/src/ffmpeg/libavcodec/wmavoice.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Windows Media Audio Voice decoder. |
3 | | * Copyright (c) 2009 Ronald S. Bultje |
4 | | * |
5 | | * This file is part of FFmpeg. |
6 | | * |
7 | | * FFmpeg is free software; you can redistribute it and/or |
8 | | * modify it under the terms of the GNU Lesser General Public |
9 | | * License as published by the Free Software Foundation; either |
10 | | * version 2.1 of the License, or (at your option) any later version. |
11 | | * |
12 | | * FFmpeg is distributed in the hope that it will be useful, |
13 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
15 | | * Lesser General Public License for more details. |
16 | | * |
17 | | * You should have received a copy of the GNU Lesser General Public |
18 | | * License along with FFmpeg; if not, write to the Free Software |
19 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
20 | | */ |
21 | | |
22 | | /** |
23 | | * @file |
24 | | * @brief Windows Media Audio Voice compatible decoder |
25 | | * @author Ronald S. Bultje <rsbultje@gmail.com> |
26 | | */ |
27 | | |
28 | | #include <math.h> |
29 | | |
30 | | #include "libavutil/channel_layout.h" |
31 | | #include "libavutil/float_dsp.h" |
32 | | #include "libavutil/mem.h" |
33 | | #include "libavutil/mem_internal.h" |
34 | | #include "libavutil/thread.h" |
35 | | #include "libavutil/tx.h" |
36 | | #include "avcodec.h" |
37 | | #include "codec_internal.h" |
38 | | #include "decode.h" |
39 | | #include "get_bits.h" |
40 | | #include "put_bits.h" |
41 | | #include "wmavoice_data.h" |
42 | | #include "celp_filters.h" |
43 | | #include "acelp_vectors.h" |
44 | | #include "acelp_filters.h" |
45 | | #include "lsp.h" |
46 | | #include "sinewin.h" |
47 | | |
48 | | #define MAX_BLOCKS 8 ///< maximum number of blocks per frame |
49 | 435k | #define MAX_LSPS 16 ///< maximum filter order |
50 | 1.61M | #define MAX_LSPS_ALIGN16 16 ///< same as #MAX_LSPS; needs to be multiple |
51 | | ///< of 16 for ASM input buffer alignment |
52 | 2.28M | #define MAX_FRAMES 3 ///< maximum number of frames per superframe |
53 | 19.5M | #define MAX_FRAMESIZE 160 ///< maximum number of samples per frame |
54 | 436k | #define MAX_SIGNAL_HISTORY 416 ///< maximum excitation signal history |
55 | 2.28M | #define MAX_SFRAMESIZE (MAX_FRAMESIZE * MAX_FRAMES) |
56 | | ///< maximum number of samples per superframe |
57 | 771k | #define SFRAME_CACHE_MAXSIZE 256 ///< maximum cache size for frame data that |
58 | | ///< was split over two packets |
59 | | #define VLC_NBITS 6 ///< number of bits to read per VLC iteration |
60 | | |
61 | | /** |
62 | | * Frame type VLC coding. |
63 | | */ |
64 | | static VLCElem frame_type_vlc[132]; |
65 | | |
66 | | /** |
67 | | * Adaptive codebook types. |
68 | | */ |
69 | | enum { |
70 | | ACB_TYPE_NONE = 0, ///< no adaptive codebook (only hardcoded fixed) |
71 | | ACB_TYPE_ASYMMETRIC = 1, ///< adaptive codebook with per-frame pitch, which |
72 | | ///< we interpolate to get a per-sample pitch. |
73 | | ///< Signal is generated using an asymmetric sinc |
74 | | ///< window function |
75 | | ///< @note see #wmavoice_ipol1_coeffs |
76 | | ACB_TYPE_HAMMING = 2 ///< Per-block pitch with signal generation using |
77 | | ///< a Hamming sinc window function |
78 | | ///< @note see #wmavoice_ipol2_coeffs |
79 | | }; |
80 | | |
81 | | /** |
82 | | * Fixed codebook types. |
83 | | */ |
84 | | enum { |
85 | | FCB_TYPE_SILENCE = 0, ///< comfort noise during silence |
86 | | ///< generated from a hardcoded (fixed) codebook |
87 | | ///< with per-frame (low) gain values |
88 | | FCB_TYPE_HARDCODED = 1, ///< hardcoded (fixed) codebook with per-block |
89 | | ///< gain values |
90 | | FCB_TYPE_AW_PULSES = 2, ///< Pitch-adaptive window (AW) pulse signals, |
91 | | ///< used in particular for low-bitrate streams |
92 | | FCB_TYPE_EXC_PULSES = 3, ///< Innovation (fixed) codebook pulse sets in |
93 | | ///< combinations of either single pulses or |
94 | | ///< pulse pairs |
95 | | }; |
96 | | |
97 | | /** |
98 | | * Description of frame types. |
99 | | */ |
100 | | static const struct frame_type_desc { |
101 | | uint8_t n_blocks; ///< amount of blocks per frame (each block |
102 | | ///< (contains 160/#n_blocks samples) |
103 | | uint8_t log_n_blocks; ///< log2(#n_blocks) |
104 | | uint8_t acb_type; ///< Adaptive codebook type (ACB_TYPE_*) |
105 | | uint8_t fcb_type; ///< Fixed codebook type (FCB_TYPE_*) |
106 | | uint8_t dbl_pulses; ///< how many pulse vectors have pulse pairs |
107 | | ///< (rather than just one single pulse) |
108 | | ///< only if #fcb_type == #FCB_TYPE_EXC_PULSES |
109 | | } frame_descs[17] = { |
110 | | { 1, 0, ACB_TYPE_NONE, FCB_TYPE_SILENCE, 0 }, |
111 | | { 2, 1, ACB_TYPE_NONE, FCB_TYPE_HARDCODED, 0 }, |
112 | | { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_AW_PULSES, 0 }, |
113 | | { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 2 }, |
114 | | { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 5 }, |
115 | | { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 0 }, |
116 | | { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 2 }, |
117 | | { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 5 }, |
118 | | { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0 }, |
119 | | { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2 }, |
120 | | { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5 }, |
121 | | { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0 }, |
122 | | { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2 }, |
123 | | { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5 }, |
124 | | { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0 }, |
125 | | { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2 }, |
126 | | { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5 } |
127 | | }; |
128 | | |
129 | | /** |
130 | | * WMA Voice decoding context. |
131 | | */ |
132 | | typedef struct WMAVoiceContext { |
133 | | /** |
134 | | * @name Global values specified in the stream header / extradata or used all over. |
135 | | * @{ |
136 | | */ |
137 | | GetBitContext gb; ///< packet bitreader. During decoder init, |
138 | | ///< it contains the extradata from the |
139 | | ///< demuxer. During decoding, it contains |
140 | | ///< packet data. |
141 | | int8_t vbm_tree[25]; ///< converts VLC codes to frame type |
142 | | |
143 | | int spillover_bitsize; ///< number of bits used to specify |
144 | | ///< #spillover_nbits in the packet header |
145 | | ///< = ceil(log2(ctx->block_align << 3)) |
146 | | int history_nsamples; ///< number of samples in history for signal |
147 | | ///< prediction (through ACB) |
148 | | |
149 | | /* postfilter specific values */ |
150 | | int do_apf; ///< whether to apply the averaged |
151 | | ///< projection filter (APF) |
152 | | int denoise_strength; ///< strength of denoising in Wiener filter |
153 | | ///< [0-11] |
154 | | int denoise_tilt_corr; ///< Whether to apply tilt correction to the |
155 | | ///< Wiener filter coefficients (postfilter) |
156 | | int dc_level; ///< Predicted amount of DC noise, based |
157 | | ///< on which a DC removal filter is used |
158 | | |
159 | | int lsps; ///< number of LSPs per frame [10 or 16] |
160 | | int lsp_q_mode; ///< defines quantizer defaults [0, 1] |
161 | | int lsp_def_mode; ///< defines different sets of LSP defaults |
162 | | ///< [0, 1] |
163 | | |
164 | | int min_pitch_val; ///< base value for pitch parsing code |
165 | | int max_pitch_val; ///< max value + 1 for pitch parsing |
166 | | int pitch_nbits; ///< number of bits used to specify the |
167 | | ///< pitch value in the frame header |
168 | | int block_pitch_nbits; ///< number of bits used to specify the |
169 | | ///< first block's pitch value |
170 | | int block_pitch_range; ///< range of the block pitch |
171 | | int block_delta_pitch_nbits; ///< number of bits used to specify the |
172 | | ///< delta pitch between this and the last |
173 | | ///< block's pitch value, used in all but |
174 | | ///< first block |
175 | | int block_delta_pitch_hrange; ///< 1/2 range of the delta (full range is |
176 | | ///< from -this to +this-1) |
177 | | uint16_t block_conv_table[4]; ///< boundaries for block pitch unit/scale |
178 | | ///< conversion |
179 | | |
180 | | /** |
181 | | * @} |
182 | | * |
183 | | * @name Packet values specified in the packet header or related to a packet. |
184 | | * |
185 | | * A packet is considered to be a single unit of data provided to this |
186 | | * decoder by the demuxer. |
187 | | * @{ |
188 | | */ |
189 | | int spillover_nbits; ///< number of bits of the previous packet's |
190 | | ///< last superframe preceding this |
191 | | ///< packet's first full superframe (useful |
192 | | ///< for re-synchronization also) |
193 | | int has_residual_lsps; ///< if set, superframes contain one set of |
194 | | ///< LSPs that cover all frames, encoded as |
195 | | ///< independent and residual LSPs; if not |
196 | | ///< set, each frame contains its own, fully |
197 | | ///< independent, LSPs |
198 | | int skip_bits_next; ///< number of bits to skip at the next call |
199 | | ///< to #wmavoice_decode_packet() (since |
200 | | ///< they're part of the previous superframe) |
201 | | |
202 | | uint8_t sframe_cache[SFRAME_CACHE_MAXSIZE + AV_INPUT_BUFFER_PADDING_SIZE]; ///< |
203 | | ///< cache for superframe data split over |
204 | | ///< multiple packets |
205 | | int sframe_cache_size; ///< set to >0 if we have data from an |
206 | | ///< (incomplete) superframe from a previous |
207 | | ///< packet that spilled over in the current |
208 | | ///< packet; specifies the amount of bits in |
209 | | ///< #sframe_cache |
210 | | PutBitContext pb; ///< bitstream writer for #sframe_cache |
211 | | |
212 | | /** |
213 | | * @} |
214 | | * |
215 | | * @name Frame and superframe values |
216 | | * Superframe and frame data - these can change from frame to frame, |
217 | | * although some of them do in that case serve as a cache / history for |
218 | | * the next frame or superframe. |
219 | | * @{ |
220 | | */ |
221 | | double prev_lsps[MAX_LSPS]; ///< LSPs of the last frame of the previous |
222 | | ///< superframe |
223 | | int last_pitch_val; ///< pitch value of the previous frame |
224 | | int last_acb_type; ///< frame type [0-2] of the previous frame |
225 | | int pitch_diff_sh16; ///< ((cur_pitch_val - #last_pitch_val) |
226 | | ///< << 16) / #MAX_FRAMESIZE |
227 | | float silence_gain; ///< set for use in blocks if #ACB_TYPE_NONE |
228 | | |
229 | | int aw_idx_is_ext; ///< whether the AW index was encoded in |
230 | | ///< 8 bits (instead of 6) |
231 | | int aw_pulse_range; ///< the range over which #aw_pulse_set1() |
232 | | ///< can apply the pulse, relative to the |
233 | | ///< value in aw_first_pulse_off. The exact |
234 | | ///< position of the first AW-pulse is within |
235 | | ///< [pulse_off, pulse_off + this], and |
236 | | ///< depends on bitstream values; [16 or 24] |
237 | | int aw_n_pulses[2]; ///< number of AW-pulses in each block; note |
238 | | ///< that this number can be negative (in |
239 | | ///< which case it basically means "zero") |
240 | | int aw_first_pulse_off[2]; ///< index of first sample to which to |
241 | | ///< apply AW-pulses, or -0xff if unset |
242 | | int aw_next_pulse_off_cache; ///< the position (relative to start of the |
243 | | ///< second block) at which pulses should |
244 | | ///< start to be positioned, serves as a |
245 | | ///< cache for pitch-adaptive window pulses |
246 | | ///< between blocks |
247 | | |
248 | | int frame_cntr; ///< current frame index [0 - 0xFFFE]; is |
249 | | ///< only used for comfort noise in #pRNG() |
250 | | int nb_superframes; ///< number of superframes in current packet |
251 | | float gain_pred_err[6]; ///< cache for gain prediction |
252 | | float excitation_history[MAX_SIGNAL_HISTORY]; ///< cache of the signal of |
253 | | ///< previous superframes, used as a history |
254 | | ///< for signal generation |
255 | | float synth_history[MAX_LSPS]; ///< see #excitation_history |
256 | | /** |
257 | | * @} |
258 | | * |
259 | | * @name Postfilter values |
260 | | * |
261 | | * Variables used for postfilter implementation, mostly history for |
262 | | * smoothing and so on, and context variables for FFT/iFFT. |
263 | | * @{ |
264 | | */ |
265 | | AVTXContext *rdft, *irdft; ///< contexts for FFT-calculation in the |
266 | | av_tx_fn rdft_fn, irdft_fn; ///< postfilter (for denoise filter) |
267 | | AVTXContext *dct, *dst; ///< contexts for phase shift (in Hilbert |
268 | | av_tx_fn dct_fn, dst_fn; ///< transform, part of postfilter) |
269 | | float sin[511], cos[511]; ///< 8-bit cosine/sine windows over [-pi,pi] |
270 | | ///< range |
271 | | float postfilter_agc; ///< gain control memory, used in |
272 | | ///< #adaptive_gain_control() |
273 | | float dcf_mem[2]; ///< DC filter history |
274 | | /// zero filter output (i.e. excitation) by postfilter |
275 | | float zero_exc_pf[MAX_SIGNAL_HISTORY + MAX_SFRAMESIZE]; |
276 | | float denoise_filter_cache[MAX_FRAMESIZE]; |
277 | | int denoise_filter_cache_size; ///< samples in #denoise_filter_cache |
278 | | /// aligned buffer for LPC tilting |
279 | | DECLARE_ALIGNED(32, float, tilted_lpcs_pf)[0x82]; |
280 | | /// aligned buffer for denoise coefficients |
281 | | DECLARE_ALIGNED(32, float, denoise_coeffs_pf)[0x82]; |
282 | | /// aligned buffer for postfilter speech synthesis |
283 | | DECLARE_ALIGNED(32, float, synth_filter_out_buf)[0x80 + MAX_LSPS_ALIGN16]; |
284 | | /** |
285 | | * @} |
286 | | */ |
287 | | } WMAVoiceContext; |
288 | | |
289 | | /** |
290 | | * Set up the variable bit mode (VBM) tree from container extradata. |
291 | | * @param gb bit I/O context. |
292 | | * The bit context (s->gb) should be loaded with byte 23-46 of the |
293 | | * container extradata (i.e. the ones containing the VBM tree). |
294 | | * @param vbm_tree pointer to array to which the decoded VBM tree will be |
295 | | * written. |
296 | | * @return 0 on success, <0 on error. |
297 | | */ |
298 | | static av_cold int decode_vbmtree(GetBitContext *gb, int8_t vbm_tree[25]) |
299 | 1.39k | { |
300 | 1.39k | int cntr[8] = { 0 }, n, res; |
301 | | |
302 | 1.39k | memset(vbm_tree, 0xff, sizeof(vbm_tree[0]) * 25); |
303 | 25.0k | for (n = 0; n < 17; n++) { |
304 | 23.6k | res = get_bits(gb, 3); |
305 | 23.6k | if (cntr[res] > 3) // should be >= 3 + (res == 7)) |
306 | 2 | return -1; |
307 | 23.6k | vbm_tree[res * 3 + cntr[res]++] = n; |
308 | 23.6k | } |
309 | 1.39k | return 0; |
310 | 1.39k | } |
311 | | |
312 | | static av_cold void wmavoice_init_static_data(void) |
313 | 1 | { |
314 | 1 | static const uint8_t bits[] = { |
315 | 1 | 2, 2, 2, 4, 4, 4, |
316 | 1 | 6, 6, 6, 8, 8, 8, |
317 | 1 | 10, 10, 10, 12, 12, 12, |
318 | 1 | 14, 14, 14, 14 |
319 | 1 | }; |
320 | | |
321 | 1 | VLC_INIT_STATIC_TABLE_FROM_LENGTHS(frame_type_vlc, VLC_NBITS, |
322 | 1 | FF_ARRAY_ELEMS(bits), bits, |
323 | 1 | 1, NULL, 0, 0, 0, 0); |
324 | 1 | } |
325 | | |
326 | | static av_cold void wmavoice_flush(AVCodecContext *ctx) |
327 | 435k | { |
328 | 435k | WMAVoiceContext *s = ctx->priv_data; |
329 | 435k | int n; |
330 | | |
331 | 435k | s->postfilter_agc = 0; |
332 | 435k | s->sframe_cache_size = 0; |
333 | 435k | s->skip_bits_next = 0; |
334 | 5.64M | for (n = 0; n < s->lsps; n++) |
335 | 5.21M | s->prev_lsps[n] = M_PI * (n + 1.0) / (s->lsps + 1.0); |
336 | 435k | memset(s->excitation_history, 0, |
337 | 435k | sizeof(*s->excitation_history) * MAX_SIGNAL_HISTORY); |
338 | 435k | memset(s->synth_history, 0, |
339 | 435k | sizeof(*s->synth_history) * MAX_LSPS); |
340 | 435k | memset(s->gain_pred_err, 0, |
341 | 435k | sizeof(s->gain_pred_err)); |
342 | | |
343 | 435k | if (s->do_apf) { |
344 | 303k | memset(&s->synth_filter_out_buf[MAX_LSPS_ALIGN16 - s->lsps], 0, |
345 | 303k | sizeof(*s->synth_filter_out_buf) * s->lsps); |
346 | 303k | memset(s->dcf_mem, 0, |
347 | 303k | sizeof(*s->dcf_mem) * 2); |
348 | 303k | memset(s->zero_exc_pf, 0, |
349 | 303k | sizeof(*s->zero_exc_pf) * s->history_nsamples); |
350 | 303k | memset(s->denoise_filter_cache, 0, sizeof(s->denoise_filter_cache)); |
351 | 303k | } |
352 | 435k | } |
353 | | |
354 | | /** |
355 | | * Set up decoder with parameters from demuxer (extradata etc.). |
356 | | */ |
357 | | static av_cold int wmavoice_decode_init(AVCodecContext *ctx) |
358 | 1.53k | { |
359 | 1.53k | static AVOnce init_static_once = AV_ONCE_INIT; |
360 | 1.53k | int n, flags, pitch_range, lsp16_flag, ret; |
361 | 1.53k | WMAVoiceContext *s = ctx->priv_data; |
362 | | |
363 | 1.53k | ff_thread_once(&init_static_once, wmavoice_init_static_data); |
364 | | |
365 | | /** |
366 | | * Extradata layout: |
367 | | * - byte 0-18: WMAPro-in-WMAVoice extradata (see wmaprodec.c), |
368 | | * - byte 19-22: flags field (annoyingly in LE; see below for known |
369 | | * values), |
370 | | * - byte 23-46: variable bitmode tree (really just 17 * 3 bits, |
371 | | * rest is 0). |
372 | | */ |
373 | 1.53k | if (ctx->extradata_size != 46) { |
374 | 133 | av_log(ctx, AV_LOG_ERROR, |
375 | 133 | "Invalid extradata size %d (should be 46)\n", |
376 | 133 | ctx->extradata_size); |
377 | 133 | return AVERROR_INVALIDDATA; |
378 | 133 | } |
379 | 1.40k | if (ctx->block_align <= 0 || ctx->block_align > (1<<22)) { |
380 | 10 | av_log(ctx, AV_LOG_ERROR, "Invalid block alignment %d.\n", ctx->block_align); |
381 | 10 | return AVERROR_INVALIDDATA; |
382 | 10 | } |
383 | | |
384 | 1.39k | flags = AV_RL32(ctx->extradata + 18); |
385 | 1.39k | s->spillover_bitsize = 3 + av_ceil_log2(ctx->block_align); |
386 | 1.39k | s->do_apf = flags & 0x1; |
387 | 1.39k | if (s->do_apf) { |
388 | 732 | float scale = 1.0f; |
389 | | |
390 | 732 | ret = av_tx_init(&s->rdft, &s->rdft_fn, AV_TX_FLOAT_RDFT, 0, 1 << 7, &scale, 0); |
391 | 732 | if (ret < 0) |
392 | 0 | return ret; |
393 | | |
394 | 732 | ret = av_tx_init(&s->irdft, &s->irdft_fn, AV_TX_FLOAT_RDFT, 1, 1 << 7, &scale, 0); |
395 | 732 | if (ret < 0) |
396 | 0 | return ret; |
397 | | |
398 | 732 | scale = 1.0 / (1 << 6); |
399 | 732 | ret = av_tx_init(&s->dct, &s->dct_fn, AV_TX_FLOAT_DCT_I, 0, 1 << 6, &scale, 0); |
400 | 732 | if (ret < 0) |
401 | 0 | return ret; |
402 | | |
403 | 732 | scale = 1.0 / (1 << 6); |
404 | 732 | ret = av_tx_init(&s->dst, &s->dst_fn, AV_TX_FLOAT_DST_I, 0, 1 << 6, &scale, 0); |
405 | 732 | if (ret < 0) |
406 | 0 | return ret; |
407 | | |
408 | 732 | ff_sine_window_init(s->cos, 256); |
409 | 732 | memcpy(&s->sin[255], s->cos, 256 * sizeof(s->cos[0])); |
410 | 187k | for (n = 0; n < 255; n++) { |
411 | 186k | s->sin[n] = -s->sin[510 - n]; |
412 | 186k | s->cos[510 - n] = s->cos[n]; |
413 | 186k | } |
414 | 732 | } |
415 | 1.39k | s->denoise_strength = (flags >> 2) & 0xF; |
416 | 1.39k | if (s->denoise_strength >= 12) { |
417 | 1 | av_log(ctx, AV_LOG_ERROR, |
418 | 1 | "Invalid denoise filter strength %d (max=11)\n", |
419 | 1 | s->denoise_strength); |
420 | 1 | return AVERROR_INVALIDDATA; |
421 | 1 | } |
422 | 1.39k | s->denoise_tilt_corr = !!(flags & 0x40); |
423 | 1.39k | s->dc_level = (flags >> 7) & 0xF; |
424 | 1.39k | s->lsp_q_mode = !!(flags & 0x2000); |
425 | 1.39k | s->lsp_def_mode = !!(flags & 0x4000); |
426 | 1.39k | lsp16_flag = flags & 0x1000; |
427 | 1.39k | if (lsp16_flag) { |
428 | 538 | s->lsps = 16; |
429 | 855 | } else { |
430 | 855 | s->lsps = 10; |
431 | 855 | } |
432 | 18.5k | for (n = 0; n < s->lsps; n++) |
433 | 17.1k | s->prev_lsps[n] = M_PI * (n + 1.0) / (s->lsps + 1.0); |
434 | | |
435 | 1.39k | init_get_bits(&s->gb, ctx->extradata + 22, (ctx->extradata_size - 22) << 3); |
436 | 1.39k | if (decode_vbmtree(&s->gb, s->vbm_tree) < 0) { |
437 | 2 | av_log(ctx, AV_LOG_ERROR, "Invalid VBM tree; broken extradata?\n"); |
438 | 2 | return AVERROR_INVALIDDATA; |
439 | 2 | } |
440 | | |
441 | 1.39k | if (ctx->sample_rate >= INT_MAX / (256 * 37)) |
442 | 9 | return AVERROR_INVALIDDATA; |
443 | | |
444 | 1.38k | s->min_pitch_val = ((ctx->sample_rate << 8) / 400 + 50) >> 8; |
445 | 1.38k | s->max_pitch_val = ((ctx->sample_rate << 8) * 37 / 2000 + 50) >> 8; |
446 | 1.38k | pitch_range = s->max_pitch_val - s->min_pitch_val; |
447 | 1.38k | if (pitch_range <= 0) { |
448 | 1 | av_log(ctx, AV_LOG_ERROR, "Invalid pitch range; broken extradata?\n"); |
449 | 1 | return AVERROR_INVALIDDATA; |
450 | 1 | } |
451 | 1.38k | s->pitch_nbits = av_ceil_log2(pitch_range); |
452 | 1.38k | s->last_pitch_val = 40; |
453 | 1.38k | s->last_acb_type = ACB_TYPE_NONE; |
454 | 1.38k | s->history_nsamples = s->max_pitch_val + 8; |
455 | | |
456 | 1.38k | if (s->min_pitch_val < 1 || s->history_nsamples > MAX_SIGNAL_HISTORY) { |
457 | 6 | int min_sr = ((((1 << 8) - 50) * 400) + 0xFF) >> 8, |
458 | 6 | max_sr = ((((MAX_SIGNAL_HISTORY - 8) << 8) + 205) * 2000 / 37) >> 8; |
459 | | |
460 | 6 | av_log(ctx, AV_LOG_ERROR, |
461 | 6 | "Unsupported samplerate %d (min=%d, max=%d)\n", |
462 | 6 | ctx->sample_rate, min_sr, max_sr); // 322-22097 Hz |
463 | | |
464 | 6 | return AVERROR(ENOSYS); |
465 | 6 | } |
466 | | |
467 | 1.37k | s->block_conv_table[0] = s->min_pitch_val; |
468 | 1.37k | s->block_conv_table[1] = (pitch_range * 25) >> 6; |
469 | 1.37k | s->block_conv_table[2] = (pitch_range * 44) >> 6; |
470 | 1.37k | s->block_conv_table[3] = s->max_pitch_val - 1; |
471 | 1.37k | s->block_delta_pitch_hrange = (pitch_range >> 3) & ~0xF; |
472 | 1.37k | if (s->block_delta_pitch_hrange <= 0) { |
473 | 2 | av_log(ctx, AV_LOG_ERROR, "Invalid delta pitch hrange; broken extradata?\n"); |
474 | 2 | return AVERROR_INVALIDDATA; |
475 | 2 | } |
476 | 1.37k | s->block_delta_pitch_nbits = 1 + av_ceil_log2(s->block_delta_pitch_hrange); |
477 | 1.37k | s->block_pitch_range = s->block_conv_table[2] + |
478 | 1.37k | s->block_conv_table[3] + 1 + |
479 | 1.37k | 2 * (s->block_conv_table[1] - 2 * s->min_pitch_val); |
480 | 1.37k | s->block_pitch_nbits = av_ceil_log2(s->block_pitch_range); |
481 | | |
482 | 1.37k | av_channel_layout_uninit(&ctx->ch_layout); |
483 | 1.37k | ctx->ch_layout = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO; |
484 | 1.37k | ctx->sample_fmt = AV_SAMPLE_FMT_FLT; |
485 | | |
486 | 1.37k | return 0; |
487 | 1.37k | } |
488 | | |
489 | | /** |
490 | | * @name Postfilter functions |
491 | | * Postfilter functions (gain control, wiener denoise filter, DC filter, |
492 | | * kalman smoothening, plus surrounding code to wrap it) |
493 | | * @{ |
494 | | */ |
495 | | /** |
496 | | * Adaptive gain control (as used in postfilter). |
497 | | * |
498 | | * Identical to #ff_adaptive_gain_control() in acelp_vectors.c, except |
499 | | * that the energy here is calculated using sum(abs(...)), whereas the |
500 | | * other codecs (e.g. AMR-NB, SIPRO) use sqrt(dotproduct(...)). |
501 | | * |
502 | | * @param out output buffer for filtered samples |
503 | | * @param in input buffer containing the samples as they are after the |
504 | | * postfilter steps so far |
505 | | * @param speech_synth input buffer containing speech synth before postfilter |
506 | | * @param size input buffer size |
507 | | * @param alpha exponential filter factor |
508 | | * @param gain_mem pointer to filter memory (single float) |
509 | | */ |
510 | | static void adaptive_gain_control(float *out, const float *in, |
511 | | const float *speech_synth, |
512 | | int size, float alpha, float *gain_mem) |
513 | 1.30M | { |
514 | 1.30M | int i; |
515 | 1.30M | float speech_energy = 0.0, postfilter_energy = 0.0, gain_scale_factor; |
516 | 1.30M | float mem = *gain_mem; |
517 | | |
518 | 106M | for (i = 0; i < size; i++) { |
519 | 104M | speech_energy += fabsf(speech_synth[i]); |
520 | 104M | postfilter_energy += fabsf(in[i]); |
521 | 104M | } |
522 | 1.30M | gain_scale_factor = postfilter_energy == 0.0 ? 0.0 : |
523 | 1.30M | (1.0 - alpha) * speech_energy / postfilter_energy; |
524 | | |
525 | 106M | for (i = 0; i < size; i++) { |
526 | 104M | mem = alpha * mem + gain_scale_factor; |
527 | 104M | out[i] = in[i] * mem; |
528 | 104M | } |
529 | | |
530 | 1.30M | *gain_mem = mem; |
531 | 1.30M | } |
532 | | |
533 | | /** |
534 | | * Kalman smoothing function. |
535 | | * |
536 | | * This function looks back pitch +/- 3 samples back into history to find |
537 | | * the best fitting curve (that one giving the optimal gain of the two |
538 | | * signals, i.e. the highest dot product between the two), and then |
539 | | * uses that signal history to smoothen the output of the speech synthesis |
540 | | * filter. |
541 | | * |
542 | | * @param s WMA Voice decoding context |
543 | | * @param pitch pitch of the speech signal |
544 | | * @param in input speech signal |
545 | | * @param out output pointer for smoothened signal |
546 | | * @param size input/output buffer size |
547 | | * |
548 | | * @returns -1 if no smoothening took place, e.g. because no optimal |
549 | | * fit could be found, or 0 on success. |
550 | | */ |
551 | | static int kalman_smoothen(WMAVoiceContext *s, int pitch, |
552 | | const float *in, float *out, int size) |
553 | 1.26M | { |
554 | 1.26M | int n; |
555 | 1.26M | float optimal_gain = 0, dot; |
556 | 1.26M | const float *ptr = &in[-FFMAX(s->min_pitch_val, pitch - 3)], |
557 | 1.26M | *end = &in[-FFMIN(s->max_pitch_val, pitch + 3)], |
558 | 1.26M | *best_hist_ptr = NULL; |
559 | | |
560 | | /* find best fitting point in history */ |
561 | 8.21M | do { |
562 | 8.21M | dot = ff_scalarproduct_float_c(in, ptr, size); |
563 | 8.21M | if (dot > optimal_gain) { |
564 | 2.58M | optimal_gain = dot; |
565 | 2.58M | best_hist_ptr = ptr; |
566 | 2.58M | } |
567 | 8.21M | } while (--ptr >= end); |
568 | | |
569 | 1.26M | if (optimal_gain <= 0) |
570 | 102k | return -1; |
571 | 1.16M | dot = ff_scalarproduct_float_c(best_hist_ptr, best_hist_ptr, size); |
572 | 1.16M | if (dot <= 0) // would be 1.0 |
573 | 197 | return -1; |
574 | | |
575 | 1.16M | if (optimal_gain <= dot) { |
576 | 1.03M | dot = dot / (dot + 0.6 * optimal_gain); // 0.625-1.000 |
577 | 1.03M | } else |
578 | 125k | dot = 0.625; |
579 | | |
580 | | /* actual smoothing */ |
581 | 94.2M | for (n = 0; n < size; n++) |
582 | 93.0M | out[n] = best_hist_ptr[n] + dot * (in[n] - best_hist_ptr[n]); |
583 | | |
584 | 1.16M | return 0; |
585 | 1.16M | } |
586 | | |
587 | | /** |
588 | | * Get the tilt factor of a formant filter from its transfer function |
589 | | * @see #tilt_factor() in amrnbdec.c, which does essentially the same, |
590 | | * but somehow (??) it does a speech synthesis filter in the |
591 | | * middle, which is missing here |
592 | | * |
593 | | * @param lpcs LPC coefficients |
594 | | * @param n_lpcs Size of LPC buffer |
595 | | * @returns the tilt factor |
596 | | */ |
597 | | static float tilt_factor(const float *lpcs, int n_lpcs) |
598 | 2.27M | { |
599 | 2.27M | float rh0, rh1; |
600 | | |
601 | 2.27M | rh0 = 1.0 + ff_scalarproduct_float_c(lpcs, lpcs, n_lpcs); |
602 | 2.27M | rh1 = lpcs[0] + ff_scalarproduct_float_c(lpcs, &lpcs[1], n_lpcs - 1); |
603 | | |
604 | 2.27M | return rh1 / rh0; |
605 | 2.27M | } |
606 | | |
607 | | /** |
608 | | * Derive denoise filter coefficients (in real domain) from the LPCs. |
609 | | */ |
610 | | static void calc_input_response(WMAVoiceContext *s, float *lpcs_src, |
611 | | int fcb_type, float *coeffs_dst, int remainder) |
612 | 1.29M | { |
613 | 1.29M | float last_coeff, min = 15.0, max = -15.0; |
614 | 1.29M | float irange, angle_mul, gain_mul, range, sq; |
615 | 1.29M | LOCAL_ALIGNED_32(float, coeffs, [0x82]); |
616 | 1.29M | LOCAL_ALIGNED_32(float, lpcs, [0x82]); |
617 | 1.29M | LOCAL_ALIGNED_32(float, lpcs_dct, [0x82]); |
618 | 1.29M | int n, idx; |
619 | | |
620 | 1.29M | memcpy(coeffs, coeffs_dst, 0x82*sizeof(float)); |
621 | | |
622 | | /* Create frequency power spectrum of speech input (i.e. RDFT of LPCs) */ |
623 | 1.29M | s->rdft_fn(s->rdft, lpcs, lpcs_src, sizeof(float)); |
624 | 83.8M | #define log_range(var, assign) do { \ |
625 | 83.8M | float tmp = log10f(assign); var = tmp; \ |
626 | 83.8M | max = FFMAX(max, tmp); min = FFMIN(min, tmp); \ |
627 | 83.8M | } while (0) |
628 | 1.29M | log_range(last_coeff, lpcs[64] * lpcs[64]); |
629 | 82.5M | for (n = 1; n < 64; n++) |
630 | 81.2M | log_range(lpcs[n], lpcs[n * 2] * lpcs[n * 2] + |
631 | 1.29M | lpcs[n * 2 + 1] * lpcs[n * 2 + 1]); |
632 | 1.29M | log_range(lpcs[0], lpcs[0] * lpcs[0]); |
633 | 1.29M | #undef log_range |
634 | 1.29M | range = max - min; |
635 | 1.29M | lpcs[64] = last_coeff; |
636 | | |
637 | | /* Now, use this spectrum to pick out these frequencies with higher |
638 | | * (relative) power/energy (which we then take to be "not noise"), |
639 | | * and set up a table (still in lpc[]) of (relative) gains per frequency. |
640 | | * These frequencies will be maintained, while others ("noise") will be |
641 | | * decreased in the filter output. */ |
642 | 1.29M | irange = 64.0 / range; // so irange*(max-value) is in the range [0, 63] |
643 | 1.29M | gain_mul = range * (fcb_type == FCB_TYPE_HARDCODED ? (5.0 / 13.0) : |
644 | 1.29M | (5.0 / 14.7)); |
645 | 1.29M | angle_mul = gain_mul * (8.0 * M_LN10 / M_PI); |
646 | 85.1M | for (n = 0; n <= 64; n++) { |
647 | 83.8M | float pwr; |
648 | | |
649 | 83.8M | idx = lrint((max - lpcs[n]) * irange - 1); |
650 | 83.8M | idx = FFMAX(0, idx); |
651 | 83.8M | pwr = wmavoice_denoise_power_table[s->denoise_strength][idx]; |
652 | 83.8M | lpcs[n] = angle_mul * pwr; |
653 | | |
654 | | /* 70.57 =~ 1/log10(1.0331663) */ |
655 | 83.8M | idx = av_clipd((pwr * gain_mul - 0.0295) * 70.570526123, 0, INT_MAX / 2); |
656 | | |
657 | 83.8M | if (idx > 127) { // fall back if index falls outside table range |
658 | 10.8M | coeffs[n] = wmavoice_energy_table[127] * |
659 | 10.8M | powf(1.0331663, idx - 127); |
660 | 10.8M | } else |
661 | 73.0M | coeffs[n] = wmavoice_energy_table[FFMAX(0, idx)]; |
662 | 83.8M | } |
663 | | |
664 | | /* calculate the Hilbert transform of the gains, which we do (since this |
665 | | * is a sine input) by doing a phase shift (in theory, H(sin())=cos()). |
666 | | * Hilbert_Transform(RDFT(x)) = Laplace_Transform(x), which calculates the |
667 | | * "moment" of the LPCs in this filter. */ |
668 | 1.29M | s->dct_fn(s->dct, lpcs_dct, lpcs, sizeof(float)); |
669 | 1.29M | s->dst_fn(s->dst, lpcs, lpcs_dct, sizeof(float)); |
670 | | |
671 | | /* Split out the coefficient indexes into phase/magnitude pairs */ |
672 | 1.29M | idx = 255 + av_clip(lpcs[64], -255, 255); |
673 | 1.29M | coeffs[0] = coeffs[0] * s->cos[idx]; |
674 | 1.29M | idx = 255 + av_clip(lpcs[64] - 2 * lpcs[63], -255, 255); |
675 | 1.29M | last_coeff = coeffs[64] * s->cos[idx]; |
676 | 41.2M | for (n = 63;; n--) { |
677 | 41.2M | idx = 255 + av_clip(-lpcs[64] - 2 * lpcs[n - 1], -255, 255); |
678 | 41.2M | coeffs[n * 2 + 1] = coeffs[n] * s->sin[idx]; |
679 | 41.2M | coeffs[n * 2] = coeffs[n] * s->cos[idx]; |
680 | | |
681 | 41.2M | if (!--n) break; |
682 | | |
683 | 40.0M | idx = 255 + av_clip( lpcs[64] - 2 * lpcs[n - 1], -255, 255); |
684 | 40.0M | coeffs[n * 2 + 1] = coeffs[n] * s->sin[idx]; |
685 | 40.0M | coeffs[n * 2] = coeffs[n] * s->cos[idx]; |
686 | 40.0M | } |
687 | 1.29M | coeffs[64] = last_coeff; |
688 | | |
689 | | /* move into real domain */ |
690 | 1.29M | s->irdft_fn(s->irdft, coeffs_dst, coeffs, sizeof(AVComplexFloat)); |
691 | | |
692 | | /* tilt correction and normalize scale */ |
693 | 1.29M | memset(&coeffs_dst[remainder], 0, sizeof(coeffs_dst[0]) * (128 - remainder)); |
694 | 1.29M | if (s->denoise_tilt_corr) { |
695 | 989k | float tilt_mem = 0; |
696 | | |
697 | 989k | coeffs_dst[remainder - 1] = 0; |
698 | 989k | ff_tilt_compensation(&tilt_mem, |
699 | 989k | -1.8 * tilt_factor(coeffs_dst, remainder - 1), |
700 | 989k | coeffs_dst, remainder); |
701 | 989k | } |
702 | 1.29M | sq = (1.0 / 64.0) * sqrtf(1 / ff_scalarproduct_float_c(coeffs_dst, coeffs_dst, |
703 | 1.29M | remainder)); |
704 | 61.9M | for (n = 0; n < remainder; n++) |
705 | 60.6M | coeffs_dst[n] *= sq; |
706 | 1.29M | } |
707 | | |
708 | | /** |
709 | | * This function applies a Wiener filter on the (noisy) speech signal as |
710 | | * a means to denoise it. |
711 | | * |
712 | | * - take RDFT of LPCs to get the power spectrum of the noise + speech; |
713 | | * - using this power spectrum, calculate (for each frequency) the Wiener |
714 | | * filter gain, which depends on the frequency power and desired level |
715 | | * of noise subtraction (when set too high, this leads to artifacts) |
716 | | * We can do this symmetrically over the X-axis (so 0-4kHz is the inverse |
717 | | * of 4-8kHz); |
718 | | * - by doing a phase shift, calculate the Hilbert transform of this array |
719 | | * of per-frequency filter-gains to get the filtering coefficients; |
720 | | * - smoothen/normalize/de-tilt these filter coefficients as desired; |
721 | | * - take RDFT of noisy sound, apply the coefficients and take its IRDFT |
722 | | * to get the denoised speech signal; |
723 | | * - the leftover (i.e. output of the IRDFT on denoised speech data beyond |
724 | | * the frame boundary) are saved and applied to subsequent frames by an |
725 | | * overlap-add method (otherwise you get clicking-artifacts). |
726 | | * |
727 | | * @param s WMA Voice decoding context |
728 | | * @param fcb_type Frame (codebook) type |
729 | | * @param synth_pf input: the noisy speech signal, output: denoised speech |
730 | | * data; should be 16-byte aligned (for ASM purposes) |
731 | | * @param size size of the speech data |
732 | | * @param lpcs LPCs used to synthesize this frame's speech data |
733 | | */ |
734 | | static void wiener_denoise(WMAVoiceContext *s, int fcb_type, |
735 | | float *synth_pf, int size, |
736 | | const float *lpcs) |
737 | 1.30M | { |
738 | 1.30M | int remainder, lim, n; |
739 | | |
740 | 1.30M | if (fcb_type != FCB_TYPE_SILENCE) { |
741 | 1.29M | LOCAL_ALIGNED_32(float, coeffs_f, [0x82]); |
742 | 1.29M | LOCAL_ALIGNED_32(float, synth_f, [0x82]); |
743 | 1.29M | float *tilted_lpcs = s->tilted_lpcs_pf, |
744 | 1.29M | *coeffs = s->denoise_coeffs_pf, tilt_mem = 0; |
745 | | |
746 | 1.29M | tilted_lpcs[0] = 1.0; |
747 | 1.29M | memcpy(&tilted_lpcs[1], lpcs, sizeof(lpcs[0]) * s->lsps); |
748 | 1.29M | memset(&tilted_lpcs[s->lsps + 1], 0, |
749 | 1.29M | sizeof(tilted_lpcs[0]) * (128 - s->lsps - 1)); |
750 | 1.29M | ff_tilt_compensation(&tilt_mem, 0.7 * tilt_factor(lpcs, s->lsps), |
751 | 1.29M | tilted_lpcs, s->lsps + 2); |
752 | | |
753 | | /* The IRDFT output (127 samples for 7-bit filter) beyond the frame |
754 | | * size is applied to the next frame. All input beyond this is zero, |
755 | | * and thus all output beyond this will go towards zero, hence we can |
756 | | * limit to min(size-1, 127-size) as a performance consideration. */ |
757 | 1.29M | remainder = FFMIN(127 - size, size - 1); |
758 | 1.29M | calc_input_response(s, tilted_lpcs, fcb_type, coeffs, remainder); |
759 | | |
760 | | /* apply coefficients (in frequency spectrum domain), i.e. complex |
761 | | * number multiplication */ |
762 | 1.29M | memset(&synth_pf[size], 0, sizeof(synth_pf[0]) * (128 - size)); |
763 | 1.29M | s->rdft_fn(s->rdft, synth_f, synth_pf, sizeof(float)); |
764 | 1.29M | s->rdft_fn(s->rdft, coeffs_f, coeffs, sizeof(float)); |
765 | 1.29M | synth_f[0] *= coeffs_f[0]; |
766 | 1.29M | synth_f[1] *= coeffs_f[1]; |
767 | 83.8M | for (n = 1; n <= 64; n++) { |
768 | 82.5M | float v1 = synth_f[n * 2], v2 = synth_f[n * 2 + 1]; |
769 | 82.5M | synth_f[n * 2] = v1 * coeffs_f[n * 2] - v2 * coeffs_f[n * 2 + 1]; |
770 | 82.5M | synth_f[n * 2 + 1] = v2 * coeffs_f[n * 2] + v1 * coeffs_f[n * 2 + 1]; |
771 | 82.5M | } |
772 | 1.29M | s->irdft_fn(s->irdft, synth_pf, synth_f, sizeof(AVComplexFloat)); |
773 | 1.29M | } |
774 | | |
775 | | /* merge filter output with the history of previous runs */ |
776 | 1.30M | if (s->denoise_filter_cache_size) { |
777 | 1.28M | lim = FFMIN(s->denoise_filter_cache_size, size); |
778 | 61.9M | for (n = 0; n < lim; n++) |
779 | 60.6M | synth_pf[n] += s->denoise_filter_cache[n]; |
780 | 1.28M | s->denoise_filter_cache_size -= lim; |
781 | 1.28M | memmove(s->denoise_filter_cache, &s->denoise_filter_cache[size], |
782 | 1.28M | sizeof(s->denoise_filter_cache[0]) * s->denoise_filter_cache_size); |
783 | 1.28M | } |
784 | | |
785 | | /* move remainder of filter output into a cache for future runs */ |
786 | 1.30M | if (fcb_type != FCB_TYPE_SILENCE) { |
787 | 1.29M | lim = FFMIN(remainder, s->denoise_filter_cache_size); |
788 | 1.29M | for (n = 0; n < lim; n++) |
789 | 0 | s->denoise_filter_cache[n] += synth_pf[size + n]; |
790 | 1.29M | if (lim < remainder) { |
791 | 1.29M | memcpy(&s->denoise_filter_cache[lim], &synth_pf[size + lim], |
792 | 1.29M | sizeof(s->denoise_filter_cache[0]) * (remainder - lim)); |
793 | 1.29M | s->denoise_filter_cache_size = remainder; |
794 | 1.29M | } |
795 | 1.29M | } |
796 | 1.30M | } |
797 | | |
798 | | /** |
799 | | * Averaging projection filter, the postfilter used in WMAVoice. |
800 | | * |
801 | | * This uses the following steps: |
802 | | * - A zero-synthesis filter (generate excitation from synth signal) |
803 | | * - Kalman smoothing on excitation, based on pitch |
804 | | * - Re-synthesized smoothened output |
805 | | * - Iterative Wiener denoise filter |
806 | | * - Adaptive gain filter |
807 | | * - DC filter |
808 | | * |
809 | | * @param s WMAVoice decoding context |
810 | | * @param synth Speech synthesis output (before postfilter) |
811 | | * @param samples Output buffer for filtered samples |
812 | | * @param size Buffer size of synth & samples |
813 | | * @param lpcs Generated LPCs used for speech synthesis |
814 | | * @param zero_exc_pf destination for zero synthesis filter (16-byte aligned) |
815 | | * @param fcb_type Frame type (silence, hardcoded, AW-pulses or FCB-pulses) |
816 | | * @param pitch Pitch of the input signal |
817 | | */ |
818 | | static void postfilter(WMAVoiceContext *s, const float *synth, |
819 | | float *samples, int size, |
820 | | const float *lpcs, float *zero_exc_pf, |
821 | | int fcb_type, int pitch) |
822 | 1.30M | { |
823 | 1.30M | float synth_filter_in_buf[MAX_FRAMESIZE / 2], |
824 | 1.30M | *synth_pf = &s->synth_filter_out_buf[MAX_LSPS_ALIGN16], |
825 | 1.30M | *synth_filter_in = zero_exc_pf; |
826 | | |
827 | 1.30M | av_assert0(size <= MAX_FRAMESIZE / 2); |
828 | | |
829 | | /* generate excitation from input signal */ |
830 | 1.30M | ff_celp_lp_zero_synthesis_filterf(zero_exc_pf, lpcs, synth, size, s->lsps); |
831 | | |
832 | 1.30M | if (fcb_type >= FCB_TYPE_AW_PULSES && |
833 | 1.30M | !kalman_smoothen(s, pitch, zero_exc_pf, synth_filter_in_buf, size)) |
834 | 1.16M | synth_filter_in = synth_filter_in_buf; |
835 | | |
836 | | /* re-synthesize speech after smoothening, and keep history */ |
837 | 1.30M | ff_celp_lp_synthesis_filterf(synth_pf, lpcs, |
838 | 1.30M | synth_filter_in, size, s->lsps); |
839 | 1.30M | memcpy(&synth_pf[-s->lsps], &synth_pf[size - s->lsps], |
840 | 1.30M | sizeof(synth_pf[0]) * s->lsps); |
841 | | |
842 | 1.30M | wiener_denoise(s, fcb_type, synth_pf, size, lpcs); |
843 | | |
844 | 1.30M | adaptive_gain_control(samples, synth_pf, synth, size, 0.99, |
845 | 1.30M | &s->postfilter_agc); |
846 | | |
847 | 1.30M | if (s->dc_level > 8) { |
848 | | /* remove ultra-low frequency DC noise / highpass filter; |
849 | | * coefficients are identical to those used in SIPR decoding, |
850 | | * and very closely resemble those used in AMR-NB decoding. */ |
851 | 11.3k | ff_acelp_apply_order_2_transfer_function(samples, samples, |
852 | 11.3k | (const float[2]) { -1.99997, 1.0 }, |
853 | 11.3k | (const float[2]) { -1.9330735188, 0.93589198496 }, |
854 | 11.3k | 0.93980580475, s->dcf_mem, size); |
855 | 11.3k | } |
856 | 1.30M | } |
857 | | /** |
858 | | * @} |
859 | | */ |
860 | | |
861 | | /** |
862 | | * Dequantize LSPs |
863 | | * @param lsps output pointer to the array that will hold the LSPs |
864 | | * @param num number of LSPs to be dequantized |
865 | | * @param values quantized values, contains n_stages values |
866 | | * @param sizes range (i.e. max value) of each quantized value |
867 | | * @param n_stages number of dequantization runs |
868 | | * @param table dequantization table to be used |
869 | | * @param mul_q LSF multiplier |
870 | | * @param base_q base (lowest) LSF values |
871 | | */ |
872 | | static void dequant_lsps(double *lsps, int num, |
873 | | const uint16_t *values, |
874 | | const uint16_t *sizes, |
875 | | int n_stages, const uint8_t *table, |
876 | | const double *mul_q, |
877 | | const double *base_q) |
878 | 1.91M | { |
879 | 1.91M | int n, m; |
880 | | |
881 | 1.91M | memset(lsps, 0, num * sizeof(*lsps)); |
882 | 7.45M | for (n = 0; n < n_stages; n++) { |
883 | 5.54M | const uint8_t *t_off = &table[values[n] * num]; |
884 | 5.54M | double base = base_q[n], mul = mul_q[n]; |
885 | | |
886 | 67.5M | for (m = 0; m < num; m++) |
887 | 62.0M | lsps[m] += base + mul * t_off[m]; |
888 | | |
889 | 5.54M | table += sizes[n] * num; |
890 | 5.54M | } |
891 | 1.91M | } |
892 | | |
893 | | /** |
894 | | * @name LSP dequantization routines |
895 | | * LSP dequantization routines, for 10/16LSPs and independent/residual coding. |
896 | | * lsp10i() consumes 24 bits; lsp10r() consumes an additional 24 bits; |
897 | | * lsp16i() consumes 34 bits; lsp16r() consumes an additional 26 bits. |
898 | | * @{ |
899 | | */ |
900 | | /** |
901 | | * Parse 10 independently-coded LSPs. |
902 | | */ |
903 | | static void dequant_lsp10i(GetBitContext *gb, double *lsps) |
904 | 926k | { |
905 | 926k | static const uint16_t vec_sizes[4] = { 256, 64, 32, 32 }; |
906 | 926k | static const double mul_lsf[4] = { |
907 | 926k | 5.2187144800e-3, 1.4626986422e-3, |
908 | 926k | 9.6179549166e-4, 1.1325736225e-3 |
909 | 926k | }; |
910 | 926k | static const double base_lsf[4] = { |
911 | 926k | M_PI * -2.15522e-1, M_PI * -6.1646e-2, |
912 | 926k | M_PI * -3.3486e-2, M_PI * -5.7408e-2 |
913 | 926k | }; |
914 | 926k | uint16_t v[4]; |
915 | | |
916 | 926k | v[0] = get_bits(gb, 8); |
917 | 926k | v[1] = get_bits(gb, 6); |
918 | 926k | v[2] = get_bits(gb, 5); |
919 | 926k | v[3] = get_bits(gb, 5); |
920 | | |
921 | 926k | dequant_lsps(lsps, 10, v, vec_sizes, 4, wmavoice_dq_lsp10i, |
922 | 926k | mul_lsf, base_lsf); |
923 | 926k | } |
924 | | |
925 | | /** |
926 | | * Parse 10 independently-coded LSPs, and then derive the tables to |
927 | | * generate LSPs for the other frames from them (residual coding). |
928 | | */ |
929 | | static void dequant_lsp10r(GetBitContext *gb, |
930 | | double *i_lsps, const double *old, |
931 | | double *a1, double *a2, int q_mode) |
932 | 307k | { |
933 | 307k | static const uint16_t vec_sizes[3] = { 128, 64, 64 }; |
934 | 307k | static const double mul_lsf[3] = { |
935 | 307k | 2.5807601174e-3, 1.2354460219e-3, 1.1763821673e-3 |
936 | 307k | }; |
937 | 307k | static const double base_lsf[3] = { |
938 | 307k | M_PI * -1.07448e-1, M_PI * -5.2706e-2, M_PI * -5.1634e-2 |
939 | 307k | }; |
940 | 307k | const float (*ipol_tab)[2][10] = q_mode ? |
941 | 293k | wmavoice_lsp10_intercoeff_b : wmavoice_lsp10_intercoeff_a; |
942 | 307k | uint16_t interpol, v[3]; |
943 | 307k | int n; |
944 | | |
945 | 307k | dequant_lsp10i(gb, i_lsps); |
946 | | |
947 | 307k | interpol = get_bits(gb, 5); |
948 | 307k | v[0] = get_bits(gb, 7); |
949 | 307k | v[1] = get_bits(gb, 6); |
950 | 307k | v[2] = get_bits(gb, 6); |
951 | | |
952 | 3.38M | for (n = 0; n < 10; n++) { |
953 | 3.07M | double delta = old[n] - i_lsps[n]; |
954 | 3.07M | a1[n] = ipol_tab[interpol][0][n] * delta + i_lsps[n]; |
955 | 3.07M | a1[10 + n] = ipol_tab[interpol][1][n] * delta + i_lsps[n]; |
956 | 3.07M | } |
957 | | |
958 | 307k | dequant_lsps(a2, 20, v, vec_sizes, 3, wmavoice_dq_lsp10r, |
959 | 307k | mul_lsf, base_lsf); |
960 | 307k | } |
961 | | |
962 | | /** |
963 | | * Parse 16 independently-coded LSPs. |
964 | | */ |
965 | | static void dequant_lsp16i(GetBitContext *gb, double *lsps) |
966 | 120k | { |
967 | 120k | static const uint16_t vec_sizes[5] = { 256, 64, 128, 64, 128 }; |
968 | 120k | static const double mul_lsf[5] = { |
969 | 120k | 3.3439586280e-3, 6.9908173703e-4, |
970 | 120k | 3.3216608306e-3, 1.0334960326e-3, |
971 | 120k | 3.1899104283e-3 |
972 | 120k | }; |
973 | 120k | static const double base_lsf[5] = { |
974 | 120k | M_PI * -1.27576e-1, M_PI * -2.4292e-2, |
975 | 120k | M_PI * -1.28094e-1, M_PI * -3.2128e-2, |
976 | 120k | M_PI * -1.29816e-1 |
977 | 120k | }; |
978 | 120k | uint16_t v[5]; |
979 | | |
980 | 120k | v[0] = get_bits(gb, 8); |
981 | 120k | v[1] = get_bits(gb, 6); |
982 | 120k | v[2] = get_bits(gb, 7); |
983 | 120k | v[3] = get_bits(gb, 6); |
984 | 120k | v[4] = get_bits(gb, 7); |
985 | | |
986 | 120k | dequant_lsps( lsps, 5, v, vec_sizes, 2, |
987 | 120k | wmavoice_dq_lsp16i1, mul_lsf, base_lsf); |
988 | 120k | dequant_lsps(&lsps[5], 5, &v[2], &vec_sizes[2], 2, |
989 | 120k | wmavoice_dq_lsp16i2, &mul_lsf[2], &base_lsf[2]); |
990 | 120k | dequant_lsps(&lsps[10], 6, &v[4], &vec_sizes[4], 1, |
991 | 120k | wmavoice_dq_lsp16i3, &mul_lsf[4], &base_lsf[4]); |
992 | 120k | } |
993 | | |
994 | | /** |
995 | | * Parse 16 independently-coded LSPs, and then derive the tables to |
996 | | * generate LSPs for the other frames from them (residual coding). |
997 | | */ |
998 | | static void dequant_lsp16r(GetBitContext *gb, |
999 | | double *i_lsps, const double *old, |
1000 | | double *a1, double *a2, int q_mode) |
1001 | 105k | { |
1002 | 105k | static const uint16_t vec_sizes[3] = { 128, 128, 128 }; |
1003 | 105k | static const double mul_lsf[3] = { |
1004 | 105k | 1.2232979501e-3, 1.4062241527e-3, 1.6114744851e-3 |
1005 | 105k | }; |
1006 | 105k | static const double base_lsf[3] = { |
1007 | 105k | M_PI * -5.5830e-2, M_PI * -5.2908e-2, M_PI * -5.4776e-2 |
1008 | 105k | }; |
1009 | 105k | const float (*ipol_tab)[2][16] = q_mode ? |
1010 | 101k | wmavoice_lsp16_intercoeff_b : wmavoice_lsp16_intercoeff_a; |
1011 | 105k | uint16_t interpol, v[3]; |
1012 | 105k | int n; |
1013 | | |
1014 | 105k | dequant_lsp16i(gb, i_lsps); |
1015 | | |
1016 | 105k | interpol = get_bits(gb, 5); |
1017 | 105k | v[0] = get_bits(gb, 7); |
1018 | 105k | v[1] = get_bits(gb, 7); |
1019 | 105k | v[2] = get_bits(gb, 7); |
1020 | | |
1021 | 1.79M | for (n = 0; n < 16; n++) { |
1022 | 1.69M | double delta = old[n] - i_lsps[n]; |
1023 | 1.69M | a1[n] = ipol_tab[interpol][0][n] * delta + i_lsps[n]; |
1024 | 1.69M | a1[16 + n] = ipol_tab[interpol][1][n] * delta + i_lsps[n]; |
1025 | 1.69M | } |
1026 | | |
1027 | 105k | dequant_lsps( a2, 10, v, vec_sizes, 1, |
1028 | 105k | wmavoice_dq_lsp16r1, mul_lsf, base_lsf); |
1029 | 105k | dequant_lsps(&a2[10], 10, &v[1], &vec_sizes[1], 1, |
1030 | 105k | wmavoice_dq_lsp16r2, &mul_lsf[1], &base_lsf[1]); |
1031 | 105k | dequant_lsps(&a2[20], 12, &v[2], &vec_sizes[2], 1, |
1032 | 105k | wmavoice_dq_lsp16r3, &mul_lsf[2], &base_lsf[2]); |
1033 | 105k | } |
1034 | | |
1035 | | /** |
1036 | | * @} |
1037 | | * @name Pitch-adaptive window coding functions |
1038 | | * The next few functions are for pitch-adaptive window coding. |
1039 | | * @{ |
1040 | | */ |
1041 | | /** |
1042 | | * Parse the offset of the first pitch-adaptive window pulses, and |
1043 | | * the distribution of pulses between the two blocks in this frame. |
1044 | | * @param s WMA Voice decoding context private data |
1045 | | * @param gb bit I/O context |
1046 | | * @param pitch pitch for each block in this frame |
1047 | | */ |
1048 | | static void aw_parse_coords(WMAVoiceContext *s, GetBitContext *gb, |
1049 | | const int *pitch) |
1050 | 433k | { |
1051 | 433k | static const int16_t start_offset[94] = { |
1052 | 433k | -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, |
1053 | 433k | 13, 15, 18, 17, 19, 20, 21, 22, 23, 24, 25, 26, |
1054 | 433k | 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 41, 43, |
1055 | 433k | 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, |
1056 | 433k | 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, |
1057 | 433k | 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, |
1058 | 433k | 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, |
1059 | 433k | 141, 143, 145, 147, 149, 151, 153, 155, 157, 159 |
1060 | 433k | }; |
1061 | 433k | int bits, offset; |
1062 | | |
1063 | | /* position of pulse */ |
1064 | 433k | s->aw_idx_is_ext = 0; |
1065 | 433k | if ((bits = get_bits(gb, 6)) >= 54) { |
1066 | 1.25k | s->aw_idx_is_ext = 1; |
1067 | 1.25k | bits += (bits - 54) * 3 + get_bits(gb, 2); |
1068 | 1.25k | } |
1069 | | |
1070 | | /* for a repeated pulse at pulse_off with a pitch_lag of pitch[], count |
1071 | | * the distribution of the pulses in each block contained in this frame. */ |
1072 | 433k | s->aw_pulse_range = FFMIN(pitch[0], pitch[1]) > 32 ? 24 : 16; |
1073 | 453k | for (offset = start_offset[bits]; offset < 0; offset += pitch[0]) ; |
1074 | 433k | s->aw_n_pulses[0] = (pitch[0] - 1 + MAX_FRAMESIZE / 2 - offset) / pitch[0]; |
1075 | 433k | s->aw_first_pulse_off[0] = offset - s->aw_pulse_range / 2; |
1076 | 433k | offset += s->aw_n_pulses[0] * pitch[0]; |
1077 | 433k | s->aw_n_pulses[1] = (pitch[1] - 1 + MAX_FRAMESIZE - offset) / pitch[1]; |
1078 | 433k | s->aw_first_pulse_off[1] = offset - (MAX_FRAMESIZE + s->aw_pulse_range) / 2; |
1079 | | |
1080 | | /* if continuing from a position before the block, reset position to |
1081 | | * start of block (when corrected for the range over which it can be |
1082 | | * spread in aw_pulse_set1()). */ |
1083 | 433k | if (start_offset[bits] < MAX_FRAMESIZE / 2) { |
1084 | 434k | while (s->aw_first_pulse_off[1] - pitch[1] + s->aw_pulse_range > 0) |
1085 | 2.77k | s->aw_first_pulse_off[1] -= pitch[1]; |
1086 | 432k | if (start_offset[bits] < 0) |
1087 | 29.5k | while (s->aw_first_pulse_off[0] - pitch[0] + s->aw_pulse_range > 0) |
1088 | 9.29k | s->aw_first_pulse_off[0] -= pitch[0]; |
1089 | 432k | } |
1090 | 433k | } |
1091 | | |
1092 | | /** |
1093 | | * Apply second set of pitch-adaptive window pulses. |
1094 | | * @param s WMA Voice decoding context private data |
1095 | | * @param gb bit I/O context |
1096 | | * @param block_idx block index in frame [0, 1] |
1097 | | * @param fcb structure containing fixed codebook vector info |
1098 | | * @return -1 on error, 0 otherwise |
1099 | | */ |
1100 | | static int aw_pulse_set2(WMAVoiceContext *s, GetBitContext *gb, |
1101 | | int block_idx, AMRFixed *fcb) |
1102 | 866k | { |
1103 | 866k | uint16_t use_mask_mem[9]; // only 5 are used, rest is padding |
1104 | 866k | uint16_t *use_mask = use_mask_mem + 2; |
1105 | | /* in this function, idx is the index in the 80-bit (+ padding) use_mask |
1106 | | * bit-array. Since use_mask consists of 16-bit values, the lower 4 bits |
1107 | | * of idx are the position of the bit within a particular item in the |
1108 | | * array (0 being the most significant bit, and 15 being the least |
1109 | | * significant bit), and the remainder (>> 4) is the index in the |
1110 | | * use_mask[]-array. This is faster and uses less memory than using a |
1111 | | * 80-byte/80-int array. */ |
1112 | 866k | int pulse_off = s->aw_first_pulse_off[block_idx], |
1113 | 866k | pulse_start, n, idx, range, aidx, start_off = 0; |
1114 | | |
1115 | | /* set offset of first pulse to within this block */ |
1116 | 866k | if (s->aw_n_pulses[block_idx] > 0) |
1117 | 459k | while (pulse_off + s->aw_pulse_range < 1) |
1118 | 0 | pulse_off += fcb->pitch_lag; |
1119 | | |
1120 | | /* find range per pulse */ |
1121 | 866k | if (s->aw_n_pulses[0] > 0) { |
1122 | 863k | if (block_idx == 0) { |
1123 | 431k | range = 32; |
1124 | 431k | } else /* block_idx = 1 */ { |
1125 | 431k | range = 8; |
1126 | 431k | if (s->aw_n_pulses[block_idx] > 0) |
1127 | 26.2k | pulse_off = s->aw_next_pulse_off_cache; |
1128 | 431k | } |
1129 | 863k | } else |
1130 | 3.62k | range = 16; |
1131 | 866k | pulse_start = s->aw_n_pulses[block_idx] > 0 ? pulse_off - range / 2 : 0; |
1132 | | |
1133 | | /* aw_pulse_set1() already applies pulses around pulse_off (to be exactly, |
1134 | | * in the range of [pulse_off, pulse_off + s->aw_pulse_range], and thus |
1135 | | * we exclude that range from being pulsed again in this function. */ |
1136 | 866k | memset(&use_mask[-2], 0, 2 * sizeof(use_mask[0])); |
1137 | 866k | memset( use_mask, -1, 5 * sizeof(use_mask[0])); |
1138 | 866k | memset(&use_mask[5], 0, 2 * sizeof(use_mask[0])); |
1139 | 866k | if (s->aw_n_pulses[block_idx] > 0) |
1140 | 1.01M | for (idx = pulse_off; idx < MAX_FRAMESIZE / 2; idx += fcb->pitch_lag) { |
1141 | 556k | int excl_range = s->aw_pulse_range; // always 16 or 24 |
1142 | 556k | uint16_t *use_mask_ptr = &use_mask[idx >> 4]; |
1143 | 556k | int first_sh = 16 - (idx & 15); |
1144 | 556k | *use_mask_ptr++ &= 0xFFFFu << first_sh; |
1145 | 556k | excl_range -= first_sh; |
1146 | 556k | if (excl_range >= 16) { |
1147 | 436k | *use_mask_ptr++ = 0; |
1148 | 436k | *use_mask_ptr &= 0xFFFF >> (excl_range - 16); |
1149 | 436k | } else |
1150 | 119k | *use_mask_ptr &= 0xFFFF >> excl_range; |
1151 | 556k | } |
1152 | | |
1153 | | /* find the 'aidx'th offset that is not excluded */ |
1154 | 866k | aidx = get_bits(gb, s->aw_n_pulses[0] > 0 ? 5 - 2 * block_idx : 4); |
1155 | 3.57M | for (n = 0; n <= aidx; pulse_start++) { |
1156 | 2.95M | for (idx = pulse_start; idx < 0; idx += fcb->pitch_lag) ; |
1157 | 2.71M | if (idx >= MAX_FRAMESIZE / 2) { // find from zero |
1158 | 19.5k | if (use_mask[0]) idx = 0x0F; |
1159 | 5.40k | else if (use_mask[1]) idx = 0x1F; |
1160 | 2.49k | else if (use_mask[2]) idx = 0x2F; |
1161 | 1.72k | else if (use_mask[3]) idx = 0x3F; |
1162 | 1.72k | else if (use_mask[4]) idx = 0x4F; |
1163 | 1.72k | else return -1; |
1164 | 17.8k | idx -= av_log2_16bit(use_mask[idx >> 4]); |
1165 | 17.8k | } |
1166 | 2.71M | if (use_mask[idx >> 4] & (0x8000 >> (idx & 15))) { |
1167 | 2.26M | use_mask[idx >> 4] &= ~(0x8000 >> (idx & 15)); |
1168 | 2.26M | n++; |
1169 | 2.26M | start_off = idx; |
1170 | 2.26M | } |
1171 | 2.71M | } |
1172 | | |
1173 | 864k | fcb->x[fcb->n] = start_off; |
1174 | 864k | fcb->y[fcb->n] = get_bits1(gb) ? -1.0 : 1.0; |
1175 | 864k | fcb->n++; |
1176 | | |
1177 | | /* set offset for next block, relative to start of that block */ |
1178 | 864k | n = (MAX_FRAMESIZE / 2 - start_off) % fcb->pitch_lag; |
1179 | 864k | s->aw_next_pulse_off_cache = n ? fcb->pitch_lag - n : 0; |
1180 | 864k | return 0; |
1181 | 866k | } |
1182 | | |
1183 | | /** |
1184 | | * Apply first set of pitch-adaptive window pulses. |
1185 | | * @param s WMA Voice decoding context private data |
1186 | | * @param gb bit I/O context |
1187 | | * @param block_idx block index in frame [0, 1] |
1188 | | * @param fcb storage location for fixed codebook pulse info |
1189 | | */ |
1190 | | static void aw_pulse_set1(WMAVoiceContext *s, GetBitContext *gb, |
1191 | | int block_idx, AMRFixed *fcb) |
1192 | 866k | { |
1193 | 866k | int val = get_bits(gb, 12 - 2 * (s->aw_idx_is_ext && !block_idx)); |
1194 | 866k | float v; |
1195 | | |
1196 | 866k | if (s->aw_n_pulses[block_idx] > 0) { |
1197 | 459k | int n, v_mask, i_mask, sh, n_pulses; |
1198 | | |
1199 | 459k | if (s->aw_pulse_range == 24) { // 3 pulses, 1:sign + 3:index each |
1200 | 432k | n_pulses = 3; |
1201 | 432k | v_mask = 8; |
1202 | 432k | i_mask = 7; |
1203 | 432k | sh = 4; |
1204 | 432k | } else { // 4 pulses, 1:sign + 2:index each |
1205 | 27.1k | n_pulses = 4; |
1206 | 27.1k | v_mask = 4; |
1207 | 27.1k | i_mask = 3; |
1208 | 27.1k | sh = 3; |
1209 | 27.1k | } |
1210 | | |
1211 | 1.86M | for (n = n_pulses - 1; n >= 0; n--, val >>= sh) { |
1212 | 1.40M | fcb->y[fcb->n] = (val & v_mask) ? -1.0 : 1.0; |
1213 | 1.40M | fcb->x[fcb->n] = (val & i_mask) * n_pulses + n + |
1214 | 1.40M | s->aw_first_pulse_off[block_idx]; |
1215 | 1.48M | while (fcb->x[fcb->n] < 0) |
1216 | 77.5k | fcb->x[fcb->n] += fcb->pitch_lag; |
1217 | 1.40M | if (fcb->x[fcb->n] < MAX_FRAMESIZE / 2) |
1218 | 1.40M | fcb->n++; |
1219 | 1.40M | } |
1220 | 459k | } else { |
1221 | 407k | int num2 = (val & 0x1FF) >> 1, delta, idx; |
1222 | | |
1223 | 407k | if (num2 < 1 * 79) { delta = 1; idx = num2 + 1; } |
1224 | 57.9k | else if (num2 < 2 * 78) { delta = 3; idx = num2 + 1 - 1 * 77; } |
1225 | 2.02k | else if (num2 < 3 * 77) { delta = 5; idx = num2 + 1 - 2 * 76; } |
1226 | 1.05k | else { delta = 7; idx = num2 + 1 - 3 * 75; } |
1227 | 407k | v = (val & 0x200) ? -1.0 : 1.0; |
1228 | | |
1229 | 407k | fcb->no_repeat_mask |= 3 << fcb->n; |
1230 | 407k | fcb->x[fcb->n] = idx - delta; |
1231 | 407k | fcb->y[fcb->n] = v; |
1232 | 407k | fcb->x[fcb->n + 1] = idx; |
1233 | 407k | fcb->y[fcb->n + 1] = (val & 1) ? -v : v; |
1234 | 407k | fcb->n += 2; |
1235 | 407k | } |
1236 | 866k | } |
1237 | | |
1238 | | /** |
1239 | | * @} |
1240 | | * |
1241 | | * Generate a random number from frame_cntr and block_idx, which will live |
1242 | | * in the range [0, 1000 - block_size] (so it can be used as an index in a |
1243 | | * table of size 1000 of which you want to read block_size entries). |
1244 | | * |
1245 | | * @param frame_cntr current frame number |
1246 | | * @param block_num current block index |
1247 | | * @param block_size amount of entries we want to read from a table |
1248 | | * that has 1000 entries |
1249 | | * @return a (non-)random number in the [0, 1000 - block_size] range. |
1250 | | */ |
1251 | | static int pRNG(int frame_cntr, int block_num, int block_size) |
1252 | 778k | { |
1253 | | /* array to simplify the calculation of z: |
1254 | | * y = (x % 9) * 5 + 6; |
1255 | | * z = (49995 * x) / y; |
1256 | | * Since y only has 9 values, we can remove the division by using a |
1257 | | * LUT and using FASTDIV-style divisions. For each of the 9 values |
1258 | | * of y, we can rewrite z as: |
1259 | | * z = x * (49995 / y) + x * ((49995 % y) / y) |
1260 | | * In this table, each col represents one possible value of y, the |
1261 | | * first number is 49995 / y, and the second is the FASTDIV variant |
1262 | | * of 49995 % y / y. */ |
1263 | 778k | static const unsigned int div_tbl[9][2] = { |
1264 | 778k | { 8332, 3 * 715827883U }, // y = 6 |
1265 | 778k | { 4545, 0 * 390451573U }, // y = 11 |
1266 | 778k | { 3124, 11 * 268435456U }, // y = 16 |
1267 | 778k | { 2380, 15 * 204522253U }, // y = 21 |
1268 | 778k | { 1922, 23 * 165191050U }, // y = 26 |
1269 | 778k | { 1612, 23 * 138547333U }, // y = 31 |
1270 | 778k | { 1388, 27 * 119304648U }, // y = 36 |
1271 | 778k | { 1219, 16 * 104755300U }, // y = 41 |
1272 | 778k | { 1086, 39 * 93368855U } // y = 46 |
1273 | 778k | }; |
1274 | 778k | unsigned int z, y, x = MUL16(block_num, 1877) + frame_cntr; |
1275 | 778k | if (x >= 0xFFFF) x -= 0xFFFF; // max value of x is 8*1877+0xFFFE=0x13AA6, |
1276 | | // so this is effectively a modulo (%) |
1277 | 778k | y = x - 9 * MULH(477218589, x); // x % 9 |
1278 | 778k | z = (uint16_t) (x * div_tbl[y][0] + UMULH(x, div_tbl[y][1])); |
1279 | | // z = x * 49995 / (y * 5 + 6) |
1280 | 778k | return z % (1000 - block_size); |
1281 | 778k | } |
1282 | | |
1283 | | /** |
1284 | | * Parse hardcoded signal for a single block. |
1285 | | * @note see #synth_block(). |
1286 | | */ |
1287 | | static void synth_block_hardcoded(WMAVoiceContext *s, GetBitContext *gb, |
1288 | | int block_idx, int size, |
1289 | | const struct frame_type_desc *frame_desc, |
1290 | | float *excitation) |
1291 | 808k | { |
1292 | 808k | float gain; |
1293 | 808k | int n, r_idx; |
1294 | | |
1295 | 808k | av_assert0(size <= MAX_FRAMESIZE); |
1296 | | |
1297 | | /* Set the offset from which we start reading wmavoice_std_codebook */ |
1298 | 808k | if (frame_desc->fcb_type == FCB_TYPE_SILENCE) { |
1299 | 776k | r_idx = pRNG(s->frame_cntr, block_idx, size); |
1300 | 776k | gain = s->silence_gain; |
1301 | 776k | } else /* FCB_TYPE_HARDCODED */ { |
1302 | 31.6k | r_idx = get_bits(gb, 8); |
1303 | 31.6k | gain = wmavoice_gain_universal[get_bits(gb, 6)]; |
1304 | 31.6k | } |
1305 | | |
1306 | | /* Clear gain prediction parameters */ |
1307 | 808k | memset(s->gain_pred_err, 0, sizeof(s->gain_pred_err)); |
1308 | | |
1309 | | /* Apply gain to hardcoded codebook and use that as excitation signal */ |
1310 | 127M | for (n = 0; n < size; n++) |
1311 | 126M | excitation[n] = wmavoice_std_codebook[r_idx + n] * gain; |
1312 | 808k | } |
1313 | | |
1314 | | /** |
1315 | | * Parse FCB/ACB signal for a single block. |
1316 | | * @note see #synth_block(). |
1317 | | */ |
1318 | | static void synth_block_fcb_acb(WMAVoiceContext *s, GetBitContext *gb, |
1319 | | int block_idx, int size, |
1320 | | int block_pitch_sh2, |
1321 | | const struct frame_type_desc *frame_desc, |
1322 | | float *excitation) |
1323 | 4.27M | { |
1324 | 4.27M | static const float gain_coeff[6] = { |
1325 | 4.27M | 0.8169, -0.06545, 0.1726, 0.0185, -0.0359, 0.0458 |
1326 | 4.27M | }; |
1327 | 4.27M | float pulses[MAX_FRAMESIZE / 2], pred_err, acb_gain, fcb_gain; |
1328 | 4.27M | int n, idx, gain_weight; |
1329 | 4.27M | AMRFixed fcb; |
1330 | | |
1331 | 4.27M | av_assert0(size <= MAX_FRAMESIZE / 2); |
1332 | 4.27M | memset(pulses, 0, sizeof(*pulses) * size); |
1333 | | |
1334 | 4.27M | fcb.pitch_lag = block_pitch_sh2 >> 2; |
1335 | 4.27M | fcb.pitch_fac = 1.0; |
1336 | 4.27M | fcb.no_repeat_mask = 0; |
1337 | 4.27M | fcb.n = 0; |
1338 | | |
1339 | | /* For the other frame types, this is where we apply the innovation |
1340 | | * (fixed) codebook pulses of the speech signal. */ |
1341 | 4.27M | if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) { |
1342 | 866k | aw_pulse_set1(s, gb, block_idx, &fcb); |
1343 | 866k | if (aw_pulse_set2(s, gb, block_idx, &fcb)) { |
1344 | | /* Conceal the block with silence and return. |
1345 | | * Skip the correct amount of bits to read the next |
1346 | | * block from the correct offset. */ |
1347 | 1.72k | int r_idx = pRNG(s->frame_cntr, block_idx, size); |
1348 | | |
1349 | 139k | for (n = 0; n < size; n++) |
1350 | 138k | excitation[n] = |
1351 | 138k | wmavoice_std_codebook[r_idx + n] * s->silence_gain; |
1352 | 1.72k | skip_bits(gb, 7 + 1); |
1353 | 1.72k | return; |
1354 | 1.72k | } |
1355 | 3.41M | } else /* FCB_TYPE_EXC_PULSES */ { |
1356 | 3.41M | int offset_nbits = 5 - frame_desc->log_n_blocks; |
1357 | | |
1358 | 3.41M | fcb.no_repeat_mask = -1; |
1359 | | /* similar to ff_decode_10_pulses_35bits(), but with single pulses |
1360 | | * (instead of double) for a subset of pulses */ |
1361 | 20.4M | for (n = 0; n < 5; n++) { |
1362 | 17.0M | float sign; |
1363 | 17.0M | int pos1, pos2; |
1364 | | |
1365 | 17.0M | sign = get_bits1(gb) ? 1.0 : -1.0; |
1366 | 17.0M | pos1 = get_bits(gb, offset_nbits); |
1367 | 17.0M | fcb.x[fcb.n] = n + 5 * pos1; |
1368 | 17.0M | fcb.y[fcb.n++] = sign; |
1369 | 17.0M | if (n < frame_desc->dbl_pulses) { |
1370 | 2.50M | pos2 = get_bits(gb, offset_nbits); |
1371 | 2.50M | fcb.x[fcb.n] = n + 5 * pos2; |
1372 | 2.50M | fcb.y[fcb.n++] = (pos1 < pos2) ? -sign : sign; |
1373 | 2.50M | } |
1374 | 17.0M | } |
1375 | 3.41M | } |
1376 | 4.27M | ff_set_fixed_vector(pulses, &fcb, 1.0, size); |
1377 | | |
1378 | | /* Calculate gain for adaptive & fixed codebook signal. |
1379 | | * see ff_amr_set_fixed_gain(). */ |
1380 | 4.27M | idx = get_bits(gb, 7); |
1381 | 4.27M | fcb_gain = expf(ff_scalarproduct_float_c(s->gain_pred_err, |
1382 | 4.27M | gain_coeff, 6) - |
1383 | 4.27M | 5.2409161640 + wmavoice_gain_codebook_fcb[idx]); |
1384 | 4.27M | acb_gain = wmavoice_gain_codebook_acb[idx]; |
1385 | 4.27M | pred_err = av_clipf(wmavoice_gain_codebook_fcb[idx], |
1386 | 4.27M | -2.9957322736 /* log(0.05) */, |
1387 | 4.27M | 1.6094379124 /* log(5.0) */); |
1388 | | |
1389 | 4.27M | gain_weight = 8 >> frame_desc->log_n_blocks; |
1390 | 4.27M | memmove(&s->gain_pred_err[gain_weight], s->gain_pred_err, |
1391 | 4.27M | sizeof(*s->gain_pred_err) * (6 - gain_weight)); |
1392 | 12.8M | for (n = 0; n < gain_weight; n++) |
1393 | 8.59M | s->gain_pred_err[n] = pred_err; |
1394 | | |
1395 | | /* Calculation of adaptive codebook */ |
1396 | 4.27M | if (frame_desc->acb_type == ACB_TYPE_ASYMMETRIC) { |
1397 | 1.96M | int len; |
1398 | 4.00M | for (n = 0; n < size; n += len) { |
1399 | 2.03M | int next_idx_sh16; |
1400 | 2.03M | int abs_idx = block_idx * size + n; |
1401 | 2.03M | int pitch_sh16 = (s->last_pitch_val << 16) + |
1402 | 2.03M | s->pitch_diff_sh16 * abs_idx; |
1403 | 2.03M | int pitch = (pitch_sh16 + 0x6FFF) >> 16; |
1404 | 2.03M | int idx_sh16 = ((pitch << 16) - pitch_sh16) * 8 + 0x58000; |
1405 | 2.03M | idx = idx_sh16 >> 16; |
1406 | 2.03M | if (s->pitch_diff_sh16) { |
1407 | 75.9k | if (s->pitch_diff_sh16 > 0) { |
1408 | 34.8k | next_idx_sh16 = (idx_sh16) &~ 0xFFFF; |
1409 | 34.8k | } else |
1410 | 41.0k | next_idx_sh16 = (idx_sh16 + 0x10000) &~ 0xFFFF; |
1411 | 75.9k | len = av_clip((idx_sh16 - next_idx_sh16) / s->pitch_diff_sh16 / 8, |
1412 | 75.9k | 1, size - n); |
1413 | 75.9k | } else |
1414 | 1.96M | len = size; |
1415 | | |
1416 | 2.03M | ff_acelp_interpolatef(&excitation[n], &excitation[n - pitch], |
1417 | 2.03M | wmavoice_ipol1_coeffs, 17, |
1418 | 2.03M | idx, 9, len); |
1419 | 2.03M | } |
1420 | 2.30M | } else /* ACB_TYPE_HAMMING */ { |
1421 | 2.30M | int block_pitch = block_pitch_sh2 >> 2; |
1422 | 2.30M | idx = block_pitch_sh2 & 3; |
1423 | 2.30M | if (idx) { |
1424 | 7.79k | ff_acelp_interpolatef(excitation, &excitation[-block_pitch], |
1425 | 7.79k | wmavoice_ipol2_coeffs, 4, |
1426 | 7.79k | idx, 8, size); |
1427 | 7.79k | } else |
1428 | 2.30M | av_memcpy_backptr((uint8_t *) excitation, sizeof(float) * block_pitch, |
1429 | 2.30M | sizeof(float) * size); |
1430 | 2.30M | } |
1431 | | |
1432 | | /* Interpolate ACB/FCB and use as excitation signal */ |
1433 | 4.27M | ff_weighted_vector_sumf(excitation, excitation, pulses, |
1434 | 4.27M | acb_gain, fcb_gain, size); |
1435 | 4.27M | } |
1436 | | |
1437 | | /** |
1438 | | * Parse data in a single block. |
1439 | | * |
1440 | | * @param s WMA Voice decoding context private data |
1441 | | * @param gb bit I/O context |
1442 | | * @param block_idx index of the to-be-read block |
1443 | | * @param size amount of samples to be read in this block |
1444 | | * @param block_pitch_sh2 pitch for this block << 2 |
1445 | | * @param lsps LSPs for (the end of) this frame |
1446 | | * @param prev_lsps LSPs for the last frame |
1447 | | * @param frame_desc frame type descriptor |
1448 | | * @param excitation target memory for the ACB+FCB interpolated signal |
1449 | | * @param synth target memory for the speech synthesis filter output |
1450 | | * @return 0 on success, <0 on error. |
1451 | | */ |
1452 | | static void synth_block(WMAVoiceContext *s, GetBitContext *gb, |
1453 | | int block_idx, int size, |
1454 | | int block_pitch_sh2, |
1455 | | const double *lsps, const double *prev_lsps, |
1456 | | const struct frame_type_desc *frame_desc, |
1457 | | float *excitation, float *synth) |
1458 | 5.08M | { |
1459 | 5.08M | double i_lsps[MAX_LSPS]; |
1460 | 5.08M | float lpcs[MAX_LSPS]; |
1461 | 5.08M | float fac; |
1462 | 5.08M | int n; |
1463 | | |
1464 | 5.08M | if (frame_desc->acb_type == ACB_TYPE_NONE) |
1465 | 808k | synth_block_hardcoded(s, gb, block_idx, size, frame_desc, excitation); |
1466 | 4.27M | else |
1467 | 4.27M | synth_block_fcb_acb(s, gb, block_idx, size, block_pitch_sh2, |
1468 | 4.27M | frame_desc, excitation); |
1469 | | |
1470 | | /* convert interpolated LSPs to LPCs */ |
1471 | 5.08M | fac = (block_idx + 0.5) / frame_desc->n_blocks; |
1472 | 59.0M | for (n = 0; n < s->lsps; n++) // LSF -> LSP |
1473 | 53.9M | i_lsps[n] = cos(prev_lsps[n] + fac * (lsps[n] - prev_lsps[n])); |
1474 | 5.08M | ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1); |
1475 | | |
1476 | | /* Speech synthesis */ |
1477 | 5.08M | ff_celp_lp_synthesis_filterf(synth, lpcs, excitation, size, s->lsps); |
1478 | 5.08M | } |
1479 | | |
1480 | | /** |
1481 | | * Synthesize output samples for a single frame. |
1482 | | * |
1483 | | * @param ctx WMA Voice decoder context |
1484 | | * @param gb bit I/O context (s->gb or one for cross-packet superframes) |
1485 | | * @param frame_idx Frame number within superframe [0-2] |
1486 | | * @param samples pointer to output sample buffer, has space for at least 160 |
1487 | | * samples |
1488 | | * @param lsps LSP array |
1489 | | * @param prev_lsps array of previous frame's LSPs |
1490 | | * @param excitation target buffer for excitation signal |
1491 | | * @param synth target buffer for synthesized speech data |
1492 | | * @return 0 on success, <0 on error. |
1493 | | */ |
1494 | | static int synth_frame(AVCodecContext *ctx, GetBitContext *gb, int frame_idx, |
1495 | | float *samples, |
1496 | | const double *lsps, const double *prev_lsps, |
1497 | | float *excitation, float *synth) |
1498 | 1.87M | { |
1499 | 1.87M | WMAVoiceContext *s = ctx->priv_data; |
1500 | 1.87M | int n, n_blocks_x2, log_n_blocks_x2, av_uninit(cur_pitch_val); |
1501 | 1.87M | int pitch[MAX_BLOCKS], av_uninit(last_block_pitch); |
1502 | | |
1503 | | /* Parse frame type ("frame header"), see frame_descs */ |
1504 | 1.87M | int bd_idx = s->vbm_tree[get_vlc2(gb, frame_type_vlc, 6, 3)], block_nsamples; |
1505 | | |
1506 | 1.87M | pitch[0] = INT_MAX; |
1507 | | |
1508 | 1.87M | if (bd_idx < 0) { |
1509 | 3.75k | av_log(ctx, AV_LOG_ERROR, |
1510 | 3.75k | "Invalid frame type VLC code, skipping\n"); |
1511 | 3.75k | return AVERROR_INVALIDDATA; |
1512 | 3.75k | } |
1513 | | |
1514 | 1.86M | block_nsamples = MAX_FRAMESIZE / frame_descs[bd_idx].n_blocks; |
1515 | | |
1516 | | /* Pitch calculation for ACB_TYPE_ASYMMETRIC ("pitch-per-frame") */ |
1517 | 1.86M | if (frame_descs[bd_idx].acb_type == ACB_TYPE_ASYMMETRIC) { |
1518 | | /* Pitch is provided per frame, which is interpreted as the pitch of |
1519 | | * the last sample of the last block of this frame. We can interpolate |
1520 | | * the pitch of other blocks (and even pitch-per-sample) by gradually |
1521 | | * incrementing/decrementing prev_frame_pitch to cur_pitch_val. */ |
1522 | 747k | n_blocks_x2 = frame_descs[bd_idx].n_blocks << 1; |
1523 | 747k | log_n_blocks_x2 = frame_descs[bd_idx].log_n_blocks + 1; |
1524 | 747k | cur_pitch_val = s->min_pitch_val + get_bits(gb, s->pitch_nbits); |
1525 | 747k | cur_pitch_val = FFMIN(cur_pitch_val, s->max_pitch_val - 1); |
1526 | 747k | if (s->last_acb_type == ACB_TYPE_NONE || |
1527 | 747k | 20 * abs(cur_pitch_val - s->last_pitch_val) > |
1528 | 383k | (cur_pitch_val + s->last_pitch_val)) |
1529 | 626k | s->last_pitch_val = cur_pitch_val; |
1530 | | |
1531 | | /* pitch per block */ |
1532 | 2.71M | for (n = 0; n < frame_descs[bd_idx].n_blocks; n++) { |
1533 | 1.96M | int fac = n * 2 + 1; |
1534 | | |
1535 | 1.96M | pitch[n] = (MUL16(fac, cur_pitch_val) + |
1536 | 1.96M | MUL16((n_blocks_x2 - fac), s->last_pitch_val) + |
1537 | 1.96M | frame_descs[bd_idx].n_blocks) >> log_n_blocks_x2; |
1538 | 1.96M | } |
1539 | | |
1540 | | /* "pitch-diff-per-sample" for calculation of pitch per sample */ |
1541 | 747k | s->pitch_diff_sh16 = |
1542 | 747k | (cur_pitch_val - s->last_pitch_val) * (1 << 16) / MAX_FRAMESIZE; |
1543 | 747k | } |
1544 | | |
1545 | | /* Global gain (if silence) and pitch-adaptive window coordinates */ |
1546 | 1.86M | switch (frame_descs[bd_idx].fcb_type) { |
1547 | 776k | case FCB_TYPE_SILENCE: |
1548 | 776k | s->silence_gain = wmavoice_gain_silence[get_bits(gb, 8)]; |
1549 | 776k | break; |
1550 | 433k | case FCB_TYPE_AW_PULSES: |
1551 | 433k | aw_parse_coords(s, gb, pitch); |
1552 | 433k | break; |
1553 | 1.86M | } |
1554 | | |
1555 | 6.95M | for (n = 0; n < frame_descs[bd_idx].n_blocks; n++) { |
1556 | 5.08M | int bl_pitch_sh2; |
1557 | | |
1558 | | /* Pitch calculation for ACB_TYPE_HAMMING ("pitch-per-block") */ |
1559 | 5.08M | switch (frame_descs[bd_idx].acb_type) { |
1560 | 2.30M | case ACB_TYPE_HAMMING: { |
1561 | | /* Pitch is given per block. Per-block pitches are encoded as an |
1562 | | * absolute value for the first block, and then delta values |
1563 | | * relative to this value) for all subsequent blocks. The scale of |
1564 | | * this pitch value is semi-logarithmic compared to its use in the |
1565 | | * decoder, so we convert it to normal scale also. */ |
1566 | 2.30M | int block_pitch, |
1567 | 2.30M | t1 = (s->block_conv_table[1] - s->block_conv_table[0]) << 2, |
1568 | 2.30M | t2 = (s->block_conv_table[2] - s->block_conv_table[1]) << 1, |
1569 | 2.30M | t3 = s->block_conv_table[3] - s->block_conv_table[2] + 1; |
1570 | | |
1571 | 2.30M | if (n == 0) { |
1572 | 327k | block_pitch = get_bits(gb, s->block_pitch_nbits); |
1573 | 327k | } else |
1574 | 1.98M | block_pitch = last_block_pitch - s->block_delta_pitch_hrange + |
1575 | 1.98M | get_bits(gb, s->block_delta_pitch_nbits); |
1576 | | /* Convert last_ so that any next delta is within _range */ |
1577 | 2.30M | last_block_pitch = av_clip(block_pitch, |
1578 | 2.30M | s->block_delta_pitch_hrange, |
1579 | 2.30M | s->block_pitch_range - |
1580 | 2.30M | s->block_delta_pitch_hrange); |
1581 | | |
1582 | | /* Convert semi-log-style scale back to normal scale */ |
1583 | 2.30M | if (block_pitch < t1) { |
1584 | 25.3k | bl_pitch_sh2 = (s->block_conv_table[0] << 2) + block_pitch; |
1585 | 2.28M | } else { |
1586 | 2.28M | block_pitch -= t1; |
1587 | 2.28M | if (block_pitch < t2) { |
1588 | 9.63k | bl_pitch_sh2 = |
1589 | 9.63k | (s->block_conv_table[1] << 2) + (block_pitch << 1); |
1590 | 2.27M | } else { |
1591 | 2.27M | block_pitch -= t2; |
1592 | 2.27M | if (block_pitch < t3) { |
1593 | 2.26M | bl_pitch_sh2 = |
1594 | 2.26M | (s->block_conv_table[2] + block_pitch) << 2; |
1595 | 2.26M | } else |
1596 | 3.54k | bl_pitch_sh2 = s->block_conv_table[3] << 2; |
1597 | 2.27M | } |
1598 | 2.28M | } |
1599 | 2.30M | pitch[n] = bl_pitch_sh2 >> 2; |
1600 | 2.30M | break; |
1601 | 0 | } |
1602 | | |
1603 | 1.96M | case ACB_TYPE_ASYMMETRIC: { |
1604 | 1.96M | bl_pitch_sh2 = pitch[n] << 2; |
1605 | 1.96M | break; |
1606 | 0 | } |
1607 | | |
1608 | 808k | default: // ACB_TYPE_NONE has no pitch |
1609 | 808k | bl_pitch_sh2 = 0; |
1610 | 808k | break; |
1611 | 5.08M | } |
1612 | | |
1613 | 5.08M | synth_block(s, gb, n, block_nsamples, bl_pitch_sh2, |
1614 | 5.08M | lsps, prev_lsps, &frame_descs[bd_idx], |
1615 | 5.08M | &excitation[n * block_nsamples], |
1616 | 5.08M | &synth[n * block_nsamples]); |
1617 | 5.08M | } |
1618 | | |
1619 | | /* Averaging projection filter, if applicable. Else, just copy samples |
1620 | | * from synthesis buffer */ |
1621 | 1.86M | if (s->do_apf) { |
1622 | 654k | double i_lsps[MAX_LSPS]; |
1623 | 654k | float lpcs[MAX_LSPS]; |
1624 | | |
1625 | 654k | if(frame_descs[bd_idx].fcb_type >= FCB_TYPE_AW_PULSES && pitch[0] == INT_MAX) |
1626 | 0 | return AVERROR_INVALIDDATA; |
1627 | | |
1628 | 7.30M | for (n = 0; n < s->lsps; n++) // LSF -> LSP |
1629 | 6.65M | i_lsps[n] = cos(0.5 * (prev_lsps[n] + lsps[n])); |
1630 | 654k | ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1); |
1631 | 654k | postfilter(s, synth, samples, 80, lpcs, |
1632 | 654k | &s->zero_exc_pf[s->history_nsamples + MAX_FRAMESIZE * frame_idx], |
1633 | 654k | frame_descs[bd_idx].fcb_type, pitch[0]); |
1634 | | |
1635 | 7.30M | for (n = 0; n < s->lsps; n++) // LSF -> LSP |
1636 | 6.65M | i_lsps[n] = cos(lsps[n]); |
1637 | 654k | ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1); |
1638 | 654k | postfilter(s, &synth[80], &samples[80], 80, lpcs, |
1639 | 654k | &s->zero_exc_pf[s->history_nsamples + MAX_FRAMESIZE * frame_idx + 80], |
1640 | 654k | frame_descs[bd_idx].fcb_type, pitch[0]); |
1641 | 654k | } else |
1642 | 1.21M | memcpy(samples, synth, 160 * sizeof(synth[0])); |
1643 | | |
1644 | | /* Cache values for next frame */ |
1645 | 1.86M | s->frame_cntr++; |
1646 | 1.86M | if (s->frame_cntr >= 0xFFFF) s->frame_cntr -= 0xFFFF; // i.e. modulo (%) |
1647 | 1.86M | s->last_acb_type = frame_descs[bd_idx].acb_type; |
1648 | 1.86M | switch (frame_descs[bd_idx].acb_type) { |
1649 | 792k | case ACB_TYPE_NONE: |
1650 | 792k | s->last_pitch_val = 0; |
1651 | 792k | break; |
1652 | 747k | case ACB_TYPE_ASYMMETRIC: |
1653 | 747k | s->last_pitch_val = cur_pitch_val; |
1654 | 747k | break; |
1655 | 327k | case ACB_TYPE_HAMMING: |
1656 | 327k | s->last_pitch_val = pitch[frame_descs[bd_idx].n_blocks - 1]; |
1657 | 327k | break; |
1658 | 1.86M | } |
1659 | | |
1660 | 1.86M | return 0; |
1661 | 1.86M | } |
1662 | | |
1663 | | /** |
1664 | | * Ensure minimum value for first item, maximum value for last value, |
1665 | | * proper spacing between each value and proper ordering. |
1666 | | * |
1667 | | * @param lsps array of LSPs |
1668 | | * @param num size of LSP array |
1669 | | * |
1670 | | * @note basically a double version of #ff_acelp_reorder_lsf(), might be |
1671 | | * useful to put in a generic location later on. Parts are also |
1672 | | * present in #ff_set_min_dist_lsf() + #ff_sort_nearly_sorted_floats(), |
1673 | | * which is in float. |
1674 | | */ |
1675 | | static void stabilize_lsps(double *lsps, int num) |
1676 | 1.87M | { |
1677 | 1.87M | int n, m, l; |
1678 | | |
1679 | | /* set minimum value for first, maximum value for last and minimum |
1680 | | * spacing between LSF values. |
1681 | | * Very similar to ff_set_min_dist_lsf(), but in double. */ |
1682 | 1.87M | lsps[0] = FFMAX(lsps[0], 0.0015 * M_PI); |
1683 | 20.7M | for (n = 1; n < num; n++) |
1684 | 18.8M | lsps[n] = FFMAX(lsps[n], lsps[n - 1] + 0.0125 * M_PI); |
1685 | 1.87M | lsps[num - 1] = FFMIN(lsps[num - 1], 0.9985 * M_PI); |
1686 | | |
1687 | | /* reorder (looks like one-time / non-recursed bubblesort). |
1688 | | * Very similar to ff_sort_nearly_sorted_floats(), but in double. */ |
1689 | 20.7M | for (n = 1; n < num; n++) { |
1690 | 18.8M | if (lsps[n] < lsps[n - 1]) { |
1691 | 28.1k | for (m = 1; m < num; m++) { |
1692 | 25.3k | double tmp = lsps[m]; |
1693 | 29.4k | for (l = m - 1; l >= 0; l--) { |
1694 | 29.4k | if (lsps[l] <= tmp) break; |
1695 | 4.15k | lsps[l + 1] = lsps[l]; |
1696 | 4.15k | } |
1697 | 25.3k | lsps[l + 1] = tmp; |
1698 | 25.3k | } |
1699 | 2.81k | break; |
1700 | 2.81k | } |
1701 | 18.8M | } |
1702 | 1.87M | } |
1703 | | |
1704 | | /** |
1705 | | * Synthesize output samples for a single superframe. If we have any data |
1706 | | * cached in s->sframe_cache, that will be used instead of whatever is loaded |
1707 | | * in s->gb. |
1708 | | * |
1709 | | * WMA Voice superframes contain 3 frames, each containing 160 audio samples, |
1710 | | * to give a total of 480 samples per frame. See #synth_frame() for frame |
1711 | | * parsing. In addition to 3 frames, superframes can also contain the LSPs |
1712 | | * (if these are globally specified for all frames (residually); they can |
1713 | | * also be specified individually per-frame. See the s->has_residual_lsps |
1714 | | * option), and can specify the number of samples encoded in this superframe |
1715 | | * (if less than 480), usually used to prevent blanks at track boundaries. |
1716 | | * |
1717 | | * @param ctx WMA Voice decoder context |
1718 | | * @return 0 on success, <0 on error or 1 if there was not enough data to |
1719 | | * fully parse the superframe |
1720 | | */ |
1721 | | static int synth_superframe(AVCodecContext *ctx, AVFrame *frame, |
1722 | | int *got_frame_ptr) |
1723 | 777k | { |
1724 | 777k | WMAVoiceContext *s = ctx->priv_data; |
1725 | 777k | GetBitContext *gb = &s->gb, s_gb; |
1726 | 777k | int n, res, n_samples = MAX_SFRAMESIZE; |
1727 | 777k | double lsps[MAX_FRAMES][MAX_LSPS]; |
1728 | 777k | const double *mean_lsf = s->lsps == 16 ? |
1729 | 531k | wmavoice_mean_lsf16[s->lsp_def_mode] : wmavoice_mean_lsf10[s->lsp_def_mode]; |
1730 | 777k | float excitation[MAX_SIGNAL_HISTORY + MAX_SFRAMESIZE + 12]; |
1731 | 777k | float synth[MAX_LSPS + MAX_SFRAMESIZE]; |
1732 | 777k | float *samples; |
1733 | | |
1734 | 777k | memcpy(synth, s->synth_history, |
1735 | 777k | s->lsps * sizeof(*synth)); |
1736 | 777k | memcpy(excitation, s->excitation_history, |
1737 | 777k | s->history_nsamples * sizeof(*excitation)); |
1738 | | |
1739 | 777k | if (s->sframe_cache_size > 0) { |
1740 | 567k | gb = &s_gb; |
1741 | 567k | init_get_bits(gb, s->sframe_cache, s->sframe_cache_size); |
1742 | 567k | s->sframe_cache_size = 0; |
1743 | 567k | } |
1744 | | |
1745 | | /* First bit is speech/music bit, it differentiates between WMAVoice |
1746 | | * speech samples (the actual codec) and WMAVoice music samples, which |
1747 | | * are really WMAPro-in-WMAVoice-superframes. I've never seen those in |
1748 | | * the wild yet. */ |
1749 | 777k | if (!get_bits1(gb)) { |
1750 | 77.9k | avpriv_request_sample(ctx, "WMAPro-in-WMAVoice"); |
1751 | 77.9k | return AVERROR_PATCHWELCOME; |
1752 | 77.9k | } |
1753 | | |
1754 | | /* (optional) nr. of samples in superframe; always <= 480 and >= 0 */ |
1755 | 699k | if (get_bits1(gb)) { |
1756 | 75.6k | if ((n_samples = get_bits(gb, 12)) > MAX_SFRAMESIZE) { |
1757 | 73.6k | av_log(ctx, AV_LOG_ERROR, |
1758 | 73.6k | "Superframe encodes > %d samples (%d), not allowed\n", |
1759 | 73.6k | MAX_SFRAMESIZE, n_samples); |
1760 | 73.6k | return AVERROR_INVALIDDATA; |
1761 | 73.6k | } |
1762 | 75.6k | } |
1763 | | |
1764 | | /* Parse LSPs, if global for the superframe (can also be per-frame). */ |
1765 | 625k | if (s->has_residual_lsps) { |
1766 | 413k | double prev_lsps[MAX_LSPS], a1[MAX_LSPS * 2], a2[MAX_LSPS * 2]; |
1767 | | |
1768 | 5.17M | for (n = 0; n < s->lsps; n++) |
1769 | 4.76M | prev_lsps[n] = s->prev_lsps[n] - mean_lsf[n]; |
1770 | | |
1771 | 413k | if (s->lsps == 10) { |
1772 | 307k | dequant_lsp10r(gb, lsps[2], prev_lsps, a1, a2, s->lsp_q_mode); |
1773 | 307k | } else /* s->lsps == 16 */ |
1774 | 105k | dequant_lsp16r(gb, lsps[2], prev_lsps, a1, a2, s->lsp_q_mode); |
1775 | | |
1776 | 5.17M | for (n = 0; n < s->lsps; n++) { |
1777 | 4.76M | lsps[0][n] = mean_lsf[n] + (a1[n] - a2[n * 2]); |
1778 | 4.76M | lsps[1][n] = mean_lsf[n] + (a1[s->lsps + n] - a2[n * 2 + 1]); |
1779 | 4.76M | lsps[2][n] += mean_lsf[n]; |
1780 | 4.76M | } |
1781 | 1.65M | for (n = 0; n < 3; n++) |
1782 | 1.23M | stabilize_lsps(lsps[n], s->lsps); |
1783 | 413k | } |
1784 | | |
1785 | | /* synth_superframe can run multiple times per packet |
1786 | | * free potential previous frame */ |
1787 | 625k | av_frame_unref(frame); |
1788 | | |
1789 | | /* get output buffer */ |
1790 | 625k | frame->nb_samples = MAX_SFRAMESIZE; |
1791 | 625k | if ((res = ff_get_buffer(ctx, frame, 0)) < 0) |
1792 | 0 | return res; |
1793 | 625k | frame->nb_samples = n_samples; |
1794 | 625k | samples = (float *)frame->data[0]; |
1795 | | |
1796 | | /* Parse frames, optionally preceded by per-frame (independent) LSPs. */ |
1797 | 2.49M | for (n = 0; n < 3; n++) { |
1798 | 1.87M | if (!s->has_residual_lsps) { |
1799 | 633k | int m; |
1800 | | |
1801 | 633k | if (s->lsps == 10) { |
1802 | 619k | dequant_lsp10i(gb, lsps[n]); |
1803 | 619k | } else /* s->lsps == 16 */ |
1804 | 14.4k | dequant_lsp16i(gb, lsps[n]); |
1805 | | |
1806 | 7.05M | for (m = 0; m < s->lsps; m++) |
1807 | 6.42M | lsps[n][m] += mean_lsf[m]; |
1808 | 633k | stabilize_lsps(lsps[n], s->lsps); |
1809 | 633k | } |
1810 | | |
1811 | 1.87M | if ((res = synth_frame(ctx, gb, n, |
1812 | 1.87M | &samples[n * MAX_FRAMESIZE], |
1813 | 1.87M | lsps[n], n == 0 ? s->prev_lsps : lsps[n - 1], |
1814 | 1.87M | &excitation[s->history_nsamples + n * MAX_FRAMESIZE], |
1815 | 1.87M | &synth[s->lsps + n * MAX_FRAMESIZE]))) { |
1816 | 3.75k | *got_frame_ptr = 0; |
1817 | 3.75k | return res; |
1818 | 3.75k | } |
1819 | 1.87M | } |
1820 | | |
1821 | | /* Statistics? FIXME - we don't check for length, a slight overrun |
1822 | | * will be caught by internal buffer padding, and anything else |
1823 | | * will be skipped, not read. */ |
1824 | 621k | if (get_bits1(gb)) { |
1825 | 452k | res = get_bits(gb, 4); |
1826 | 452k | skip_bits(gb, 10 * (res + 1)); |
1827 | 452k | } |
1828 | | |
1829 | 621k | if (get_bits_left(gb) < 0) { |
1830 | 259k | wmavoice_flush(ctx); |
1831 | 259k | return AVERROR_INVALIDDATA; |
1832 | 259k | } |
1833 | | |
1834 | 361k | *got_frame_ptr = 1; |
1835 | | |
1836 | | /* Update history */ |
1837 | 361k | memcpy(s->prev_lsps, lsps[2], |
1838 | 361k | s->lsps * sizeof(*s->prev_lsps)); |
1839 | 361k | memcpy(s->synth_history, &synth[MAX_SFRAMESIZE], |
1840 | 361k | s->lsps * sizeof(*synth)); |
1841 | 361k | memcpy(s->excitation_history, &excitation[MAX_SFRAMESIZE], |
1842 | 361k | s->history_nsamples * sizeof(*excitation)); |
1843 | 361k | if (s->do_apf) |
1844 | 4.87k | memmove(s->zero_exc_pf, &s->zero_exc_pf[MAX_SFRAMESIZE], |
1845 | 4.87k | s->history_nsamples * sizeof(*s->zero_exc_pf)); |
1846 | | |
1847 | 361k | return 0; |
1848 | 621k | } |
1849 | | |
1850 | | /** |
1851 | | * Parse the packet header at the start of each packet (input data to this |
1852 | | * decoder). |
1853 | | * |
1854 | | * @param s WMA Voice decoding context private data |
1855 | | * @return <0 on error, nb_superframes on success. |
1856 | | */ |
1857 | | static int parse_packet_header(WMAVoiceContext *s) |
1858 | 576k | { |
1859 | 576k | GetBitContext *gb = &s->gb; |
1860 | 576k | unsigned int res, n_superframes = 0; |
1861 | | |
1862 | 576k | skip_bits(gb, 4); // packet sequence number |
1863 | 576k | s->has_residual_lsps = get_bits1(gb); |
1864 | 595k | do { |
1865 | 595k | if (get_bits_left(gb) < 6 + s->spillover_bitsize) |
1866 | 231 | return AVERROR_INVALIDDATA; |
1867 | | |
1868 | 595k | res = get_bits(gb, 6); // number of superframes per packet |
1869 | | // (minus first one if there is spillover) |
1870 | 595k | n_superframes += res; |
1871 | 595k | } while (res == 0x3F); |
1872 | 576k | s->spillover_nbits = get_bits(gb, s->spillover_bitsize); |
1873 | | |
1874 | 576k | return get_bits_left(gb) >= 0 ? n_superframes : AVERROR_INVALIDDATA; |
1875 | 576k | } |
1876 | | |
1877 | | /** |
1878 | | * Copy (unaligned) bits from gb/data/size to pb. |
1879 | | * |
1880 | | * @param pb target buffer to copy bits into |
1881 | | * @param data source buffer to copy bits from |
1882 | | * @param size size of the source data, in bytes |
1883 | | * @param gb bit I/O context specifying the current position in the source. |
1884 | | * data. This function might use this to align the bit position to |
1885 | | * a whole-byte boundary before calling #ff_copy_bits() on aligned |
1886 | | * source data |
1887 | | * @param nbits the amount of bits to copy from source to target |
1888 | | * |
1889 | | * @note after calling this function, the current position in the input bit |
1890 | | * I/O context is undefined. |
1891 | | */ |
1892 | | static void copy_bits(PutBitContext *pb, |
1893 | | const uint8_t *data, int size, |
1894 | | GetBitContext *gb, int nbits) |
1895 | 1.33M | { |
1896 | 1.33M | int rmn_bytes, rmn_bits; |
1897 | | |
1898 | 1.33M | rmn_bits = rmn_bytes = get_bits_left(gb); |
1899 | 1.33M | if (rmn_bits < nbits) |
1900 | 3.04k | return; |
1901 | 1.33M | if (nbits > put_bits_left(pb)) |
1902 | 1.16k | return; |
1903 | 1.33M | rmn_bits &= 7; rmn_bytes >>= 3; |
1904 | 1.33M | if ((rmn_bits = FFMIN(rmn_bits, nbits)) > 0) |
1905 | 917k | put_bits(pb, rmn_bits, get_bits(gb, rmn_bits)); |
1906 | 1.33M | ff_copy_bits(pb, data + size - rmn_bytes, |
1907 | 1.33M | FFMIN(nbits - rmn_bits, rmn_bytes << 3)); |
1908 | 1.33M | } |
1909 | | |
1910 | | /** |
1911 | | * Packet decoding: a packet is anything that the (ASF) demuxer contains, |
1912 | | * and we expect that the demuxer / application provides it to us as such |
1913 | | * (else you'll probably get garbage as output). Every packet has a size of |
1914 | | * ctx->block_align bytes, starts with a packet header (see |
1915 | | * #parse_packet_header()), and then a series of superframes. Superframe |
1916 | | * boundaries may exceed packets, i.e. superframes can split data over |
1917 | | * multiple (two) packets. |
1918 | | * |
1919 | | * For more information about frames, see #synth_superframe(). |
1920 | | */ |
1921 | | static int wmavoice_decode_packet(AVCodecContext *ctx, AVFrame *frame, |
1922 | | int *got_frame_ptr, AVPacket *avpkt) |
1923 | 1.34M | { |
1924 | 1.34M | WMAVoiceContext *s = ctx->priv_data; |
1925 | 1.34M | GetBitContext *gb = &s->gb; |
1926 | 1.34M | const uint8_t *buf = avpkt->data; |
1927 | 1.34M | uint8_t dummy[1]; |
1928 | 1.34M | int size, res, pos; |
1929 | | |
1930 | | /* Packets are sometimes a multiple of ctx->block_align, with a packet |
1931 | | * header at each ctx->block_align bytes. However, FFmpeg's ASF demuxer |
1932 | | * feeds us ASF packets, which may concatenate multiple "codec" packets |
1933 | | * in a single "muxer" packet, so we artificially emulate that by |
1934 | | * capping the packet size at ctx->block_align. */ |
1935 | 8.32G | for (size = avpkt->size; size > ctx->block_align; size -= ctx->block_align); |
1936 | 1.34M | buf = size ? buf : dummy; |
1937 | 1.34M | res = init_get_bits8(&s->gb, buf, size); |
1938 | 1.34M | if (res < 0) |
1939 | 0 | return res; |
1940 | | |
1941 | | /* size == ctx->block_align is used to indicate whether we are dealing with |
1942 | | * a new packet or a packet of which we already read the packet header |
1943 | | * previously. */ |
1944 | 1.34M | if (!(size % ctx->block_align)) { // new packet header |
1945 | 577k | if (!size) { |
1946 | 1.49k | s->spillover_nbits = 0; |
1947 | 1.49k | s->nb_superframes = 0; |
1948 | 576k | } else { |
1949 | 576k | if ((res = parse_packet_header(s)) < 0) |
1950 | 231 | return res; |
1951 | 576k | s->nb_superframes = res; |
1952 | 576k | } |
1953 | | |
1954 | | /* If the packet header specifies a s->spillover_nbits, then we want |
1955 | | * to push out all data of the previous packet (+ spillover) before |
1956 | | * continuing to parse new superframes in the current packet. */ |
1957 | 577k | if (s->sframe_cache_size > 0) { |
1958 | 567k | int cnt = get_bits_count(gb); |
1959 | 567k | if (cnt + s->spillover_nbits > avpkt->size * 8) { |
1960 | 493 | s->spillover_nbits = avpkt->size * 8 - cnt; |
1961 | 493 | } |
1962 | 567k | copy_bits(&s->pb, buf, size, gb, s->spillover_nbits); |
1963 | 567k | flush_put_bits(&s->pb); |
1964 | 567k | s->sframe_cache_size += s->spillover_nbits; |
1965 | 567k | if ((res = synth_superframe(ctx, frame, got_frame_ptr)) == 0 && |
1966 | 567k | *got_frame_ptr) { |
1967 | 349k | cnt += s->spillover_nbits; |
1968 | 349k | s->skip_bits_next = cnt & 7; |
1969 | 349k | res = cnt >> 3; |
1970 | 349k | return res; |
1971 | 349k | } else |
1972 | 218k | skip_bits_long (gb, s->spillover_nbits - cnt + |
1973 | 218k | get_bits_count(gb)); // resync |
1974 | 567k | } else if (s->spillover_nbits) { |
1975 | 4.77k | skip_bits_long(gb, s->spillover_nbits); // resync |
1976 | 4.77k | } |
1977 | 763k | } else if (s->skip_bits_next) |
1978 | 358k | skip_bits(gb, s->skip_bits_next); |
1979 | | |
1980 | | /* Try parsing superframes in current packet */ |
1981 | 992k | s->sframe_cache_size = 0; |
1982 | 992k | s->skip_bits_next = 0; |
1983 | 992k | pos = get_bits_left(gb); |
1984 | 992k | if (s->nb_superframes-- == 0) { |
1985 | 9.05k | *got_frame_ptr = 0; |
1986 | 9.05k | return size; |
1987 | 983k | } else if (s->nb_superframes > 0) { |
1988 | 209k | if ((res = synth_superframe(ctx, frame, got_frame_ptr)) < 0) { |
1989 | 196k | return res; |
1990 | 196k | } else if (*got_frame_ptr) { |
1991 | 12.7k | int cnt = get_bits_count(gb); |
1992 | 12.7k | s->skip_bits_next = cnt & 7; |
1993 | 12.7k | res = cnt >> 3; |
1994 | 12.7k | return res; |
1995 | 12.7k | } |
1996 | 773k | } else if ((s->sframe_cache_size = pos) > 0) { |
1997 | | /* ... cache it for spillover in next packet */ |
1998 | 771k | init_put_bits(&s->pb, s->sframe_cache, SFRAME_CACHE_MAXSIZE); |
1999 | 771k | copy_bits(&s->pb, buf, size, gb, s->sframe_cache_size); |
2000 | | // FIXME bad - just copy bytes as whole and add use the |
2001 | | // skip_bits_next field |
2002 | 771k | } |
2003 | | |
2004 | 773k | return size; |
2005 | 992k | } |
2006 | | |
2007 | | static av_cold int wmavoice_decode_end(AVCodecContext *ctx) |
2008 | 1.53k | { |
2009 | 1.53k | WMAVoiceContext *s = ctx->priv_data; |
2010 | | |
2011 | 1.53k | if (s->do_apf) { |
2012 | 732 | av_tx_uninit(&s->rdft); |
2013 | 732 | av_tx_uninit(&s->irdft); |
2014 | 732 | av_tx_uninit(&s->dct); |
2015 | 732 | av_tx_uninit(&s->dst); |
2016 | 732 | } |
2017 | | |
2018 | 1.53k | return 0; |
2019 | 1.53k | } |
2020 | | |
2021 | | const FFCodec ff_wmavoice_decoder = { |
2022 | | .p.name = "wmavoice", |
2023 | | CODEC_LONG_NAME("Windows Media Audio Voice"), |
2024 | | .p.type = AVMEDIA_TYPE_AUDIO, |
2025 | | .p.id = AV_CODEC_ID_WMAVOICE, |
2026 | | .priv_data_size = sizeof(WMAVoiceContext), |
2027 | | .init = wmavoice_decode_init, |
2028 | | .close = wmavoice_decode_end, |
2029 | | FF_CODEC_DECODE_CB(wmavoice_decode_packet), |
2030 | | .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY, |
2031 | | .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
2032 | | .flush = wmavoice_flush, |
2033 | | }; |