/src/ffmpeg/libavcodec/sipr.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * SIPR / ACELP.NET decoder |
3 | | * |
4 | | * Copyright (c) 2008 Vladimir Voroshilov |
5 | | * Copyright (c) 2009 Vitor Sessak |
6 | | * |
7 | | * This file is part of FFmpeg. |
8 | | * |
9 | | * FFmpeg is free software; you can redistribute it and/or |
10 | | * modify it under the terms of the GNU Lesser General Public |
11 | | * License as published by the Free Software Foundation; either |
12 | | * version 2.1 of the License, or (at your option) any later version. |
13 | | * |
14 | | * FFmpeg is distributed in the hope that it will be useful, |
15 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
17 | | * Lesser General Public License for more details. |
18 | | * |
19 | | * You should have received a copy of the GNU Lesser General Public |
20 | | * License along with FFmpeg; if not, write to the Free Software |
21 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
22 | | */ |
23 | | |
24 | | #include <math.h> |
25 | | #include <stdint.h> |
26 | | #include <string.h> |
27 | | |
28 | | #include "libavutil/channel_layout.h" |
29 | | #include "libavutil/float_dsp.h" |
30 | | #include "libavutil/mathematics.h" |
31 | | |
32 | | #define BITSTREAM_READER_LE |
33 | | #include "avcodec.h" |
34 | | #include "codec_internal.h" |
35 | | #include "decode.h" |
36 | | #include "get_bits.h" |
37 | | #include "lsp.h" |
38 | | #include "acelp_vectors.h" |
39 | | #include "acelp_pitch_delay.h" |
40 | | #include "acelp_filters.h" |
41 | | #include "celp_filters.h" |
42 | | |
43 | | #define MAX_SUBFRAME_COUNT 5 |
44 | | |
45 | | #include "sipr.h" |
46 | | #include "siprdata.h" |
47 | | |
48 | | typedef struct SiprModeParam { |
49 | | const char *mode_name; |
50 | | uint16_t bits_per_frame; |
51 | | uint8_t subframe_count; |
52 | | uint8_t frames_per_packet; |
53 | | float pitch_sharp_factor; |
54 | | |
55 | | /* bitstream parameters */ |
56 | | uint8_t number_of_fc_indexes; |
57 | | uint8_t ma_predictor_bits; ///< size in bits of the switched MA predictor |
58 | | |
59 | | /** size in bits of the i-th stage vector of quantizer */ |
60 | | uint8_t vq_indexes_bits[5]; |
61 | | |
62 | | /** size in bits of the adaptive-codebook index for every subframe */ |
63 | | uint8_t pitch_delay_bits[5]; |
64 | | |
65 | | uint8_t gp_index_bits; |
66 | | uint8_t fc_index_bits[10]; ///< size in bits of the fixed codebook indexes |
67 | | uint8_t gc_index_bits; ///< size in bits of the gain codebook indexes |
68 | | } SiprModeParam; |
69 | | |
70 | | static const SiprModeParam modes[MODE_COUNT] = { |
71 | | [MODE_16k] = { |
72 | | .mode_name = "16k", |
73 | | .bits_per_frame = 160, |
74 | | .subframe_count = SUBFRAME_COUNT_16k, |
75 | | .frames_per_packet = 1, |
76 | | .pitch_sharp_factor = 0.00, |
77 | | |
78 | | .number_of_fc_indexes = 10, |
79 | | .ma_predictor_bits = 1, |
80 | | .vq_indexes_bits = {7, 8, 7, 7, 7}, |
81 | | .pitch_delay_bits = {9, 6}, |
82 | | .gp_index_bits = 4, |
83 | | .fc_index_bits = {4, 5, 4, 5, 4, 5, 4, 5, 4, 5}, |
84 | | .gc_index_bits = 5 |
85 | | }, |
86 | | |
87 | | [MODE_8k5] = { |
88 | | .mode_name = "8k5", |
89 | | .bits_per_frame = 152, |
90 | | .subframe_count = 3, |
91 | | .frames_per_packet = 1, |
92 | | .pitch_sharp_factor = 0.8, |
93 | | |
94 | | .number_of_fc_indexes = 3, |
95 | | .ma_predictor_bits = 0, |
96 | | .vq_indexes_bits = {6, 7, 7, 7, 5}, |
97 | | .pitch_delay_bits = {8, 5, 5}, |
98 | | .gp_index_bits = 0, |
99 | | .fc_index_bits = {9, 9, 9}, |
100 | | .gc_index_bits = 7 |
101 | | }, |
102 | | |
103 | | [MODE_6k5] = { |
104 | | .mode_name = "6k5", |
105 | | .bits_per_frame = 232, |
106 | | .subframe_count = 3, |
107 | | .frames_per_packet = 2, |
108 | | .pitch_sharp_factor = 0.8, |
109 | | |
110 | | .number_of_fc_indexes = 3, |
111 | | .ma_predictor_bits = 0, |
112 | | .vq_indexes_bits = {6, 7, 7, 7, 5}, |
113 | | .pitch_delay_bits = {8, 5, 5}, |
114 | | .gp_index_bits = 0, |
115 | | .fc_index_bits = {5, 5, 5}, |
116 | | .gc_index_bits = 7 |
117 | | }, |
118 | | |
119 | | [MODE_5k0] = { |
120 | | .mode_name = "5k0", |
121 | | .bits_per_frame = 296, |
122 | | .subframe_count = 5, |
123 | | .frames_per_packet = 2, |
124 | | .pitch_sharp_factor = 0.85, |
125 | | |
126 | | .number_of_fc_indexes = 1, |
127 | | .ma_predictor_bits = 0, |
128 | | .vq_indexes_bits = {6, 7, 7, 7, 5}, |
129 | | .pitch_delay_bits = {8, 5, 8, 5, 5}, |
130 | | .gp_index_bits = 0, |
131 | | .fc_index_bits = {10}, |
132 | | .gc_index_bits = 7 |
133 | | } |
134 | | }; |
135 | | |
136 | | const float ff_pow_0_5[] = { |
137 | | 1.0/(1 << 1), 1.0/(1 << 2), 1.0/(1 << 3), 1.0/(1 << 4), |
138 | | 1.0/(1 << 5), 1.0/(1 << 6), 1.0/(1 << 7), 1.0/(1 << 8), |
139 | | 1.0/(1 << 9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12), |
140 | | 1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16) |
141 | | }; |
142 | | |
143 | | static void dequant(float *out, const int *idx, const float * const cbs[]) |
144 | 190k | { |
145 | 190k | int i; |
146 | 190k | int stride = 2; |
147 | 190k | int num_vec = 5; |
148 | | |
149 | 1.14M | for (i = 0; i < num_vec; i++) |
150 | 954k | memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float)); |
151 | | |
152 | 190k | } |
153 | | |
154 | | static void lsf_decode_fp(float *lsfnew, float *lsf_history, |
155 | | const SiprParameters *parm) |
156 | 190k | { |
157 | 190k | int i; |
158 | 190k | float lsf_tmp[LP_FILTER_ORDER]; |
159 | | |
160 | 190k | dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks); |
161 | | |
162 | 2.10M | for (i = 0; i < LP_FILTER_ORDER; i++) |
163 | 1.90M | lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i]; |
164 | | |
165 | 190k | ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1); |
166 | | |
167 | | /* Note that a minimum distance is not enforced between the last value and |
168 | | the previous one, contrary to what is done in ff_acelp_reorder_lsf() */ |
169 | 190k | ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1); |
170 | 190k | lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI); |
171 | | |
172 | 190k | memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history)); |
173 | | |
174 | 1.90M | for (i = 0; i < LP_FILTER_ORDER - 1; i++) |
175 | 1.71M | lsfnew[i] = cos(lsfnew[i]); |
176 | 190k | lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI; |
177 | 190k | } |
178 | | |
179 | | /** Apply pitch lag to the fixed vector (AMR section 6.1.2). */ |
180 | | static void pitch_sharpening(int pitch_lag_int, float beta, |
181 | | float *fixed_vector) |
182 | 777k | { |
183 | 777k | int i; |
184 | | |
185 | 19.9M | for (i = pitch_lag_int; i < SUBFR_SIZE; i++) |
186 | 19.1M | fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int]; |
187 | 777k | } |
188 | | |
189 | | /** |
190 | | * Extract decoding parameters from the input bitstream. |
191 | | * @param parms parameters structure |
192 | | * @param pgb pointer to initialized GetBitContext structure |
193 | | */ |
194 | | static void decode_parameters(SiprParameters* parms, GetBitContext *pgb, |
195 | | const SiprModeParam *p) |
196 | 948k | { |
197 | 948k | int i, j; |
198 | | |
199 | 948k | if (p->ma_predictor_bits) |
200 | 757k | parms->ma_pred_switch = get_bits(pgb, p->ma_predictor_bits); |
201 | | |
202 | 5.69M | for (i = 0; i < 5; i++) |
203 | 4.74M | parms->vq_indexes[i] = get_bits(pgb, p->vq_indexes_bits[i]); |
204 | | |
205 | 3.24M | for (i = 0; i < p->subframe_count; i++) { |
206 | 2.29M | parms->pitch_delay[i] = get_bits(pgb, p->pitch_delay_bits[i]); |
207 | 2.29M | if (p->gp_index_bits) |
208 | 1.51M | parms->gp_index[i] = get_bits(pgb, p->gp_index_bits); |
209 | | |
210 | 18.7M | for (j = 0; j < p->number_of_fc_indexes; j++) |
211 | 16.4M | parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]); |
212 | | |
213 | 2.29M | parms->gc_index[i] = get_bits(pgb, p->gc_index_bits); |
214 | 2.29M | } |
215 | 948k | } |
216 | | |
217 | | static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az, |
218 | | int num_subfr) |
219 | 190k | { |
220 | 190k | double lsfint[LP_FILTER_ORDER]; |
221 | 190k | int i,j; |
222 | 190k | float t, t0 = 1.0 / num_subfr; |
223 | | |
224 | 190k | t = t0 * 0.5; |
225 | 968k | for (i = 0; i < num_subfr; i++) { |
226 | 8.55M | for (j = 0; j < LP_FILTER_ORDER; j++) |
227 | 7.77M | lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j]; |
228 | | |
229 | 777k | ff_amrwb_lsp2lpc(lsfint, Az, LP_FILTER_ORDER); |
230 | 777k | Az += LP_FILTER_ORDER; |
231 | 777k | t += t0; |
232 | 777k | } |
233 | 190k | } |
234 | | |
235 | | /** |
236 | | * Evaluate the adaptive impulse response. |
237 | | */ |
238 | | static void eval_ir(const float *Az, int pitch_lag, float *freq, |
239 | | float pitch_sharp_factor) |
240 | 777k | { |
241 | 777k | float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1]; |
242 | 777k | int i; |
243 | | |
244 | 777k | tmp1[0] = 1.0; |
245 | 8.55M | for (i = 0; i < LP_FILTER_ORDER; i++) { |
246 | 7.77M | tmp1[i+1] = Az[i] * ff_pow_0_55[i]; |
247 | 7.77M | tmp2[i ] = Az[i] * ff_pow_0_7 [i]; |
248 | 7.77M | } |
249 | 777k | memset(tmp1 + 11, 0, 37 * sizeof(float)); |
250 | | |
251 | 777k | ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE, |
252 | 777k | LP_FILTER_ORDER); |
253 | | |
254 | 777k | pitch_sharpening(pitch_lag, pitch_sharp_factor, freq); |
255 | 777k | } |
256 | | |
257 | | /** |
258 | | * Evaluate the convolution of a vector with a sparse vector. |
259 | | */ |
260 | | static void convolute_with_sparse(float *out, const AMRFixed *pulses, |
261 | | const float *shape, int length) |
262 | 777k | { |
263 | 777k | int i, j; |
264 | | |
265 | 777k | memset(out, 0, length*sizeof(float)); |
266 | 3.85M | for (i = 0; i < pulses->n; i++) |
267 | 132M | for (j = pulses->x[i]; j < length; j++) |
268 | 129M | out[j] += pulses->y[i] * shape[j - pulses->x[i]]; |
269 | 777k | } |
270 | | |
271 | | /** |
272 | | * Apply postfilter, very similar to AMR one. |
273 | | */ |
274 | | static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples) |
275 | 511k | { |
276 | 511k | float buf[SUBFR_SIZE + LP_FILTER_ORDER]; |
277 | 511k | float *pole_out = buf + LP_FILTER_ORDER; |
278 | 511k | float lpc_n[LP_FILTER_ORDER]; |
279 | 511k | float lpc_d[LP_FILTER_ORDER]; |
280 | 511k | int i; |
281 | | |
282 | 5.63M | for (i = 0; i < LP_FILTER_ORDER; i++) { |
283 | 5.11M | lpc_d[i] = lpc[i] * ff_pow_0_75[i]; |
284 | 5.11M | lpc_n[i] = lpc[i] * ff_pow_0_5 [i]; |
285 | 5.11M | }; |
286 | | |
287 | 511k | memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem, |
288 | 511k | LP_FILTER_ORDER*sizeof(float)); |
289 | | |
290 | 511k | ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE, |
291 | 511k | LP_FILTER_ORDER); |
292 | | |
293 | 511k | memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER, |
294 | 511k | LP_FILTER_ORDER*sizeof(float)); |
295 | | |
296 | 511k | ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE); |
297 | | |
298 | 511k | memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0, |
299 | 511k | LP_FILTER_ORDER*sizeof(*pole_out)); |
300 | | |
301 | 511k | memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER, |
302 | 511k | LP_FILTER_ORDER*sizeof(*pole_out)); |
303 | | |
304 | 511k | ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE, |
305 | 511k | LP_FILTER_ORDER); |
306 | | |
307 | 511k | } |
308 | | |
309 | | static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses, |
310 | | SiprMode mode, int low_gain) |
311 | 777k | { |
312 | 777k | int i; |
313 | | |
314 | 777k | switch (mode) { |
315 | 5.43k | case MODE_6k5: |
316 | 21.7k | for (i = 0; i < 3; i++) { |
317 | 16.2k | fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i; |
318 | 16.2k | fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1; |
319 | 16.2k | } |
320 | 5.43k | fixed_sparse->n = 3; |
321 | 5.43k | break; |
322 | 260k | case MODE_8k5: |
323 | 1.04M | for (i = 0; i < 3; i++) { |
324 | 781k | fixed_sparse->x[2*i ] = 3 * ((pulses[i] >> 4) & 0xf) + i; |
325 | 781k | fixed_sparse->x[2*i + 1] = 3 * ( pulses[i] & 0xf) + i; |
326 | | |
327 | 781k | fixed_sparse->y[2*i ] = (pulses[i] & 0x100) ? -1.0: 1.0; |
328 | | |
329 | 781k | fixed_sparse->y[2*i + 1] = |
330 | 781k | (fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ? |
331 | 739k | -fixed_sparse->y[2*i ] : fixed_sparse->y[2*i]; |
332 | 781k | } |
333 | | |
334 | 260k | fixed_sparse->n = 6; |
335 | 260k | break; |
336 | 511k | case MODE_5k0: |
337 | 511k | default: |
338 | 511k | if (low_gain) { |
339 | 473k | int offset = (pulses[0] & 0x200) ? 2 : 0; |
340 | 473k | int val = pulses[0]; |
341 | | |
342 | 1.89M | for (i = 0; i < 3; i++) { |
343 | 1.41M | int index = (val & 0x7) * 6 + 4 - i*2; |
344 | | |
345 | 1.41M | fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1; |
346 | 1.41M | fixed_sparse->x[i] = index; |
347 | | |
348 | 1.41M | val >>= 3; |
349 | 1.41M | } |
350 | 473k | fixed_sparse->n = 3; |
351 | 473k | } else { |
352 | 38.7k | int pulse_subset = (pulses[0] >> 8) & 1; |
353 | | |
354 | 38.7k | fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset; |
355 | 38.7k | fixed_sparse->x[1] = ( pulses[0] & 15) * 3 + pulse_subset + 1; |
356 | | |
357 | 38.7k | fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1; |
358 | 38.7k | fixed_sparse->y[1] = -fixed_sparse->y[0]; |
359 | 38.7k | fixed_sparse->n = 2; |
360 | 38.7k | } |
361 | 511k | break; |
362 | 777k | } |
363 | 777k | } |
364 | | |
365 | | static void decode_frame(SiprContext *ctx, SiprParameters *params, |
366 | | float *out_data) |
367 | 190k | { |
368 | 190k | int i, j; |
369 | 190k | int subframe_count = modes[ctx->mode].subframe_count; |
370 | 190k | int frame_size = subframe_count * SUBFR_SIZE; |
371 | 190k | float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT]; |
372 | 190k | float *excitation; |
373 | 190k | float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER]; |
374 | 190k | float lsf_new[LP_FILTER_ORDER]; |
375 | 190k | float *impulse_response = ir_buf + LP_FILTER_ORDER; |
376 | 190k | float *synth = ctx->synth_buf + 16; // 16 instead of LP_FILTER_ORDER for |
377 | | // memory alignment |
378 | 190k | int t0_first = 0; |
379 | 190k | AMRFixed fixed_cb; |
380 | | |
381 | 190k | memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float)); |
382 | 190k | lsf_decode_fp(lsf_new, ctx->lsf_history, params); |
383 | | |
384 | 190k | sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count); |
385 | | |
386 | 190k | memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float)); |
387 | | |
388 | 190k | excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL; |
389 | | |
390 | 968k | for (i = 0; i < subframe_count; i++) { |
391 | 777k | float *pAz = Az + i*LP_FILTER_ORDER; |
392 | 777k | float fixed_vector[SUBFR_SIZE]; |
393 | 777k | int T0,T0_frac; |
394 | 777k | float pitch_gain, gain_code, avg_energy; |
395 | | |
396 | 777k | ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i, |
397 | 777k | ctx->mode == MODE_5k0, 6); |
398 | | |
399 | 777k | if (i == 0 || (i == 2 && ctx->mode == MODE_5k0)) |
400 | 293k | t0_first = T0; |
401 | | |
402 | 777k | ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0), |
403 | 777k | ff_b60_sinc, 6, |
404 | 777k | 2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER, |
405 | 777k | SUBFR_SIZE); |
406 | | |
407 | 777k | decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode, |
408 | 777k | ctx->past_pitch_gain < 0.8); |
409 | | |
410 | 777k | eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor); |
411 | | |
412 | 777k | convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response, |
413 | 777k | SUBFR_SIZE); |
414 | | |
415 | 777k | avg_energy = (0.01 + ff_scalarproduct_float_c(fixed_vector, |
416 | 777k | fixed_vector, |
417 | 777k | SUBFR_SIZE)) / |
418 | 777k | SUBFR_SIZE; |
419 | | |
420 | 777k | ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0]; |
421 | | |
422 | 777k | gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1], |
423 | 777k | avg_energy, ctx->energy_history, |
424 | 777k | 34 - 15.0/(0.05*M_LN10/M_LN2), |
425 | 777k | pred); |
426 | | |
427 | 777k | ff_weighted_vector_sumf(excitation, excitation, fixed_vector, |
428 | 777k | pitch_gain, gain_code, SUBFR_SIZE); |
429 | | |
430 | 777k | pitch_gain *= 0.5 * pitch_gain; |
431 | 777k | pitch_gain = FFMIN(pitch_gain, 0.4); |
432 | | |
433 | 777k | ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain; |
434 | 777k | ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain); |
435 | 777k | gain_code *= ctx->gain_mem; |
436 | | |
437 | 38.1M | for (j = 0; j < SUBFR_SIZE; j++) |
438 | 37.3M | fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j]; |
439 | | |
440 | 777k | if (ctx->mode == MODE_5k0) { |
441 | 511k | postfilter_5k0(ctx, pAz, fixed_vector); |
442 | | |
443 | 511k | ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE, |
444 | 511k | pAz, excitation, SUBFR_SIZE, |
445 | 511k | LP_FILTER_ORDER); |
446 | 511k | } |
447 | | |
448 | 777k | ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector, |
449 | 777k | SUBFR_SIZE, LP_FILTER_ORDER); |
450 | | |
451 | 777k | excitation += SUBFR_SIZE; |
452 | 777k | } |
453 | | |
454 | 190k | memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER, |
455 | 190k | LP_FILTER_ORDER * sizeof(float)); |
456 | | |
457 | 190k | if (ctx->mode == MODE_5k0) { |
458 | 614k | for (i = 0; i < subframe_count; i++) { |
459 | 511k | float energy = ff_scalarproduct_float_c(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE, |
460 | 511k | ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE, |
461 | 511k | SUBFR_SIZE); |
462 | 511k | ff_adaptive_gain_control(&synth[i * SUBFR_SIZE], |
463 | 511k | &synth[i * SUBFR_SIZE], energy, |
464 | 511k | SUBFR_SIZE, 0.9, &ctx->postfilter_agc); |
465 | 511k | } |
466 | | |
467 | 102k | memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size, |
468 | 102k | LP_FILTER_ORDER*sizeof(float)); |
469 | 102k | } |
470 | 190k | memmove(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL, |
471 | 190k | (PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float)); |
472 | | |
473 | 190k | ff_acelp_apply_order_2_transfer_function(out_data, synth, |
474 | 190k | (const float[2]) {-1.99997 , 1.000000000}, |
475 | 190k | (const float[2]) {-1.93307352, 0.935891986}, |
476 | 190k | 0.939805806, |
477 | 190k | ctx->highpass_filt_mem, |
478 | 190k | frame_size); |
479 | 190k | } |
480 | | |
481 | | static av_cold int sipr_decoder_init(AVCodecContext * avctx) |
482 | 843 | { |
483 | 843 | SiprContext *ctx = avctx->priv_data; |
484 | 843 | int i; |
485 | | |
486 | 843 | switch (avctx->block_align) { |
487 | 1 | case 20: ctx->mode = MODE_16k; break; |
488 | 4 | case 19: ctx->mode = MODE_8k5; break; |
489 | 3 | case 29: ctx->mode = MODE_6k5; break; |
490 | 1 | case 37: ctx->mode = MODE_5k0; break; |
491 | 834 | default: |
492 | 834 | if (avctx->bit_rate > 12200) ctx->mode = MODE_16k; |
493 | 293 | else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5; |
494 | 236 | else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5; |
495 | 218 | else ctx->mode = MODE_5k0; |
496 | 834 | av_log(avctx, AV_LOG_WARNING, |
497 | 834 | "Invalid block_align: %d. Mode %s guessed based on bitrate: %"PRId64"\n", |
498 | 834 | avctx->block_align, modes[ctx->mode].mode_name, avctx->bit_rate); |
499 | 843 | } |
500 | | |
501 | 843 | av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name); |
502 | | |
503 | 843 | if (ctx->mode == MODE_16k) { |
504 | 542 | ff_sipr_init_16k(ctx); |
505 | 542 | ctx->decode_frame = ff_sipr_decode_frame_16k; |
506 | 542 | } else { |
507 | 301 | ctx->decode_frame = decode_frame; |
508 | 301 | } |
509 | | |
510 | 9.27k | for (i = 0; i < LP_FILTER_ORDER; i++) |
511 | 8.43k | ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1)); |
512 | | |
513 | 4.21k | for (i = 0; i < 4; i++) |
514 | 3.37k | ctx->energy_history[i] = -14; |
515 | | |
516 | 843 | av_channel_layout_uninit(&avctx->ch_layout); |
517 | 843 | avctx->ch_layout = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO; |
518 | 843 | avctx->sample_fmt = AV_SAMPLE_FMT_FLT; |
519 | | |
520 | 843 | return 0; |
521 | 843 | } |
522 | | |
523 | | static int sipr_decode_frame(AVCodecContext *avctx, AVFrame *frame, |
524 | | int *got_frame_ptr, AVPacket *avpkt) |
525 | 1.13M | { |
526 | 1.13M | SiprContext *ctx = avctx->priv_data; |
527 | 1.13M | const uint8_t *buf=avpkt->data; |
528 | 1.13M | SiprParameters parm; |
529 | 1.13M | const SiprModeParam *mode_par = &modes[ctx->mode]; |
530 | 1.13M | GetBitContext gb; |
531 | 1.13M | float *samples; |
532 | 1.13M | int subframe_size = ctx->mode == MODE_16k ? L_SUBFR_16k : SUBFR_SIZE; |
533 | 1.13M | int i, ret; |
534 | | |
535 | 1.13M | if (avpkt->size < (mode_par->bits_per_frame >> 3)) { |
536 | 236k | av_log(avctx, AV_LOG_ERROR, |
537 | 236k | "Error processing packet: packet size (%d) too small\n", |
538 | 236k | avpkt->size); |
539 | 236k | return AVERROR_INVALIDDATA; |
540 | 236k | } |
541 | | |
542 | | /* get output buffer */ |
543 | 896k | frame->nb_samples = mode_par->frames_per_packet * subframe_size * |
544 | 896k | mode_par->subframe_count; |
545 | 896k | if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
546 | 0 | return ret; |
547 | 896k | samples = (float *)frame->data[0]; |
548 | | |
549 | 896k | init_get_bits(&gb, buf, mode_par->bits_per_frame); |
550 | | |
551 | 1.84M | for (i = 0; i < mode_par->frames_per_packet; i++) { |
552 | 948k | decode_parameters(&parm, &gb, mode_par); |
553 | | |
554 | 948k | ctx->decode_frame(ctx, &parm, samples); |
555 | | |
556 | 948k | samples += subframe_size * mode_par->subframe_count; |
557 | 948k | } |
558 | | |
559 | 896k | *got_frame_ptr = 1; |
560 | | |
561 | 896k | return mode_par->bits_per_frame >> 3; |
562 | 896k | } |
563 | | |
564 | | const FFCodec ff_sipr_decoder = { |
565 | | .p.name = "sipr", |
566 | | CODEC_LONG_NAME("RealAudio SIPR / ACELP.NET"), |
567 | | .p.type = AVMEDIA_TYPE_AUDIO, |
568 | | .p.id = AV_CODEC_ID_SIPR, |
569 | | .priv_data_size = sizeof(SiprContext), |
570 | | .init = sipr_decoder_init, |
571 | | FF_CODEC_DECODE_CB(sipr_decode_frame), |
572 | | .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF, |
573 | | }; |