_bands0 < 1) {
421
15
      return SBRDEC_UNSUPPORTED_CONFIG;
422
      /* We must return already here because 'i' can become negative below. */
423
15
    }
424
425
246k
    k2_achived = k0 + num_bands0 * dk;
426
246k
    k2_diff = k2 - k2_achived;
427
428
2.43M
    for (i = 0; i < num_bands0; i++) diff_tot[i] = dk;
429
430
    /* If linear scale wasn't achieved */
431
    /* and we got too wide SBR area */
432
246k
    if (k2_diff < 0) {
433
163k
      incr = 1;
434
163k
      i = 0;
435
163k
    }
436
437
    /* If linear scale wasn't achieved */
438
    /* and we got too small SBR area */
439
246k
    if (k2_diff > 0) {
440
36.6k
      incr = -1;
441
36.6k
      i = num_bands0 - 1;
442
36.6k
    }
443
444
    /* Adjust diff vector to get sepc. SBR range */
445
557k
    while (k2_diff != 0) {
446
310k
      diff_tot[i] = diff_tot[i] - incr;
447
310k
      i = i + incr;
448
310k
      k2_diff = k2_diff + incr;
449
310k
    }
450
451
246k
    cumSum(k0, diff_tot, num_bands0, v_k_master); /* cumsum */
452
246k
    *numMaster = num_bands0;                      /* Output nr of bands */
453
246k
  }
454
455
445k
  if (*numMaster < 1) {
456
0
    return SBRDEC_UNSUPPORTED_CONFIG;
457
0
  }
458
459
  /* Ref: ISO/IEC 23003-3 Cor.3, "In 7.5.5.2, add to the requirements:"*/
460
445k
  if (flags & SBRDEC_QUAD_RATE) {
461
8.01k
    int k;
462
75.7k
    for (k = 1; k < *numMaster; k++) {
463
68.1k
      if (!(v_k_master[k] - v_k_master[k - 1] <= k0 - 2)) {
464
336
        return SBRDEC_UNSUPPORTED_CONFIG;
465
336
      }
466
68.1k
    }
467
8.01k
  }
468
469
  /*
470
    Print out the calculated table
471
  */
472
473
445k
  return SBRDEC_OK;
474
445k
}
475
476
/*!
477
  \brief     Calculate frequency ratio of one SBR band
478
479
  All SBR bands should span a constant frequency range in the logarithmic
480
  domain. This function calculates the ratio of any SBR band's upper and lower
481
  frequency.
482
483
 \return    num_band-th root of k_start/k_stop
484
*/
485
801k
static FIXP_SGL calcFactorPerBand(int k_start, int k_stop, int num_bands) {
486
  /* Scaled bandfactor and step 1 bit right to avoid overflow
487
   * use double data type */
488
801k
  FIXP_DBL bandfactor = FL2FXCONST_DBL(0.25f); /* Start value */
489
801k
  FIXP_DBL step = FL2FXCONST_DBL(0.125f); /* Initial increment for factor */
490
491
801k
  int direction = 1;
492
493
  /* Because saturation can't be done in INT IIS,
494
   * changed start and stop data type from FIXP_SGL to FIXP_DBL */
495
801k
  FIXP_DBL start = k_start << (DFRACT_BITS - 8);
496
801k
  FIXP_DBL stop = k_stop << (DFRACT_BITS - 8);
497
498
801k
  FIXP_DBL temp;
499
500
801k
  int j, i = 0;
501
502
36.7M
  while (step > FL2FXCONST_DBL(0.0f)) {
503
35.9M
    i++;
504
35.9M
    temp = stop;
505
506
    /* Calculate temp^num_bands: */
507
418M
    for (j = 0; j < num_bands; j++)
508
      // temp = fMult(temp,bandfactor);
509
382M
      temp = fMultDiv2(temp, bandfactor) << 2;
510
511
35.9M
    if (temp < start) { /* Factor too strong, make it weaker */
512
18.4M
      if (direction == 0)
513
        /* Halfen step. Right shift is not done as fract because otherwise the
514
           lowest bit cannot be cleared due to rounding */
515
11.2M
        step = (FIXP_DBL)((LONG)step >> 1);
516
18.4M
      direction = 1;
517
18.4M
      bandfactor = bandfactor + step;
518
18.4M
    } else { /* Factor is too weak: make it stronger */
519
17.4M
      if (direction == 1) step = (FIXP_DBL)((LONG)step >> 1);
520
17.4M
      direction = 0;
521
17.4M
      bandfactor = bandfactor - step;
522
17.4M
    }
523
524
35.9M
    if (i > 100) {
525
0
      step = FL2FXCONST_DBL(0.0f);
526
0
    }
527
35.9M
  }
528
801k
  return (bandfactor >= FL2FXCONST_DBL(0.5)) ? (FIXP_SGL)MAXVAL_SGL
529
801k
                                             : FX_DBL2FX_SGL(bandfactor << 1);
530
801k
}
531
532
/*!
533
  \brief     Calculate number of SBR bands between start and stop band
534
535
  Given the number of bands per octave, this function calculates how many
536
  bands fit in the given frequency range.
537
  When the warpFlag is set, the 'band density' is decreased by a factor
538
  of 1/1.3
539
540
  \return    number of bands
541
*/
542
static int numberOfBands(
543
    FIXP_SGL bpo_div16, /*!< Input: number of bands per octave divided by 16 */
544
    int start,          /*!< First QMF band of SBR frequency range */
545
    int stop,           /*!< Last QMF band of SBR frequency range + 1 */
546
    int warpFlag)       /*!< Stretching flag */
547
385k
{
548
385k
  FIXP_SGL num_bands_div128;
549
385k
  int num_bands;
550
551
385k
  num_bands_div128 =
552
385k
      FX_DBL2FX_SGL(fMult(FDK_getNumOctavesDiv8(start, stop), bpo_div16));
553
554
385k
  if (warpFlag) {
555
    /* Apply the warp factor of 1.3 to get wider bands.  We use a value
556
       of 32768/25200 instead of the exact value to avoid critical cases
557
       of rounding.
558
    */
559
126k
    num_bands_div128 = FX_DBL2FX_SGL(
560
126k
        fMult(num_bands_div128, FL2FXCONST_SGL(25200.0 / 32768.0)));
561
126k
  }
562
563
  /* add scaled 1 for rounding to even numbers: */
564
385k
  num_bands_div128 = num_bands_div128 + FL2FXCONST_SGL(1.0f / 128.0f);
565
  /* scale back to right aligned integer and double the value: */
566
385k
  num_bands = 2 * ((LONG)num_bands_div128 >> (FRACT_BITS - 7));
567
568
385k
  return (num_bands);
569
385k
}
570
571
/*!
572
  \brief     Calculate width of SBR bands
573
574
  Given the desired number of bands within the SBR frequency range,
575
  this function calculates the width of each SBR band in QMF channels.
576
  The bands get wider from start to stop (bark scale).
577
*/
578
static void CalcBands(UCHAR *diff,     /*!< Vector of widths to be calculated */
579
                      UCHAR start,     /*!< Lower end of subband range */
580
                      UCHAR stop,      /*!< Upper end of subband range */
581
                      UCHAR num_bands) /*!< Desired number of bands */
582
801k
{
583
801k
  int i;
584
801k
  int previous;
585
801k
  int current;
586
801k
  FIXP_SGL exact, temp;
587
801k
  FIXP_SGL bandfactor = calcFactorPerBand(start, stop, num_bands);
588
589
801k
  previous = stop; /* Start with highest QMF channel */
590
801k
  exact = (FIXP_SGL)(
591
801k
      stop << (FRACT_BITS - 8)); /* Shift left to gain some accuracy */
592
593
9.33M
  for (i = num_bands - 1; i >= 0; i--) {
594
    /* Calculate border of next lower sbr band */
595
8.53M
    exact = FX_DBL2FX_SGL(fMult(exact, bandfactor));
596
597
    /* Add scaled 0.5 for rounding:
598
       We use a value 128/256 instead of 0.5 to avoid some critical cases of
599
       rounding. */
600
8.53M
    temp = exact + FL2FXCONST_SGL(128.0 / 32768.0);
601
602
    /* scale back to right alinged integer: */
603
8.53M
    current = (LONG)temp >> (FRACT_BITS - 8);
604
605
    /* Save width of band i */
606
8.53M
    diff[i] = previous - current;
607
8.53M
    previous = current;
608
8.53M
  }
609
801k
}
610
611
/*!
612
  \brief     Calculate cumulated sum vector from delta vector
613
*/
614
static void cumSum(UCHAR start_value, UCHAR *diff, UCHAR length,
615
1.01M
                   UCHAR *start_adress) {
616
1.01M
  int i;
617
1.01M
  start_adress[0] = start_value;
618
11.3M
  for (i = 1; i <= length; i++)
619
10.3M
    start_adress[i] = start_adress[i - 1] + diff[i - 1];
620
1.01M
}
621
622
/*!
623
  \brief     Adapt width of frequency bands in the second region
624
625
  If SBR spans more than 2 octaves, the upper part of a bark-frequency-scale
626
  is calculated separately. This function tries to avoid that the second region
627
  starts with a band smaller than the highest band of the first region.
628
*/
629
static SBR_ERROR modifyBands(UCHAR max_band_previous, UCHAR *diff,
630
15.0k
                             UCHAR length) {
631
15.0k
  int change = max_band_previous - diff[0];
632
633
  /* Limit the change so that the last band cannot get narrower than the first
634
   * one */
635
15.0k
  if (change > (diff[length - 1] - diff[0]) >> 1)
636
14.5k
    change = (diff[length - 1] - diff[0]) >> 1;
637
638
15.0k
  diff[0] += change;
639
15.0k
  diff[length - 1] -= change;
640
15.0k
  shellsort(diff, length);
641
642
15.0k
  return SBRDEC_OK;
643
15.0k
}
644
645
/*!
646
  \brief   Update high resolution frequency band table
647
*/
648
static void sbrdecUpdateHiRes(UCHAR *h_hires, UCHAR *num_hires,
649
                              UCHAR *v_k_master, UCHAR num_bands,
650
415k
                              UCHAR xover_band) {
651
415k
  UCHAR i;
652
653
415k
  *num_hires = num_bands - xover_band;
654
655
4.11M
  for (i = xover_band; i <= num_bands; i++) {
656
3.69M
    h_hires[i - xover_band] = v_k_master[i];
657
3.69M
  }
658
415k
}
659
660
/*!
661
  \brief  Build low resolution table out of high resolution table
662
*/
663
static void sbrdecUpdateLoRes(UCHAR *h_lores, UCHAR *num_lores, UCHAR *h_hires,
664
415k
                              UCHAR num_hires) {
665
415k
  UCHAR i;
666
667
415k
  if ((num_hires & 1) == 0) {
668
    /* If even number of hires bands */
669
296k
    *num_lores = num_hires >> 1;
670
    /* Use every second lores=hires[0,2,4...] */
671
1.93M
    for (i = 0; i <= *num_lores; i++) h_lores[i] = h_hires[i * 2];
672
296k
  } else {
673
    /* Odd number of hires, which means xover is odd */
674
118k
    *num_lores = (num_hires + 1) >> 1;
675
    /* Use lores=hires[0,1,3,5 ...] */
676
118k
    h_lores[0] = h_hires[0];
677
479k
    for (i = 1; i <= *num_lores; i++) {
678
360k
      h_lores[i] = h_hires[i * 2 - 1];
679
360k
    }
680
118k
  }
681
415k
}
682
683
/*!
684
  \brief   Derive a low-resolution frequency-table from the master frequency
685
  table
686
*/
687
void sbrdecDownSampleLoRes(UCHAR *v_result, UCHAR num_result,
688
395k
                           UCHAR *freqBandTableRef, UCHAR num_Ref) {
689
395k
  int step;
690
395k
  int i, j;
691
395k
  int org_length, result_length;
692
395k
  int v_index[MAX_FREQ_COEFFS >> 1];
693
694
  /* init */
695
395k
  org_length = num_Ref;
696
395k
  result_length = num_result;
697
698
395k
  v_index[0] = 0; /* Always use left border */
699
395k
  i = 0;
700
1.11M
  while (org_length > 0) {
701
    /* Create downsample vector */
702
722k
    i++;
703
722k
    step = org_length / result_length;
704
722k
    org_length = org_length - step;
705
722k
    result_length--;
706
722k
    v_index[i] = v_index[i - 1] + step;
707
722k
  }
708
709
1.51M
  for (j = 0; j <= i; j++) {
710
    /* Use downsample vector to index LoResolution vector */
711
1.11M
    v_result[j] = freqBandTableRef[v_index[j]];
712
1.11M
  }
713
395k
}
714
715
/*!
716
  \brief   Sorting routine
717
*/
718
4.64M
void shellsort(UCHAR *in, UCHAR n) {
719
4.64M
  int i, j, v, w;
720
4.64M
  int inc = 1;
721
722
4.64M
  do
723
9.06M
    inc = 3 * inc + 1;
724
9.06M
  while (inc <= n);
725
726
9.06M
  do {
727
9.06M
    inc = inc / 3;
728
50.4M
    for (i = inc; i < n; i++) {
729
41.3M
      v = in[i];
730
41.3M
      j = i;
731
50.8M
      while ((w = in[j - inc]) > v) {
732
10.2M
        in[j] = w;
733
10.2M
        j -= inc;
734
10.2M
        if (j < inc) break;
735
10.2M
      }
736
41.3M
      in[j] = v;
737
41.3M
    }
738
9.06M
  } while (inc > 1);
739
4.64M
}
740
741
/*!
742
  \brief   Reset frequency band tables
743
  \return  errorCode, 0 if successful
744
*/
745
SBR_ERROR
746
495k
resetFreqBandTables(HANDLE_SBR_HEADER_DATA hHeaderData, const UINT flags) {
747
495k
  SBR_ERROR err = SBRDEC_OK;
748
495k
  int k2, kx, lsb, usb;
749
495k
  int intTemp;
750
495k
  UCHAR nBandsLo, nBandsHi;
751
495k
  HANDLE_FREQ_BAND_DATA hFreq = &hHeaderData->freqBandData;
752
753
  /* Calculate master frequency function */
754
495k
  err = sbrdecUpdateFreqScale(hFreq->v_k_master, &hFreq->numMaster,
755
495k
                              hHeaderData->sbrProcSmplRate, hHeaderData, flags);
756
757
495k
  if (err || (hHeaderData->bs_info.xover_band > hFreq->numMaster)) {
758
80.5k
    return SBRDEC_UNSUPPORTED_CONFIG;
759
80.5k
  }
760
761
  /* Derive Hiresolution from master frequency function */
762
415k
  sbrdecUpdateHiRes(hFreq->freqBandTable[1], &nBandsHi, hFreq->v_k_master,
763
415k
                    hFreq->numMaster, hHeaderData->bs_info.xover_band);
764
  /* Derive Loresolution from Hiresolution */
765
415k
  sbrdecUpdateLoRes(hFreq->freqBandTable[0], &nBandsLo, hFreq->freqBandTable[1],
766
415k
                    nBandsHi);
767
768
  /* Check index to freqBandTable[0] */
769
415k
  if (!(nBandsLo > 0) ||
770
415k
      (nBandsLo > (((hHeaderData->numberOfAnalysisBands == 16)
771
410k
                        ? MAX_FREQ_COEFFS_QUAD_RATE
772
410k
                        : MAX_FREQ_COEFFS_DUAL_RATE) >>
773
410k
                   1))) {
774
5.28k
    return SBRDEC_UNSUPPORTED_CONFIG;
775
5.28k
  }
776
777
410k
  hFreq->nSfb[0] = nBandsLo;
778
410k
  hFreq->nSfb[1] = nBandsHi;
779
780
410k
  lsb = hFreq->freqBandTable[0][0];
781
410k
  usb = hFreq->freqBandTable[0][nBandsLo];
782
783
  /* Check for start frequency border k_x:
784
     - ISO/IEC 14496-3 4.6.18.3.6 Requirements
785
     - ISO/IEC 23003-3 7.5.5.2    Modifications and additions to the MPEG-4 SBR
786
     tool
787
  */
788
  /* Note that lsb > as hHeaderData->numberOfAnalysisBands is a valid SBR config
789
   * for 24 band QMF analysis. */
790
410k
  if ((lsb > ((flags & SBRDEC_QUAD_RATE) ? 16 : (32))) || (lsb >= usb)) {
791
14.1k
    return SBRDEC_UNSUPPORTED_CONFIG;
792
14.1k
  }
793
794
  /* Calculate number of noise bands */
795
796
395k
  k2 = hFreq->freqBandTable[1][nBandsHi];
797
395k
  kx = hFreq->freqBandTable[1][0];
798
799
395k
  if (hHeaderData->bs_data.noise_bands == 0) {
800
40.4k
    hFreq->nNfb = 1;
801
40.4k
  } else /* Calculate no of noise bands 1,2 or 3 bands/octave */
802
355k
  {
803
    /* Fetch number of octaves divided by 32 */
804
355k
    intTemp = (LONG)FDK_getNumOctavesDiv8(kx, k2) >> 2;
805
806
    /* Integer-Multiplication with number of bands: */
807
355k
    intTemp = intTemp * hHeaderData->bs_data.noise_bands;
808
809
    /* Add scaled 0.5 for rounding: */
810
355k
    intTemp = intTemp + (LONG)FL2FXCONST_SGL(0.5f / 32.0f);
811
812
    /* Convert to right-aligned integer: */
813
355k
    intTemp = intTemp >> (FRACT_BITS - 1 /*sign*/ - 5 /* rescale */);
814
815
355k
    if (intTemp == 0) intTemp = 1;
816
817
355k
    if (intTemp > MAX_NOISE_COEFFS) {
818
115
      return SBRDEC_UNSUPPORTED_CONFIG;
819
115
    }
820
821
355k
    hFreq->nNfb = intTemp;
822
355k
  }
823
824
395k
  hFreq->nInvfBands = hFreq->nNfb;
825
826
  /* Get noise bands */
827
395k
  sbrdecDownSampleLoRes(hFreq->freqBandTableNoise, hFreq->nNfb,
828
395k
                        hFreq->freqBandTable[0], nBandsLo);
829
830
  /* save old highband; required for overlap in usac
831
     when headerchange occurs at XVAR and VARX frame; */
832
395k
  hFreq->ov_highSubband = hFreq->highSubband;
833
834
395k
  hFreq->lowSubband = lsb;
835
395k
  hFreq->highSubband = usb;
836
837
395k
  return SBRDEC_OK;
838
395k
}