/src/ffmpeg/libavcodec/lsp.c
Line | Count | Source |
1 | | /* |
2 | | * LSP routines for ACELP-based codecs |
3 | | * |
4 | | * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder) |
5 | | * Copyright (c) 2008 Vladimir Voroshilov |
6 | | * |
7 | | * This file is part of FFmpeg. |
8 | | * |
9 | | * FFmpeg is free software; you can redistribute it and/or |
10 | | * modify it under the terms of the GNU Lesser General Public |
11 | | * License as published by the Free Software Foundation; either |
12 | | * version 2.1 of the License, or (at your option) any later version. |
13 | | * |
14 | | * FFmpeg is distributed in the hope that it will be useful, |
15 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
17 | | * Lesser General Public License for more details. |
18 | | * |
19 | | * You should have received a copy of the GNU Lesser General Public |
20 | | * License along with FFmpeg; if not, write to the Free Software |
21 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
22 | | */ |
23 | | |
24 | | #include <math.h> |
25 | | |
26 | | #include "config.h" |
27 | | |
28 | | #define FRAC_BITS 14 |
29 | | #include "libavutil/macros.h" |
30 | | #include "mathops.h" |
31 | | #include "lsp.h" |
32 | | #if ARCH_MIPS |
33 | | #include "libavcodec/mips/lsp_mips.h" |
34 | | #endif /* ARCH_MIPS */ |
35 | | #include "libavutil/avassert.h" |
36 | | |
37 | | void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order) |
38 | 929k | { |
39 | 929k | int i, j; |
40 | | |
41 | | /* sort lsfq in ascending order. float bubble algorithm, |
42 | | O(n) if data already sorted, O(n^2) - otherwise */ |
43 | 9.29M | for(i=0; i<lp_order-1; i++) |
44 | 8.37M | for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--) |
45 | 6.70k | FFSWAP(int16_t, lsfq[j], lsfq[j+1]); |
46 | | |
47 | 10.2M | for(i=0; i<lp_order; i++) |
48 | 9.29M | { |
49 | 9.29M | lsfq[i] = FFMAX(lsfq[i], lsfq_min); |
50 | 9.29M | lsfq_min = lsfq[i] + lsfq_min_distance; |
51 | 9.29M | } |
52 | 929k | lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ? |
53 | 929k | } |
54 | | |
55 | | void ff_set_min_dist_lsf(float *lsf, double min_spacing, int size) |
56 | 2.41M | { |
57 | 2.41M | int i; |
58 | 2.41M | float prev = 0.0; |
59 | 31.6M | for (i = 0; i < size; i++) |
60 | 29.2M | prev = lsf[i] = FFMAX(lsf[i], prev + min_spacing); |
61 | 2.41M | } |
62 | | |
63 | | |
64 | | /* Cosine table: base_cos[i] = (1 << 15) * cos(i * PI / 64) */ |
65 | | static const int16_t tab_cos[65] = |
66 | | { |
67 | | 32767, 32738, 32617, 32421, 32145, 31793, 31364, 30860, |
68 | | 30280, 29629, 28905, 28113, 27252, 26326, 25336, 24285, |
69 | | 23176, 22011, 20793, 19525, 18210, 16851, 15451, 14014, |
70 | | 12543, 11043, 9515, 7965, 6395, 4810, 3214, 1609, |
71 | | 1, -1607, -3211, -4808, -6393, -7962, -9513, -11040, |
72 | | -12541, -14012, -15449, -16848, -18207, -19523, -20791, -22009, |
73 | | -23174, -24283, -25334, -26324, -27250, -28111, -28904, -29627, |
74 | | -30279, -30858, -31363, -31792, -32144, -32419, -32616, -32736, -32768, |
75 | | }; |
76 | | |
77 | | static int16_t ff_cos(uint16_t arg) |
78 | 11.2M | { |
79 | 11.2M | uint8_t offset= arg; |
80 | 11.2M | uint8_t ind = arg >> 8; |
81 | | |
82 | 11.2M | av_assert2(arg <= 0x3fff); |
83 | | |
84 | 11.2M | return tab_cos[ind] + (offset * (tab_cos[ind+1] - tab_cos[ind]) >> 8); |
85 | 11.2M | } |
86 | | |
87 | | void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order) |
88 | 1.12M | { |
89 | 1.12M | int i; |
90 | | |
91 | | /* Convert LSF to LSP, lsp=cos(lsf) */ |
92 | 12.3M | for(i=0; i<lp_order; i++) |
93 | | // 20861 = 2.0 / PI in (0.15) |
94 | 11.2M | lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14) |
95 | 1.12M | } |
96 | | |
97 | | void ff_acelp_lsf2lspd(double *lsp, const float *lsf, int lp_order) |
98 | 2.54M | { |
99 | 2.54M | int i; |
100 | | |
101 | 33.4M | for(i = 0; i < lp_order; i++) |
102 | 30.9M | lsp[i] = cos(2.0 * M_PI * lsf[i]); |
103 | 2.54M | } |
104 | | |
105 | | /** |
106 | | * @brief decodes polynomial coefficients from LSP |
107 | | * @param[out] f decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff) |
108 | | * @param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff) |
109 | | */ |
110 | | static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order) |
111 | 4.48M | { |
112 | 4.48M | int i, j; |
113 | | |
114 | 4.48M | f[0] = 0x400000; // 1.0 in (3.22) |
115 | 4.48M | f[1] = -lsp[0] * 256; // *2 and (0.15) -> (3.22) |
116 | | |
117 | 22.4M | for(i=2; i<=lp_half_order; i++) |
118 | 17.9M | { |
119 | 17.9M | f[i] = f[i-2]; |
120 | 62.7M | for(j=i; j>1; j--) |
121 | 44.8M | f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2]; |
122 | | |
123 | 17.9M | f[1] -= lsp[2*i-2] * 256; |
124 | 17.9M | } |
125 | 4.48M | } |
126 | | |
127 | | #ifndef lsp2polyf |
128 | | /** |
129 | | * Compute the Pa / (1 + z(-1)) or Qa / (1 - z(-1)) coefficients |
130 | | * needed for LSP to LPC conversion. |
131 | | * We only need to calculate the 6 first elements of the polynomial. |
132 | | * |
133 | | * @param lsp line spectral pairs in cosine domain |
134 | | * @param[out] f polynomial input/output as a vector |
135 | | * |
136 | | * TIA/EIA/IS-733 2.4.3.3.5-1/2 |
137 | | */ |
138 | | static void lsp2polyf(const double *lsp, double *f, int lp_half_order) |
139 | 30.2M | { |
140 | 30.2M | f[0] = 1.0; |
141 | 30.2M | f[1] = -2 * lsp[0]; |
142 | 30.2M | lsp -= 2; |
143 | 169M | for (int i = 2; i <= lp_half_order; i++) { |
144 | 139M | double val = -2 * lsp[2*i]; |
145 | 139M | f[i] = val * f[i-1] + 2*f[i-2]; |
146 | 419M | for (int j = i-1; j > 1; j--) |
147 | 279M | f[j] += f[j-1] * val + f[j-2]; |
148 | 139M | f[1] += val; |
149 | 139M | } |
150 | 30.2M | } |
151 | | #endif /* lsp2polyf */ |
152 | | |
153 | | /** |
154 | | * @brief LSP to LP conversion (3.2.6 of G.729) |
155 | | * @param[out] lp decoded LP coefficients (-0x8000 <= (3.12) < 0x8000) |
156 | | * @param lsp LSP coefficients (-0x8000 <= (0.15) < 0x8000) |
157 | | * @param lp_half_order LP filter order, divided by 2 |
158 | | */ |
159 | | static void acelp_lsp2lpc(int16_t lp[], const int16_t lsp[], int lp_half_order) |
160 | 2.24M | { |
161 | 2.24M | int i; |
162 | 2.24M | int f1[MAX_LP_HALF_ORDER+1]; // (3.22) |
163 | 2.24M | int f2[MAX_LP_HALF_ORDER+1]; // (3.22) |
164 | | |
165 | 2.24M | lsp2poly(f1, lsp , lp_half_order); |
166 | 2.24M | lsp2poly(f2, lsp+1, lp_half_order); |
167 | | |
168 | | /* 3.2.6 of G.729, Equations 25 and 26*/ |
169 | 2.24M | lp[0] = 4096; |
170 | 13.4M | for(i=1; i<lp_half_order+1; i++) |
171 | 11.2M | { |
172 | 11.2M | int ff1 = f1[i] + f1[i-1]; // (3.22) |
173 | 11.2M | int ff2 = f2[i] - f2[i-1]; // (3.22) |
174 | | |
175 | 11.2M | ff1 += 1 << 10; // for rounding |
176 | 11.2M | lp[i] = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12) |
177 | 11.2M | lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12) |
178 | 11.2M | } |
179 | 2.24M | } |
180 | | |
181 | | void ff_amrwb_lsp2lpc(const double *lsp, float *lp, int lp_order) |
182 | 1.84M | { |
183 | 1.84M | int lp_half_order = lp_order >> 1; |
184 | 1.84M | double buf[MAX_LP_HALF_ORDER + 1]; |
185 | 1.84M | double pa[MAX_LP_HALF_ORDER + 1]; |
186 | 1.84M | double *qa = buf + 1; |
187 | 1.84M | int i,j; |
188 | | |
189 | 1.84M | qa[-1] = 0.0; |
190 | | |
191 | 1.84M | lsp2polyf(lsp , pa, lp_half_order ); |
192 | 1.84M | lsp2polyf(lsp + 1, qa, lp_half_order - 1); |
193 | | |
194 | 13.3M | for (i = 1, j = lp_order - 1; i < lp_half_order; i++, j--) { |
195 | 11.4M | double paf = pa[i] * (1 + lsp[lp_order - 1]); |
196 | 11.4M | double qaf = (qa[i] - qa[i-2]) * (1 - lsp[lp_order - 1]); |
197 | 11.4M | lp[i-1] = (paf + qaf) * 0.5; |
198 | 11.4M | lp[j-1] = (paf - qaf) * 0.5; |
199 | 11.4M | } |
200 | | |
201 | 1.84M | lp[lp_half_order - 1] = (1.0 + lsp[lp_order - 1]) * |
202 | 1.84M | pa[lp_half_order] * 0.5; |
203 | | |
204 | 1.84M | lp[lp_order - 1] = lsp[lp_order - 1]; |
205 | 1.84M | } |
206 | | |
207 | | void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order) |
208 | 1.12M | { |
209 | 1.12M | int16_t lsp_1st[MAX_LP_ORDER]; // (0.15) |
210 | 1.12M | int i; |
211 | | |
212 | | /* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/ |
213 | 12.3M | for(i=0; i<lp_order; i++) |
214 | | #ifdef G729_BITEXACT |
215 | | lsp_1st[i] = (lsp_2nd[i] >> 1) + (lsp_prev[i] >> 1); |
216 | | #else |
217 | 11.2M | lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1; |
218 | 1.12M | #endif |
219 | | |
220 | 1.12M | acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1); |
221 | | |
222 | | /* LSP values for second subframe (3.2.5 of G.729)*/ |
223 | 1.12M | acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1); |
224 | 1.12M | } |
225 | | |
226 | | void ff_acelp_lspd2lpc(const double *lsp, float *lpc, int lp_half_order) |
227 | 13.2M | { |
228 | 13.2M | double pa[MAX_LP_HALF_ORDER+1], qa[MAX_LP_HALF_ORDER+1]; |
229 | 13.2M | float *lpc2 = lpc + (lp_half_order << 1) - 1; |
230 | | |
231 | 13.2M | av_assert2(lp_half_order <= MAX_LP_HALF_ORDER); |
232 | | |
233 | 13.2M | lsp2polyf(lsp, pa, lp_half_order); |
234 | 13.2M | lsp2polyf(lsp + 1, qa, lp_half_order); |
235 | | |
236 | 85.7M | while (lp_half_order--) { |
237 | 72.5M | double paf = pa[lp_half_order+1] + pa[lp_half_order]; |
238 | 72.5M | double qaf = qa[lp_half_order+1] - qa[lp_half_order]; |
239 | | |
240 | 72.5M | lpc [ lp_half_order] = 0.5*(paf+qaf); |
241 | 72.5M | lpc2[-lp_half_order] = 0.5*(paf-qaf); |
242 | 72.5M | } |
243 | 13.2M | } |
244 | | |
245 | | void ff_sort_nearly_sorted_floats(float *vals, int len) |
246 | 758k | { |
247 | 758k | int i,j; |
248 | | |
249 | 9.92M | for (i = 0; i < len - 1; i++) |
250 | 9.20M | for (j = i; j >= 0 && vals[j] > vals[j+1]; j--) |
251 | 35.5k | FFSWAP(float, vals[j], vals[j+1]); |
252 | 758k | } |