Coverage Report

Created: 2025-08-28 07:12

/src/ffmpeg/libavcodec/opus/enc_psy.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Opus encoder
3
 * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
#include <float.h>
23
24
#include "libavutil/mem.h"
25
#include "enc_psy.h"
26
#include "celt.h"
27
#include "pvq.h"
28
#include "tab.h"
29
#include "libavfilter/window_func.h"
30
31
static float pvq_band_cost(CeltPVQ *pvq, CeltFrame *f, OpusRangeCoder *rc, int band,
32
                           float *bits, float lambda)
33
0
{
34
0
    int i, b = 0;
35
0
    uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
36
0
    const int band_size = ff_celt_freq_range[band] << f->size;
37
0
    float buf[176 * 2], lowband_scratch[176], norm1[176], norm2[176];
38
0
    float dist, cost, err_x = 0.0f, err_y = 0.0f;
39
0
    float *X = buf;
40
0
    float *X_orig = f->block[0].coeffs + (ff_celt_freq_bands[band] << f->size);
41
0
    float *Y = (f->channels == 2) ? &buf[176] : NULL;
42
0
    float *Y_orig = f->block[1].coeffs + (ff_celt_freq_bands[band] << f->size);
43
0
    OPUS_RC_CHECKPOINT_SPAWN(rc);
44
45
0
    memcpy(X, X_orig, band_size*sizeof(float));
46
0
    if (Y)
47
0
        memcpy(Y, Y_orig, band_size*sizeof(float));
48
49
0
    f->remaining2 = ((f->framebits << 3) - f->anticollapse_needed) - opus_rc_tell_frac(rc) - 1;
50
0
    if (band <= f->coded_bands - 1) {
51
0
        int curr_balance = f->remaining / FFMIN(3, f->coded_bands - band);
52
0
        b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[band] + curr_balance), 14);
53
0
    }
54
55
0
    if (f->dual_stereo) {
56
0
        pvq->quant_band(pvq, f, rc, band, X, NULL, band_size, b / 2, f->blocks, NULL,
57
0
                        f->size, norm1, 0, 1.0f, lowband_scratch, cm[0]);
58
59
0
        pvq->quant_band(pvq, f, rc, band, Y, NULL, band_size, b / 2, f->blocks, NULL,
60
0
                        f->size, norm2, 0, 1.0f, lowband_scratch, cm[1]);
61
0
    } else {
62
0
        pvq->quant_band(pvq, f, rc, band, X, Y, band_size, b, f->blocks, NULL, f->size,
63
0
                        norm1, 0, 1.0f, lowband_scratch, cm[0] | cm[1]);
64
0
    }
65
66
0
    for (i = 0; i < band_size; i++) {
67
0
        err_x += (X[i] - X_orig[i])*(X[i] - X_orig[i]);
68
0
        if (Y)
69
0
            err_y += (Y[i] - Y_orig[i])*(Y[i] - Y_orig[i]);
70
0
    }
71
72
0
    dist = sqrtf(err_x) + sqrtf(err_y);
73
0
    cost = OPUS_RC_CHECKPOINT_BITS(rc)/8.0f;
74
0
    *bits += cost;
75
76
0
    OPUS_RC_CHECKPOINT_ROLLBACK(rc);
77
78
0
    return lambda*dist*cost;
79
0
}
80
81
/* Populate metrics without taking into consideration neighbouring steps */
82
static void step_collect_psy_metrics(OpusPsyContext *s, int index)
83
0
{
84
0
    int silence = 0, ch, i, j;
85
0
    OpusPsyStep *st = s->steps[index];
86
87
0
    st->index = index;
88
89
0
    for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) {
90
0
        const int lap_size = (1 << s->bsize_analysis);
91
0
        for (i = 1; i <= FFMIN(lap_size, index); i++) {
92
0
            const int offset = i*120;
93
0
            AVFrame *cur = ff_bufqueue_peek(s->bufqueue, index - i);
94
0
            memcpy(&s->scratch[offset], cur->extended_data[ch], cur->nb_samples*sizeof(float));
95
0
        }
96
0
        for (i = 0; i < lap_size; i++) {
97
0
            const int offset = i*120 + lap_size;
98
0
            AVFrame *cur = ff_bufqueue_peek(s->bufqueue, index + i);
99
0
            memcpy(&s->scratch[offset], cur->extended_data[ch], cur->nb_samples*sizeof(float));
100
0
        }
101
102
0
        s->dsp->vector_fmul(s->scratch, s->scratch, s->window[s->bsize_analysis],
103
0
                            (OPUS_BLOCK_SIZE(s->bsize_analysis) << 1));
104
105
0
        s->mdct_fn[s->bsize_analysis](s->mdct[s->bsize_analysis], st->coeffs[ch],
106
0
                                      s->scratch, sizeof(float));
107
108
0
        for (i = 0; i < CELT_MAX_BANDS; i++)
109
0
            st->bands[ch][i] = &st->coeffs[ch][ff_celt_freq_bands[i] << s->bsize_analysis];
110
0
    }
111
112
0
    for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) {
113
0
        for (i = 0; i < CELT_MAX_BANDS; i++) {
114
0
            float avg_c_s, energy = 0.0f, dist_dev = 0.0f;
115
0
            const int range = ff_celt_freq_range[i] << s->bsize_analysis;
116
0
            const float *coeffs = st->bands[ch][i];
117
0
            for (j = 0; j < range; j++)
118
0
                energy += coeffs[j]*coeffs[j];
119
120
0
            st->energy[ch][i] += sqrtf(energy);
121
0
            silence |= !!st->energy[ch][i];
122
0
            avg_c_s = energy / range;
123
124
0
            for (j = 0; j < range; j++) {
125
0
                const float c_s = coeffs[j]*coeffs[j];
126
0
                dist_dev += (avg_c_s - c_s)*(avg_c_s - c_s);
127
0
            }
128
129
0
            st->tone[ch][i] += sqrtf(dist_dev);
130
0
        }
131
0
    }
132
133
0
    st->silence = !silence;
134
135
0
    if (s->avctx->ch_layout.nb_channels > 1) {
136
0
        for (i = 0; i < CELT_MAX_BANDS; i++) {
137
0
            float incompat = 0.0f;
138
0
            const float *coeffs1 = st->bands[0][i];
139
0
            const float *coeffs2 = st->bands[1][i];
140
0
            const int range = ff_celt_freq_range[i] << s->bsize_analysis;
141
0
            for (j = 0; j < range; j++)
142
0
                incompat += (coeffs1[j] - coeffs2[j])*(coeffs1[j] - coeffs2[j]);
143
0
            st->stereo[i] = sqrtf(incompat);
144
0
        }
145
0
    }
146
147
0
    for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) {
148
0
        for (i = 0; i < CELT_MAX_BANDS; i++) {
149
0
            OpusBandExcitation *ex = &s->ex[ch][i];
150
0
            float bp_e = bessel_filter(&s->bfilter_lo[ch][i], st->energy[ch][i]);
151
0
            bp_e = bessel_filter(&s->bfilter_hi[ch][i], bp_e);
152
0
            bp_e *= bp_e;
153
0
            if (bp_e > ex->excitation) {
154
0
                st->change_amp[ch][i] = bp_e - ex->excitation;
155
0
                st->total_change += st->change_amp[ch][i];
156
0
                ex->excitation = ex->excitation_init = bp_e;
157
0
                ex->excitation_dist = 0.0f;
158
0
            }
159
0
            if (ex->excitation > 0.0f) {
160
0
                ex->excitation -= av_clipf((1/expf(ex->excitation_dist)), ex->excitation_init/20, ex->excitation_init/1.09);
161
0
                ex->excitation = FFMAX(ex->excitation, 0.0f);
162
0
                ex->excitation_dist += 1.0f;
163
0
            }
164
0
        }
165
0
    }
166
0
}
167
168
static void search_for_change_points(OpusPsyContext *s, float tgt_change,
169
                                     int offset_s, int offset_e, int resolution,
170
                                     int level)
171
0
{
172
0
    int i;
173
0
    float c_change = 0.0f;
174
0
    if ((offset_e - offset_s) <= resolution)
175
0
        return;
176
0
    for (i = offset_s; i < offset_e; i++) {
177
0
        c_change += s->steps[i]->total_change;
178
0
        if (c_change > tgt_change)
179
0
            break;
180
0
    }
181
0
    if (i == offset_e)
182
0
        return;
183
0
    search_for_change_points(s, tgt_change / 2.0f, offset_s, i + 0, resolution, level + 1);
184
0
    s->inflection_points[s->inflection_points_count++] = i;
185
0
    search_for_change_points(s, tgt_change / 2.0f, i + 1, offset_e, resolution, level + 1);
186
0
}
187
188
static int flush_silent_frames(OpusPsyContext *s)
189
0
{
190
0
    int fsize, silent_frames;
191
192
0
    for (silent_frames = 0; silent_frames < s->buffered_steps; silent_frames++)
193
0
        if (!s->steps[silent_frames]->silence)
194
0
            break;
195
0
    if (--silent_frames < 0)
196
0
        return 0;
197
198
0
    for (fsize = CELT_BLOCK_960; fsize > CELT_BLOCK_120; fsize--) {
199
0
        if ((1 << fsize) > silent_frames)
200
0
            continue;
201
0
        s->p.frames = FFMIN(silent_frames / (1 << fsize), 48 >> fsize);
202
0
        s->p.framesize = fsize;
203
0
        return 1;
204
0
    }
205
206
0
    return 0;
207
0
}
208
209
/* Main function which decides frame size and frames per current packet */
210
static void psy_output_groups(OpusPsyContext *s)
211
0
{
212
0
    int max_delay_samples = (s->options->max_delay_ms*s->avctx->sample_rate)/1000;
213
0
    int max_bsize = FFMIN(OPUS_SAMPLES_TO_BLOCK_SIZE(max_delay_samples), CELT_BLOCK_960);
214
215
    /* These don't change for now */
216
0
    s->p.mode      = OPUS_MODE_CELT;
217
0
    s->p.bandwidth = OPUS_BANDWIDTH_FULLBAND;
218
219
    /* Flush silent frames ASAP */
220
0
    if (s->steps[0]->silence && flush_silent_frames(s))
221
0
        return;
222
223
0
    s->p.framesize = FFMIN(max_bsize, CELT_BLOCK_960);
224
0
    s->p.frames    = 1;
225
0
}
226
227
int ff_opus_psy_process(OpusPsyContext *s, OpusPacketInfo *p)
228
0
{
229
0
    int i;
230
0
    float total_energy_change = 0.0f;
231
232
0
    if (s->buffered_steps < s->max_steps && !s->eof) {
233
0
        const int awin = (1 << s->bsize_analysis);
234
0
        if (++s->steps_to_process >= awin) {
235
0
            step_collect_psy_metrics(s, s->buffered_steps - awin + 1);
236
0
            s->steps_to_process = 0;
237
0
        }
238
0
        if ((++s->buffered_steps) < s->max_steps)
239
0
            return 1;
240
0
    }
241
242
0
    for (i = 0; i < s->buffered_steps; i++)
243
0
        total_energy_change += s->steps[i]->total_change;
244
245
0
    search_for_change_points(s, total_energy_change / 2.0f, 0,
246
0
                             s->buffered_steps, 1, 0);
247
248
0
    psy_output_groups(s);
249
250
0
    p->frames    = s->p.frames;
251
0
    p->framesize = s->p.framesize;
252
0
    p->mode      = s->p.mode;
253
0
    p->bandwidth = s->p.bandwidth;
254
255
0
    return 0;
256
0
}
257
258
void ff_opus_psy_celt_frame_init(OpusPsyContext *s, CeltFrame *f, int index)
259
0
{
260
0
    int i, neighbouring_points = 0, start_offset = 0;
261
0
    int radius = (1 << s->p.framesize), step_offset = radius*index;
262
0
    int silence = 1;
263
264
0
    f->start_band = (s->p.mode == OPUS_MODE_HYBRID) ? 17 : 0;
265
0
    f->end_band   = ff_celt_band_end[s->p.bandwidth];
266
0
    f->channels   = s->avctx->ch_layout.nb_channels;
267
0
    f->size       = s->p.framesize;
268
269
0
    for (i = 0; i < (1 << f->size); i++)
270
0
        silence &= s->steps[index*(1 << f->size) + i]->silence;
271
272
0
    f->silence = silence;
273
0
    if (f->silence) {
274
0
        f->framebits = 0; /* Otherwise the silence flag eats up 16(!) bits */
275
0
        return;
276
0
    }
277
278
0
    for (i = 0; i < s->inflection_points_count; i++) {
279
0
        if (s->inflection_points[i] >= step_offset) {
280
0
            start_offset = i;
281
0
            break;
282
0
        }
283
0
    }
284
285
0
    for (i = start_offset; i < FFMIN(radius, s->inflection_points_count - start_offset); i++) {
286
0
        if (s->inflection_points[i] < (step_offset + radius)) {
287
0
            neighbouring_points++;
288
0
        }
289
0
    }
290
291
    /* Transient flagging */
292
0
    f->transient = neighbouring_points > 0;
293
0
    f->blocks = f->transient ? OPUS_BLOCK_SIZE(s->p.framesize)/CELT_OVERLAP : 1;
294
295
    /* Some sane defaults */
296
0
    f->pfilter   = 0;
297
0
    f->pf_gain   = 0.5f;
298
0
    f->pf_octave = 2;
299
0
    f->pf_period = 1;
300
0
    f->pf_tapset = 2;
301
302
    /* More sane defaults */
303
0
    f->tf_select = 0;
304
0
    f->anticollapse = 1;
305
0
    f->alloc_trim = 5;
306
0
    f->skip_band_floor = f->end_band;
307
0
    f->intensity_stereo = f->end_band;
308
0
    f->dual_stereo = 0;
309
0
    f->spread = CELT_SPREAD_NORMAL;
310
0
    memset(f->tf_change, 0, sizeof(int)*CELT_MAX_BANDS);
311
0
    memset(f->alloc_boost, 0, sizeof(int)*CELT_MAX_BANDS);
312
0
}
313
314
static void celt_gauge_psy_weight(OpusPsyContext *s, OpusPsyStep **start,
315
                                  CeltFrame *f_out)
316
0
{
317
0
    int i, f, ch;
318
0
    int frame_size = OPUS_BLOCK_SIZE(s->p.framesize);
319
0
    float rate, frame_bits = 0;
320
321
    /* Used for the global ROTATE flag */
322
0
    float tonal = 0.0f;
323
324
    /* Pseudo-weights */
325
0
    float band_score[CELT_MAX_BANDS] = { 0 };
326
0
    float max_score = 1.0f;
327
328
    /* Pass one - one loop around each band, computing unquant stuff */
329
0
    for (i = 0; i < CELT_MAX_BANDS; i++) {
330
0
        float weight = 0.0f;
331
0
        float tonal_contrib = 0.0f;
332
0
        for (f = 0; f < (1 << s->p.framesize); f++) {
333
0
            weight = start[f]->stereo[i];
334
0
            for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) {
335
0
                weight += start[f]->change_amp[ch][i] + start[f]->tone[ch][i] + start[f]->energy[ch][i];
336
0
                tonal_contrib += start[f]->tone[ch][i];
337
0
            }
338
0
        }
339
0
        tonal += tonal_contrib;
340
0
        band_score[i] = weight;
341
0
    }
342
343
0
    tonal /= (float)CELT_MAX_BANDS;
344
345
0
    for (i = 0; i < CELT_MAX_BANDS; i++) {
346
0
        if (band_score[i] > max_score)
347
0
            max_score = band_score[i];
348
0
    }
349
350
0
    for (i = 0; i < CELT_MAX_BANDS; i++) {
351
0
        f_out->alloc_boost[i] = (int)((band_score[i]/max_score)*3.0f);
352
0
        frame_bits += band_score[i]*8.0f;
353
0
    }
354
355
0
    tonal /= 1333136.0f;
356
0
    f_out->spread = av_clip_uintp2(lrintf(tonal), 2);
357
358
0
    rate = ((float)s->avctx->bit_rate) + frame_bits*frame_size*16;
359
0
    rate *= s->lambda;
360
0
    rate /= s->avctx->sample_rate/frame_size;
361
362
0
    f_out->framebits = lrintf(rate);
363
0
    f_out->framebits = FFMIN(f_out->framebits, OPUS_MAX_FRAME_SIZE * 8);
364
0
    f_out->framebits = FFALIGN(f_out->framebits, 8);
365
0
}
366
367
static int bands_dist(OpusPsyContext *s, CeltFrame *f, float *total_dist)
368
0
{
369
0
    int i, tdist = 0.0f;
370
0
    OpusRangeCoder dump;
371
372
0
    ff_opus_rc_enc_init(&dump);
373
0
    ff_celt_bitalloc(f, &dump, 1);
374
375
0
    for (i = 0; i < CELT_MAX_BANDS; i++) {
376
0
        float bits = 0.0f;
377
0
        float dist = pvq_band_cost(f->pvq, f, &dump, i, &bits, s->lambda);
378
0
        tdist += dist;
379
0
    }
380
381
0
    *total_dist = tdist;
382
383
0
    return 0;
384
0
}
385
386
static void celt_search_for_dual_stereo(OpusPsyContext *s, CeltFrame *f)
387
0
{
388
0
    float td1, td2;
389
0
    f->dual_stereo = 0;
390
391
0
    if (s->avctx->ch_layout.nb_channels < 2)
392
0
        return;
393
394
0
    bands_dist(s, f, &td1);
395
0
    f->dual_stereo = 1;
396
0
    bands_dist(s, f, &td2);
397
398
0
    f->dual_stereo = td2 < td1;
399
0
    s->dual_stereo_used += td2 < td1;
400
0
}
401
402
static void celt_search_for_intensity(OpusPsyContext *s, CeltFrame *f)
403
0
{
404
0
    int i, best_band = CELT_MAX_BANDS - 1;
405
0
    float dist, best_dist = FLT_MAX;
406
    /* TODO: fix, make some heuristic up here using the lambda value */
407
0
    float end_band = 0;
408
409
0
    if (s->avctx->ch_layout.nb_channels < 2)
410
0
        return;
411
412
0
    for (i = f->end_band; i >= end_band; i--) {
413
0
        f->intensity_stereo = i;
414
0
        bands_dist(s, f, &dist);
415
0
        if (best_dist > dist) {
416
0
            best_dist = dist;
417
0
            best_band = i;
418
0
        }
419
0
    }
420
421
0
    f->intensity_stereo = best_band;
422
0
    s->avg_is_band = (s->avg_is_band + f->intensity_stereo)/2.0f;
423
0
}
424
425
static int celt_search_for_tf(OpusPsyContext *s, OpusPsyStep **start, CeltFrame *f)
426
0
{
427
0
    int i, j, k, cway, config[2][CELT_MAX_BANDS] = { { 0 } };
428
0
    float score[2] = { 0 };
429
430
0
    for (cway = 0; cway < 2; cway++) {
431
0
        int mag[2];
432
0
        int base = f->transient ? 120 : 960;
433
434
0
        for (i = 0; i < 2; i++) {
435
0
            int c = ff_celt_tf_select[f->size][f->transient][cway][i];
436
0
            mag[i] = c < 0 ? base >> FFABS(c) : base << FFABS(c);
437
0
        }
438
439
0
        for (i = 0; i < CELT_MAX_BANDS; i++) {
440
0
            float iscore0 = 0.0f;
441
0
            float iscore1 = 0.0f;
442
0
            for (j = 0; j < (1 << f->size); j++) {
443
0
                for (k = 0; k < s->avctx->ch_layout.nb_channels; k++) {
444
0
                    iscore0 += start[j]->tone[k][i]*start[j]->change_amp[k][i]/mag[0];
445
0
                    iscore1 += start[j]->tone[k][i]*start[j]->change_amp[k][i]/mag[1];
446
0
                }
447
0
            }
448
0
            config[cway][i] = FFABS(iscore0 - 1.0f) < FFABS(iscore1 - 1.0f);
449
0
            score[cway] += config[cway][i] ? iscore1 : iscore0;
450
0
        }
451
0
    }
452
453
0
    f->tf_select = score[0] < score[1];
454
0
    memcpy(f->tf_change, config[f->tf_select], sizeof(int)*CELT_MAX_BANDS);
455
456
0
    return 0;
457
0
}
458
459
int ff_opus_psy_celt_frame_process(OpusPsyContext *s, CeltFrame *f, int index)
460
0
{
461
0
    int start_transient_flag = f->transient;
462
0
    OpusPsyStep **start = &s->steps[index * (1 << s->p.framesize)];
463
464
0
    if (f->silence)
465
0
        return 0;
466
467
0
    celt_gauge_psy_weight(s, start, f);
468
0
    celt_search_for_intensity(s, f);
469
0
    celt_search_for_dual_stereo(s, f);
470
0
    celt_search_for_tf(s, start, f);
471
472
0
    if (f->transient != start_transient_flag) {
473
0
        f->blocks = f->transient ? OPUS_BLOCK_SIZE(s->p.framesize)/CELT_OVERLAP : 1;
474
0
        return 1;
475
0
    }
476
477
0
    return 0;
478
0
}
479
480
void ff_opus_psy_postencode_update(OpusPsyContext *s, CeltFrame *f)
481
0
{
482
0
    int i, frame_size = OPUS_BLOCK_SIZE(s->p.framesize);
483
0
    int steps_out = s->p.frames*(frame_size/120);
484
0
    void *tmp[FF_BUFQUEUE_SIZE];
485
0
    float ideal_fbits;
486
487
0
    for (i = 0; i < steps_out; i++)
488
0
        memset(s->steps[i], 0, sizeof(OpusPsyStep));
489
490
0
    for (i = 0; i < s->max_steps; i++)
491
0
        tmp[i] = s->steps[i];
492
493
0
    for (i = 0; i < s->max_steps; i++) {
494
0
        const int i_new = i - steps_out;
495
0
        s->steps[i_new < 0 ? s->max_steps + i_new : i_new] = tmp[i];
496
0
    }
497
498
0
    for (i = steps_out; i < s->buffered_steps; i++)
499
0
        s->steps[i]->index -= steps_out;
500
501
0
    ideal_fbits = s->avctx->bit_rate/(s->avctx->sample_rate/frame_size);
502
503
0
    for (i = 0; i < s->p.frames; i++) {
504
0
        s->avg_is_band += f[i].intensity_stereo;
505
0
        s->lambda *= ideal_fbits / f[i].framebits;
506
0
    }
507
508
0
    s->avg_is_band /= (s->p.frames + 1);
509
510
0
    s->steps_to_process = 0;
511
0
    s->buffered_steps -= steps_out;
512
0
    s->total_packets_out += s->p.frames;
513
0
    s->inflection_points_count = 0;
514
0
}
515
516
av_cold int ff_opus_psy_init(OpusPsyContext *s, AVCodecContext *avctx,
517
                             struct FFBufQueue *bufqueue, OpusEncOptions *options)
518
0
{
519
0
    int i, ch, ret;
520
521
0
    s->lambda = 1.0f;
522
0
    s->options = options;
523
0
    s->avctx = avctx;
524
0
    s->bufqueue = bufqueue;
525
0
    s->max_steps = ceilf(s->options->max_delay_ms/2.5f);
526
0
    s->bsize_analysis = CELT_BLOCK_960;
527
0
    s->avg_is_band = CELT_MAX_BANDS - 1;
528
0
    s->inflection_points_count = 0;
529
530
0
    s->inflection_points = av_mallocz(sizeof(*s->inflection_points)*s->max_steps);
531
0
    if (!s->inflection_points) {
532
0
        ret = AVERROR(ENOMEM);
533
0
        goto fail;
534
0
    }
535
536
0
    s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
537
0
    if (!s->dsp) {
538
0
        ret = AVERROR(ENOMEM);
539
0
        goto fail;
540
0
    }
541
542
0
    for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) {
543
0
        for (i = 0; i < CELT_MAX_BANDS; i++) {
544
0
            bessel_init(&s->bfilter_hi[ch][i], 1.0f, 19.0f, 100.0f, 1);
545
0
            bessel_init(&s->bfilter_lo[ch][i], 1.0f, 20.0f, 100.0f, 0);
546
0
        }
547
0
    }
548
549
0
    for (i = 0; i < s->max_steps; i++) {
550
0
        s->steps[i] = av_mallocz(sizeof(OpusPsyStep));
551
0
        if (!s->steps[i]) {
552
0
            ret = AVERROR(ENOMEM);
553
0
            goto fail;
554
0
        }
555
0
    }
556
557
0
    for (i = 0; i < CELT_BLOCK_NB; i++) {
558
0
        float tmp;
559
0
        const int len = OPUS_BLOCK_SIZE(i);
560
0
        const float scale = 68 << (CELT_BLOCK_NB - 1 - i);
561
0
        s->window[i] = av_malloc(2*len*sizeof(float));
562
0
        if (!s->window[i]) {
563
0
            ret = AVERROR(ENOMEM);
564
0
            goto fail;
565
0
        }
566
0
        generate_window_func(s->window[i], 2*len, WFUNC_SINE, &tmp);
567
0
        ret = av_tx_init(&s->mdct[i], &s->mdct_fn[i], AV_TX_FLOAT_MDCT,
568
0
                         0, 15 << (i + 3), &scale, 0);
569
0
        if (ret < 0)
570
0
            goto fail;
571
0
    }
572
573
0
    return 0;
574
575
0
fail:
576
0
    av_freep(&s->inflection_points);
577
0
    av_freep(&s->dsp);
578
579
0
    for (i = 0; i < CELT_BLOCK_NB; i++) {
580
0
        av_tx_uninit(&s->mdct[i]);
581
0
        av_freep(&s->window[i]);
582
0
    }
583
584
0
    for (i = 0; i < s->max_steps; i++)
585
0
        av_freep(&s->steps[i]);
586
587
0
    return ret;
588
0
}
589
590
void ff_opus_psy_signal_eof(OpusPsyContext *s)
591
0
{
592
0
    s->eof = 1;
593
0
}
594
595
av_cold int ff_opus_psy_end(OpusPsyContext *s)
596
0
{
597
0
    int i;
598
599
0
    av_freep(&s->inflection_points);
600
0
    av_freep(&s->dsp);
601
602
0
    for (i = 0; i < CELT_BLOCK_NB; i++) {
603
0
        av_tx_uninit(&s->mdct[i]);
604
0
        av_freep(&s->window[i]);
605
0
    }
606
607
0
    for (i = 0; i < s->max_steps; i++)
608
0
        av_freep(&s->steps[i]);
609
610
0
    av_log(s->avctx, AV_LOG_INFO, "Average Intensity Stereo band: %0.1f\n", s->avg_is_band);
611
0
    av_log(s->avctx, AV_LOG_INFO, "Dual Stereo used: %0.2f%%\n", ((float)s->dual_stereo_used/s->total_packets_out)*100.0f);
612
613
0
    return 0;
614
0
}