Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (c) 2007-2008 CSIRO |
2 | | Copyright (c) 2007-2009 Xiph.Org Foundation |
3 | | Copyright (c) 2008-2009 Gregory Maxwell |
4 | | Written by Jean-Marc Valin and Gregory Maxwell */ |
5 | | /* |
6 | | Redistribution and use in source and binary forms, with or without |
7 | | modification, are permitted provided that the following conditions |
8 | | are met: |
9 | | |
10 | | - Redistributions of source code must retain the above copyright |
11 | | notice, this list of conditions and the following disclaimer. |
12 | | |
13 | | - Redistributions in binary form must reproduce the above copyright |
14 | | notice, this list of conditions and the following disclaimer in the |
15 | | documentation and/or other materials provided with the distribution. |
16 | | |
17 | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
18 | | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
19 | | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
20 | | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
21 | | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
22 | | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
23 | | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
24 | | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
25 | | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
26 | | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
27 | | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | |
30 | | #ifdef HAVE_CONFIG_H |
31 | | #include "config.h" |
32 | | #endif |
33 | | |
34 | | #include <math.h> |
35 | | #include "bands.h" |
36 | | #include "modes.h" |
37 | | #include "vq.h" |
38 | | #include "cwrs.h" |
39 | | #include "stack_alloc.h" |
40 | | #include "os_support.h" |
41 | | #include "mathops.h" |
42 | | #include "rate.h" |
43 | | #include "quant_bands.h" |
44 | | #include "pitch.h" |
45 | | |
46 | | int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev) |
47 | 0 | { |
48 | 0 | int i; |
49 | 0 | for (i=0;i<N;i++) |
50 | 0 | { |
51 | 0 | if (val < thresholds[i]) |
52 | 0 | break; |
53 | 0 | } |
54 | 0 | if (i>prev && val < thresholds[prev]+hysteresis[prev]) |
55 | 0 | i=prev; |
56 | 0 | if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1]) |
57 | 0 | i=prev; |
58 | 0 | return i; |
59 | 0 | } |
60 | | |
61 | | opus_uint32 celt_lcg_rand(opus_uint32 seed) |
62 | 55.3M | { |
63 | 55.3M | return 1664525 * seed + 1013904223; |
64 | 55.3M | } |
65 | | |
66 | | /* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness |
67 | | with this approximation is important because it has an impact on the bit allocation */ |
68 | | opus_int16 bitexact_cos(opus_int16 x) |
69 | 971k | { |
70 | 971k | opus_int32 tmp; |
71 | 971k | opus_int16 x2; |
72 | 971k | tmp = (4096+((opus_int32)(x)*(x)))>>13; |
73 | 971k | celt_sig_assert(tmp<=32767); |
74 | 971k | x2 = tmp; |
75 | 971k | x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2))))); |
76 | 971k | celt_sig_assert(x2<=32766); |
77 | 971k | return 1+x2; |
78 | 971k | } |
79 | | |
80 | | int bitexact_log2tan(int isin,int icos) |
81 | 485k | { |
82 | 485k | int lc; |
83 | 485k | int ls; |
84 | 485k | lc=EC_ILOG(icos); |
85 | 485k | ls=EC_ILOG(isin); |
86 | 485k | icos<<=15-lc; |
87 | 485k | isin<<=15-ls; |
88 | 485k | return (ls-lc)*(1<<11) |
89 | 485k | +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932) |
90 | 485k | -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932); |
91 | 485k | } |
92 | | |
93 | | #ifdef FIXED_POINT |
94 | | /* Compute the amplitude (sqrt energy) in each of the bands */ |
95 | | void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch) |
96 | | { |
97 | | int i, c, N; |
98 | | const opus_int16 *eBands = m->eBands; |
99 | | (void)arch; |
100 | | N = m->shortMdctSize<<LM; |
101 | | c=0; do { |
102 | | for (i=0;i<end;i++) |
103 | | { |
104 | | int j; |
105 | | opus_val32 maxval=0; |
106 | | opus_val32 sum = 0; |
107 | | |
108 | | maxval = celt_maxabs32(&X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM); |
109 | | if (maxval > 0) |
110 | | { |
111 | | int shift, shift2; |
112 | | shift = celt_ilog2(maxval) - 14; |
113 | | shift2 = (((m->logN[i]>>BITRES)+LM+1)>>1); |
114 | | j=eBands[i]<<LM; |
115 | | if (shift>0) |
116 | | { |
117 | | do { |
118 | | sum = ADD32(sum, SHR32(MULT16_16(EXTRACT16(SHR32(X[j+c*N],shift)), |
119 | | EXTRACT16(SHR32(X[j+c*N],shift))), 2*shift2)); |
120 | | } while (++j<eBands[i+1]<<LM); |
121 | | } else { |
122 | | do { |
123 | | sum = ADD32(sum, SHR32(MULT16_16(EXTRACT16(SHL32(X[j+c*N],-shift)), |
124 | | EXTRACT16(SHL32(X[j+c*N],-shift))), 2*shift2)); |
125 | | } while (++j<eBands[i+1]<<LM); |
126 | | } |
127 | | shift+=shift2; |
128 | | while (sum < 1<<28) { |
129 | | sum <<=2; |
130 | | shift -= 1; |
131 | | } |
132 | | /* We're adding one here to ensure the normalized band isn't larger than unity norm */ |
133 | | bandE[i+c*m->nbEBands] = EPSILON+VSHR32(celt_sqrt(sum),-shift); |
134 | | } else { |
135 | | bandE[i+c*m->nbEBands] = EPSILON; |
136 | | } |
137 | | /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ |
138 | | } |
139 | | } while (++c<C); |
140 | | /*printf ("\n");*/ |
141 | | } |
142 | | |
143 | | /* Normalise each band such that the energy is one. */ |
144 | | void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) |
145 | | { |
146 | | int i, c, N; |
147 | | const opus_int16 *eBands = m->eBands; |
148 | | N = M*m->shortMdctSize; |
149 | | c=0; do { |
150 | | i=0; do { |
151 | | opus_val16 g; |
152 | | int j,shift; |
153 | | opus_val32 E; |
154 | | shift = celt_zlog2(bandE[i+c*m->nbEBands])-14; |
155 | | E = VSHR32(bandE[i+c*m->nbEBands], shift-2); |
156 | | g = EXTRACT16(celt_rcp(E)); |
157 | | if (shift > 0) { |
158 | | j=M*eBands[i]; do { |
159 | | X[j+c*N] = PSHR32(MULT16_32_Q15(g, freq[j+c*N]),shift); |
160 | | } while (++j<M*eBands[i+1]); |
161 | | } else { |
162 | | j=M*eBands[i]; do { |
163 | | X[j+c*N] = SHL32(MULT16_32_Q15(g, freq[j+c*N]),-shift); |
164 | | } while (++j<M*eBands[i+1]); |
165 | | } |
166 | | } while (++i<end); |
167 | | } while (++c<C); |
168 | | } |
169 | | |
170 | | #else /* FIXED_POINT */ |
171 | | /* Compute the amplitude (sqrt energy) in each of the bands */ |
172 | | void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch) |
173 | 0 | { |
174 | 0 | int i, c, N; |
175 | 0 | const opus_int16 *eBands = m->eBands; |
176 | 0 | N = m->shortMdctSize<<LM; |
177 | 0 | c=0; do { |
178 | 0 | for (i=0;i<end;i++) |
179 | 0 | { |
180 | 0 | opus_val32 sum; |
181 | 0 | sum = 1e-27f + celt_inner_prod(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM, arch); |
182 | 0 | bandE[i+c*m->nbEBands] = celt_sqrt(sum); |
183 | | /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ |
184 | 0 | } |
185 | 0 | } while (++c<C); |
186 | | /*printf ("\n");*/ |
187 | 0 | } |
188 | | |
189 | | /* Normalise each band such that the energy is one. */ |
190 | | void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) |
191 | 0 | { |
192 | 0 | int i, c, N; |
193 | 0 | const opus_int16 *eBands = m->eBands; |
194 | 0 | N = M*m->shortMdctSize; |
195 | 0 | c=0; do { |
196 | 0 | for (i=0;i<end;i++) |
197 | 0 | { |
198 | 0 | int j; |
199 | 0 | opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]); |
200 | 0 | for (j=M*eBands[i];j<M*eBands[i+1];j++) |
201 | 0 | X[j+c*N] = freq[j+c*N]*g; |
202 | 0 | } |
203 | 0 | } while (++c<C); |
204 | 0 | } |
205 | | |
206 | | #endif /* FIXED_POINT */ |
207 | | |
208 | | /* De-normalise the energy to produce the synthesis from the unit-energy bands */ |
209 | | void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, |
210 | | celt_sig * OPUS_RESTRICT freq, const celt_glog *bandLogE, int start, |
211 | | int end, int M, int downsample, int silence) |
212 | 315k | { |
213 | 315k | int i, N; |
214 | 315k | int bound; |
215 | 315k | celt_sig * OPUS_RESTRICT f; |
216 | 315k | const celt_norm * OPUS_RESTRICT x; |
217 | 315k | const opus_int16 *eBands = m->eBands; |
218 | 315k | N = M*m->shortMdctSize; |
219 | 315k | bound = M*eBands[end]; |
220 | 315k | if (downsample!=1) |
221 | 0 | bound = IMIN(bound, N/downsample); |
222 | 315k | if (silence) |
223 | 36.7k | { |
224 | 36.7k | bound = 0; |
225 | 36.7k | start = end = 0; |
226 | 36.7k | } |
227 | 315k | f = freq; |
228 | 315k | x = X+M*eBands[start]; |
229 | 10.4M | for (i=0;i<M*eBands[start];i++) |
230 | 10.1M | *f++ = 0; |
231 | 4.39M | for (i=start;i<end;i++) |
232 | 4.07M | { |
233 | 4.07M | int j, band_end; |
234 | 4.07M | opus_val32 g; |
235 | 4.07M | celt_glog lg; |
236 | | #ifdef FIXED_POINT |
237 | | int shift; |
238 | | #endif |
239 | 4.07M | j=M*eBands[i]; |
240 | 4.07M | band_end = M*eBands[i+1]; |
241 | 4.07M | lg = ADD32(bandLogE[i], SHL32((opus_val32)eMeans[i],DB_SHIFT-4)); |
242 | 4.07M | #ifndef FIXED_POINT |
243 | 4.07M | g = celt_exp2_db(MIN32(32.f, lg)); |
244 | | #else |
245 | | /* Handle the integer part of the log energy */ |
246 | | shift = 15-(lg>>DB_SHIFT); |
247 | | if (shift>31) |
248 | | { |
249 | | shift=0; |
250 | | g=0; |
251 | | } else { |
252 | | /* Handle the fractional part. */ |
253 | | g = celt_exp2_db_frac((lg&((1<<DB_SHIFT)-1))); |
254 | | } |
255 | | /* Handle extreme gains with negative shift. */ |
256 | | if (shift<0) |
257 | | { |
258 | | /* For shift <= -2 and g > 16384 we'd be likely to overflow, so we're |
259 | | capping the gain here, which is equivalent to a cap of 18 on lg. |
260 | | This shouldn't trigger unless the bitstream is already corrupted. */ |
261 | | if (shift <= -2) |
262 | | { |
263 | | g = 16384*32768; |
264 | | shift = -2; |
265 | | } |
266 | | do { |
267 | | *f++ = SHL32(MULT16_32_Q15(*x, g), -shift); |
268 | | x++; |
269 | | } while (++j<band_end); |
270 | | } else |
271 | | #endif |
272 | | /* Be careful of the fixed-point "else" just above when changing this code */ |
273 | 59.5M | do { |
274 | 59.5M | *f++ = SHR32(MULT16_32_Q15(*x, g), shift); |
275 | 59.5M | x++; |
276 | 59.5M | } while (++j<band_end); |
277 | 4.07M | } |
278 | 315k | celt_assert(start <= end); |
279 | 315k | OPUS_CLEAR(&freq[bound], N-bound); |
280 | 315k | } |
281 | | |
282 | | /* This prevents energy collapse for transients with multiple short MDCTs */ |
283 | | void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size, |
284 | | int start, int end, const celt_glog *logE, const celt_glog *prev1logE, |
285 | | const celt_glog *prev2logE, const int *pulses, opus_uint32 seed, int encode, int arch) |
286 | 1.92k | { |
287 | 1.92k | int c, i, j, k; |
288 | 34.9k | for (i=start;i<end;i++) |
289 | 32.9k | { |
290 | 32.9k | int N0; |
291 | 32.9k | opus_val16 thresh, sqrt_1; |
292 | 32.9k | int depth; |
293 | | #ifdef FIXED_POINT |
294 | | int shift; |
295 | | opus_val32 thresh32; |
296 | | #endif |
297 | | |
298 | 32.9k | N0 = m->eBands[i+1]-m->eBands[i]; |
299 | | /* depth in 1/8 bits */ |
300 | 32.9k | celt_sig_assert(pulses[i]>=0); |
301 | 32.9k | depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM; |
302 | | |
303 | | #ifdef FIXED_POINT |
304 | | thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1); |
305 | | thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32)); |
306 | | { |
307 | | opus_val32 t; |
308 | | t = N0<<LM; |
309 | | shift = celt_ilog2(t)>>1; |
310 | | t = SHL32(t, (7-shift)<<1); |
311 | | sqrt_1 = celt_rsqrt_norm(t); |
312 | | } |
313 | | #else |
314 | 32.9k | thresh = .5f*celt_exp2(-.125f*depth); |
315 | 32.9k | sqrt_1 = celt_rsqrt(N0<<LM); |
316 | 32.9k | #endif |
317 | | |
318 | 32.9k | c=0; do |
319 | 39.9k | { |
320 | 39.9k | celt_norm *X; |
321 | 39.9k | celt_glog prev1; |
322 | 39.9k | celt_glog prev2; |
323 | 39.9k | opus_val32 Ediff; |
324 | 39.9k | opus_val16 r; |
325 | 39.9k | int renormalize=0; |
326 | 39.9k | prev1 = prev1logE[c*m->nbEBands+i]; |
327 | 39.9k | prev2 = prev2logE[c*m->nbEBands+i]; |
328 | 39.9k | if (!encode && C==1) |
329 | 26.0k | { |
330 | 26.0k | prev1 = MAXG(prev1,prev1logE[m->nbEBands+i]); |
331 | 26.0k | prev2 = MAXG(prev2,prev2logE[m->nbEBands+i]); |
332 | 26.0k | } |
333 | 39.9k | Ediff = logE[c*m->nbEBands+i]-MING(prev1,prev2); |
334 | 39.9k | Ediff = MAX32(0, Ediff); |
335 | | |
336 | | #ifdef FIXED_POINT |
337 | | if (Ediff < GCONST(16.f)) |
338 | | { |
339 | | opus_val32 r32 = SHR32(celt_exp2_db(-Ediff),1); |
340 | | r = 2*MIN16(16383,r32); |
341 | | } else { |
342 | | r = 0; |
343 | | } |
344 | | if (LM==3) |
345 | | r = MULT16_16_Q14(23170, MIN32(23169, r)); |
346 | | r = SHR16(MIN16(thresh, r),1); |
347 | | r = SHR32(MULT16_16_Q15(sqrt_1, r),shift); |
348 | | #else |
349 | | /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because |
350 | | short blocks don't have the same energy as long */ |
351 | 39.9k | r = 2.f*celt_exp2_db(-Ediff); |
352 | 39.9k | if (LM==3) |
353 | 3.38k | r *= 1.41421356f; |
354 | 39.9k | r = MIN16(thresh, r); |
355 | 39.9k | r = r*sqrt_1; |
356 | 39.9k | #endif |
357 | 39.9k | X = X_+c*size+(m->eBands[i]<<LM); |
358 | 213k | for (k=0;k<1<<LM;k++) |
359 | 173k | { |
360 | | /* Detect collapse */ |
361 | 173k | if (!(collapse_masks[i*C+c]&1<<k)) |
362 | 11.7k | { |
363 | | /* Fill with noise */ |
364 | 44.6k | for (j=0;j<N0;j++) |
365 | 32.9k | { |
366 | 32.9k | seed = celt_lcg_rand(seed); |
367 | 32.9k | X[(j<<LM)+k] = (seed&0x8000 ? r : -r); |
368 | 32.9k | } |
369 | 11.7k | renormalize = 1; |
370 | 11.7k | } |
371 | 173k | } |
372 | | /* We just added some energy, so we need to renormalise */ |
373 | 39.9k | if (renormalize) |
374 | 3.98k | renormalise_vector(X, N0<<LM, Q31ONE, arch); |
375 | 39.9k | } while (++c<C); |
376 | 32.9k | } |
377 | 1.92k | } |
378 | | |
379 | | /* Compute the weights to use for optimizing normalized distortion across |
380 | | channels. We use the amplitude to weight square distortion, which means |
381 | | that we use the square root of the value we would have been using if we |
382 | | wanted to minimize the MSE in the non-normalized domain. This roughly |
383 | | corresponds to some quick-and-dirty perceptual experiments I ran to |
384 | | measure inter-aural masking (there doesn't seem to be any published data |
385 | | on the topic). */ |
386 | | static void compute_channel_weights(celt_ener Ex, celt_ener Ey, opus_val16 w[2]) |
387 | 0 | { |
388 | 0 | celt_ener minE; |
389 | | #ifdef FIXED_POINT |
390 | | int shift; |
391 | | #endif |
392 | 0 | minE = MIN32(Ex, Ey); |
393 | | /* Adjustment to make the weights a bit more conservative. */ |
394 | 0 | Ex = ADD32(Ex, minE/3); |
395 | 0 | Ey = ADD32(Ey, minE/3); |
396 | | #ifdef FIXED_POINT |
397 | | shift = celt_ilog2(EPSILON+MAX32(Ex, Ey))-14; |
398 | | #endif |
399 | 0 | w[0] = VSHR32(Ex, shift); |
400 | 0 | w[1] = VSHR32(Ey, shift); |
401 | 0 | } |
402 | | |
403 | | static void intensity_stereo(const CELTMode *m, celt_norm * OPUS_RESTRICT X, const celt_norm * OPUS_RESTRICT Y, const celt_ener *bandE, int bandID, int N) |
404 | 0 | { |
405 | 0 | int i = bandID; |
406 | 0 | int j; |
407 | 0 | opus_val16 a1, a2; |
408 | 0 | opus_val16 left, right; |
409 | 0 | opus_val16 norm; |
410 | | #ifdef FIXED_POINT |
411 | | int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13; |
412 | | #endif |
413 | 0 | left = VSHR32(bandE[i],shift); |
414 | 0 | right = VSHR32(bandE[i+m->nbEBands],shift); |
415 | 0 | norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); |
416 | 0 | a1 = DIV32_16(SHL32(EXTEND32(left),14),norm); |
417 | 0 | a2 = DIV32_16(SHL32(EXTEND32(right),14),norm); |
418 | 0 | for (j=0;j<N;j++) |
419 | 0 | { |
420 | 0 | celt_norm r, l; |
421 | 0 | l = X[j]; |
422 | 0 | r = Y[j]; |
423 | 0 | X[j] = EXTRACT16(SHR32(MAC16_16(MULT16_16(a1, l), a2, r), 14)); |
424 | | /* Side is not encoded, no need to calculate */ |
425 | 0 | } |
426 | 0 | } |
427 | | |
428 | | static void stereo_split(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, int N) |
429 | 0 | { |
430 | 0 | int j; |
431 | 0 | for (j=0;j<N;j++) |
432 | 0 | { |
433 | 0 | opus_val32 r, l; |
434 | 0 | l = MULT16_16(QCONST16(.70710678f, 15), X[j]); |
435 | 0 | r = MULT16_16(QCONST16(.70710678f, 15), Y[j]); |
436 | 0 | X[j] = EXTRACT16(SHR32(ADD32(l, r), 15)); |
437 | 0 | Y[j] = EXTRACT16(SHR32(SUB32(r, l), 15)); |
438 | 0 | } |
439 | 0 | } |
440 | | |
441 | | static void stereo_merge(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, opus_val32 mid, int N, int arch) |
442 | 179k | { |
443 | 179k | int j; |
444 | 179k | opus_val32 xp=0, side=0; |
445 | 179k | opus_val32 El, Er; |
446 | | #ifdef FIXED_POINT |
447 | | int kl, kr; |
448 | | #endif |
449 | 179k | opus_val32 t, lgain, rgain; |
450 | | |
451 | | /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ |
452 | 179k | dual_inner_prod(Y, X, Y, N, &xp, &side, arch); |
453 | | /* Compensating for the mid normalization */ |
454 | 179k | xp = MULT32_32_Q31(mid, xp); |
455 | | /* mid and side are in Q15, not Q14 like X and Y */ |
456 | 179k | El = SHR32(MULT32_32_Q31(mid, mid),3) + side - 2*xp; |
457 | 179k | Er = SHR32(MULT32_32_Q31(mid, mid),3) + side + 2*xp; |
458 | 179k | if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28)) |
459 | 808 | { |
460 | 808 | OPUS_COPY(Y, X, N); |
461 | 808 | return; |
462 | 808 | } |
463 | | |
464 | | #ifdef FIXED_POINT |
465 | | kl = celt_ilog2(El)>>1; |
466 | | kr = celt_ilog2(Er)>>1; |
467 | | #endif |
468 | 178k | t = VSHR32(El, (kl-7)<<1); |
469 | 178k | lgain = celt_rsqrt_norm(t); |
470 | 178k | t = VSHR32(Er, (kr-7)<<1); |
471 | 178k | rgain = celt_rsqrt_norm(t); |
472 | | |
473 | | #ifdef FIXED_POINT |
474 | | if (kl < 7) |
475 | | kl = 7; |
476 | | if (kr < 7) |
477 | | kr = 7; |
478 | | #endif |
479 | | |
480 | 4.21M | for (j=0;j<N;j++) |
481 | 4.04M | { |
482 | 4.04M | celt_norm r, l; |
483 | | /* Apply mid scaling (side is already scaled) */ |
484 | 4.04M | l = MULT32_32_Q31(mid, X[j]); |
485 | 4.04M | r = Y[j]; |
486 | 4.04M | X[j] = EXTRACT16(PSHR32(MULT16_16(lgain, SUB16(l,r)), kl+1)); |
487 | 4.04M | Y[j] = EXTRACT16(PSHR32(MULT16_16(rgain, ADD16(l,r)), kr+1)); |
488 | 4.04M | } |
489 | 178k | } |
490 | | |
491 | | /* Decide whether we should spread the pulses in the current frame */ |
492 | | int spreading_decision(const CELTMode *m, const celt_norm *X, int *average, |
493 | | int last_decision, int *hf_average, int *tapset_decision, int update_hf, |
494 | | int end, int C, int M, const int *spread_weight) |
495 | 0 | { |
496 | 0 | int i, c, N0; |
497 | 0 | int sum = 0, nbBands=0; |
498 | 0 | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
499 | 0 | int decision; |
500 | 0 | int hf_sum=0; |
501 | |
|
502 | 0 | celt_assert(end>0); |
503 | |
|
504 | 0 | N0 = M*m->shortMdctSize; |
505 | |
|
506 | 0 | if (M*(eBands[end]-eBands[end-1]) <= 8) |
507 | 0 | return SPREAD_NONE; |
508 | 0 | c=0; do { |
509 | 0 | for (i=0;i<end;i++) |
510 | 0 | { |
511 | 0 | int j, N, tmp=0; |
512 | 0 | int tcount[3] = {0,0,0}; |
513 | 0 | const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0; |
514 | 0 | N = M*(eBands[i+1]-eBands[i]); |
515 | 0 | if (N<=8) |
516 | 0 | continue; |
517 | | /* Compute rough CDF of |x[j]| */ |
518 | 0 | for (j=0;j<N;j++) |
519 | 0 | { |
520 | 0 | opus_val32 x2N; /* Q13 */ |
521 | |
|
522 | 0 | x2N = MULT16_16(MULT16_16_Q15(x[j], x[j]), N); |
523 | 0 | if (x2N < QCONST16(0.25f,13)) |
524 | 0 | tcount[0]++; |
525 | 0 | if (x2N < QCONST16(0.0625f,13)) |
526 | 0 | tcount[1]++; |
527 | 0 | if (x2N < QCONST16(0.015625f,13)) |
528 | 0 | tcount[2]++; |
529 | 0 | } |
530 | | |
531 | | /* Only include four last bands (8 kHz and up) */ |
532 | 0 | if (i>m->nbEBands-4) |
533 | 0 | hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N); |
534 | 0 | tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); |
535 | 0 | sum += tmp*spread_weight[i]; |
536 | 0 | nbBands+=spread_weight[i]; |
537 | 0 | } |
538 | 0 | } while (++c<C); |
539 | |
|
540 | 0 | if (update_hf) |
541 | 0 | { |
542 | 0 | if (hf_sum) |
543 | 0 | hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end)); |
544 | 0 | *hf_average = (*hf_average+hf_sum)>>1; |
545 | 0 | hf_sum = *hf_average; |
546 | 0 | if (*tapset_decision==2) |
547 | 0 | hf_sum += 4; |
548 | 0 | else if (*tapset_decision==0) |
549 | 0 | hf_sum -= 4; |
550 | 0 | if (hf_sum > 22) |
551 | 0 | *tapset_decision=2; |
552 | 0 | else if (hf_sum > 18) |
553 | 0 | *tapset_decision=1; |
554 | 0 | else |
555 | 0 | *tapset_decision=0; |
556 | 0 | } |
557 | | /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ |
558 | 0 | celt_assert(nbBands>0); /* end has to be non-zero */ |
559 | 0 | celt_assert(sum>=0); |
560 | 0 | sum = celt_udiv((opus_int32)sum<<8, nbBands); |
561 | | /* Recursive averaging */ |
562 | 0 | sum = (sum+*average)>>1; |
563 | 0 | *average = sum; |
564 | | /* Hysteresis */ |
565 | 0 | sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; |
566 | 0 | if (sum < 80) |
567 | 0 | { |
568 | 0 | decision = SPREAD_AGGRESSIVE; |
569 | 0 | } else if (sum < 256) |
570 | 0 | { |
571 | 0 | decision = SPREAD_NORMAL; |
572 | 0 | } else if (sum < 384) |
573 | 0 | { |
574 | 0 | decision = SPREAD_LIGHT; |
575 | 0 | } else { |
576 | 0 | decision = SPREAD_NONE; |
577 | 0 | } |
578 | | #ifdef FUZZING |
579 | | decision = rand()&0x3; |
580 | | *tapset_decision=rand()%3; |
581 | | #endif |
582 | 0 | return decision; |
583 | 0 | } |
584 | | |
585 | | /* Indexing table for converting from natural Hadamard to ordery Hadamard |
586 | | This is essentially a bit-reversed Gray, on top of which we've added |
587 | | an inversion of the order because we want the DC at the end rather than |
588 | | the beginning. The lines are for N=2, 4, 8, 16 */ |
589 | | static const int ordery_table[] = { |
590 | | 1, 0, |
591 | | 3, 0, 2, 1, |
592 | | 7, 0, 4, 3, 6, 1, 5, 2, |
593 | | 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5, |
594 | | }; |
595 | | |
596 | | static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) |
597 | 307k | { |
598 | 307k | int i,j; |
599 | 307k | VARDECL(celt_norm, tmp); |
600 | 307k | int N; |
601 | 307k | SAVE_STACK; |
602 | 307k | N = N0*stride; |
603 | 307k | ALLOC(tmp, N, celt_norm); |
604 | 307k | celt_assert(stride>0); |
605 | 307k | if (hadamard) |
606 | 280k | { |
607 | 280k | const int *ordery = ordery_table+stride-2; |
608 | 1.72M | for (i=0;i<stride;i++) |
609 | 1.44M | { |
610 | 6.66M | for (j=0;j<N0;j++) |
611 | 5.22M | tmp[ordery[i]*N0+j] = X[j*stride+i]; |
612 | 1.44M | } |
613 | 280k | } else { |
614 | 166k | for (i=0;i<stride;i++) |
615 | 525k | for (j=0;j<N0;j++) |
616 | 386k | tmp[i*N0+j] = X[j*stride+i]; |
617 | 26.7k | } |
618 | 307k | OPUS_COPY(X, tmp, N); |
619 | 307k | RESTORE_STACK; |
620 | 307k | } |
621 | | |
622 | | static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) |
623 | 360k | { |
624 | 360k | int i,j; |
625 | 360k | VARDECL(celt_norm, tmp); |
626 | 360k | int N; |
627 | 360k | SAVE_STACK; |
628 | 360k | N = N0*stride; |
629 | 360k | ALLOC(tmp, N, celt_norm); |
630 | 360k | if (hadamard) |
631 | 326k | { |
632 | 326k | const int *ordery = ordery_table+stride-2; |
633 | 2.01M | for (i=0;i<stride;i++) |
634 | 8.02M | for (j=0;j<N0;j++) |
635 | 6.33M | tmp[j*stride+i] = X[ordery[i]*N0+j]; |
636 | 326k | } else { |
637 | 212k | for (i=0;i<stride;i++) |
638 | 723k | for (j=0;j<N0;j++) |
639 | 544k | tmp[j*stride+i] = X[i*N0+j]; |
640 | 33.5k | } |
641 | 360k | OPUS_COPY(X, tmp, N); |
642 | 360k | RESTORE_STACK; |
643 | 360k | } |
644 | | |
645 | | void haar1(celt_norm *X, int N0, int stride) |
646 | 1.56M | { |
647 | 1.56M | int i, j; |
648 | 1.56M | N0 >>= 1; |
649 | 4.52M | for (i=0;i<stride;i++) |
650 | 20.0M | for (j=0;j<N0;j++) |
651 | 17.1M | { |
652 | 17.1M | opus_val32 tmp1, tmp2; |
653 | 17.1M | tmp1 = MULT16_16(QCONST16(.70710678f,15), X[stride*2*j+i]); |
654 | 17.1M | tmp2 = MULT16_16(QCONST16(.70710678f,15), X[stride*(2*j+1)+i]); |
655 | 17.1M | X[stride*2*j+i] = EXTRACT16(PSHR32(ADD32(tmp1, tmp2), 15)); |
656 | 17.1M | X[stride*(2*j+1)+i] = EXTRACT16(PSHR32(SUB32(tmp1, tmp2), 15)); |
657 | 17.1M | } |
658 | 1.56M | } |
659 | | |
660 | | static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo) |
661 | 711k | { |
662 | 711k | static const opus_int16 exp2_table8[8] = |
663 | 711k | {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048}; |
664 | 711k | int qn, qb; |
665 | 711k | int N2 = 2*N-1; |
666 | 711k | if (stereo && N==2) |
667 | 71.1k | N2--; |
668 | | /* The upper limit ensures that in a stereo split with itheta==16384, we'll |
669 | | always have enough bits left over to code at least one pulse in the |
670 | | side; otherwise it would collapse, since it doesn't get folded. */ |
671 | 711k | qb = celt_sudiv(b+N2*offset, N2); |
672 | 711k | qb = IMIN(b-pulse_cap-(4<<BITRES), qb); |
673 | | |
674 | 711k | qb = IMIN(8<<BITRES, qb); |
675 | | |
676 | 711k | if (qb<(1<<BITRES>>1)) { |
677 | 145k | qn = 1; |
678 | 565k | } else { |
679 | 565k | qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES)); |
680 | 565k | qn = (qn+1)>>1<<1; |
681 | 565k | } |
682 | 711k | celt_assert(qn <= 256); |
683 | 711k | return qn; |
684 | 711k | } |
685 | | |
686 | | struct band_ctx { |
687 | | int encode; |
688 | | int resynth; |
689 | | const CELTMode *m; |
690 | | int i; |
691 | | int intensity; |
692 | | int spread; |
693 | | int tf_change; |
694 | | ec_ctx *ec; |
695 | | opus_int32 remaining_bits; |
696 | | const celt_ener *bandE; |
697 | | opus_uint32 seed; |
698 | | int arch; |
699 | | int theta_round; |
700 | | int disable_inv; |
701 | | int avoid_split_noise; |
702 | | }; |
703 | | |
704 | | struct split_ctx { |
705 | | int inv; |
706 | | int imid; |
707 | | int iside; |
708 | | int delta; |
709 | | int itheta; |
710 | | int qalloc; |
711 | | }; |
712 | | |
713 | | static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx, |
714 | | celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0, |
715 | | int LM, |
716 | | int stereo, int *fill) |
717 | 711k | { |
718 | 711k | int qn; |
719 | 711k | int itheta=0; |
720 | 711k | int delta; |
721 | 711k | int imid, iside; |
722 | 711k | int qalloc; |
723 | 711k | int pulse_cap; |
724 | 711k | int offset; |
725 | 711k | opus_int32 tell; |
726 | 711k | int inv=0; |
727 | 711k | int encode; |
728 | 711k | const CELTMode *m; |
729 | 711k | int i; |
730 | 711k | int intensity; |
731 | 711k | ec_ctx *ec; |
732 | 711k | const celt_ener *bandE; |
733 | | |
734 | 711k | encode = ctx->encode; |
735 | 711k | m = ctx->m; |
736 | 711k | i = ctx->i; |
737 | 711k | intensity = ctx->intensity; |
738 | 711k | ec = ctx->ec; |
739 | 711k | bandE = ctx->bandE; |
740 | | |
741 | | /* Decide on the resolution to give to the split parameter theta */ |
742 | 711k | pulse_cap = m->logN[i]+LM*(1<<BITRES); |
743 | 711k | offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET); |
744 | 711k | qn = compute_qn(N, *b, offset, pulse_cap, stereo); |
745 | 711k | if (stereo && i>=intensity) |
746 | 206k | qn = 1; |
747 | 711k | if (encode) |
748 | 0 | { |
749 | | /* theta is the atan() of the ratio between the (normalized) |
750 | | side and mid. With just that parameter, we can re-scale both |
751 | | mid and side because we know that 1) they have unit norm and |
752 | | 2) they are orthogonal. */ |
753 | 0 | itheta = stereo_itheta(X, Y, stereo, N, ctx->arch); |
754 | 0 | } |
755 | 711k | tell = ec_tell_frac(ec); |
756 | 711k | if (qn!=1) |
757 | 500k | { |
758 | 500k | if (encode) |
759 | 0 | { |
760 | 0 | if (!stereo || ctx->theta_round == 0) |
761 | 0 | { |
762 | 0 | itheta = (itheta*(opus_int32)qn+8192)>>14; |
763 | 0 | if (!stereo && ctx->avoid_split_noise && itheta > 0 && itheta < qn) |
764 | 0 | { |
765 | | /* Check if the selected value of theta will cause the bit allocation |
766 | | to inject noise on one side. If so, make sure the energy of that side |
767 | | is zero. */ |
768 | 0 | int unquantized = celt_udiv((opus_int32)itheta*16384, qn); |
769 | 0 | imid = bitexact_cos((opus_int16)unquantized); |
770 | 0 | iside = bitexact_cos((opus_int16)(16384-unquantized)); |
771 | 0 | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); |
772 | 0 | if (delta > *b) |
773 | 0 | itheta = qn; |
774 | 0 | else if (delta < -*b) |
775 | 0 | itheta = 0; |
776 | 0 | } |
777 | 0 | } else { |
778 | 0 | int down; |
779 | | /* Bias quantization towards itheta=0 and itheta=16384. */ |
780 | 0 | int bias = itheta > 8192 ? 32767/qn : -32767/qn; |
781 | 0 | down = IMIN(qn-1, IMAX(0, (itheta*(opus_int32)qn + bias)>>14)); |
782 | 0 | if (ctx->theta_round < 0) |
783 | 0 | itheta = down; |
784 | 0 | else |
785 | 0 | itheta = down+1; |
786 | 0 | } |
787 | 0 | } |
788 | | /* Entropy coding of the angle. We use a uniform pdf for the |
789 | | time split, a step for stereo, and a triangular one for the rest. */ |
790 | 500k | if (stereo && N>2) |
791 | 20.0k | { |
792 | 20.0k | int p0 = 3; |
793 | 20.0k | int x = itheta; |
794 | 20.0k | int x0 = qn/2; |
795 | 20.0k | int ft = p0*(x0+1) + x0; |
796 | | /* Use a probability of p0 up to itheta=8192 and then use 1 after */ |
797 | 20.0k | if (encode) |
798 | 0 | { |
799 | 0 | ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); |
800 | 20.0k | } else { |
801 | 20.0k | int fs; |
802 | 20.0k | fs=ec_decode(ec,ft); |
803 | 20.0k | if (fs<(x0+1)*p0) |
804 | 16.1k | x=fs/p0; |
805 | 3.87k | else |
806 | 3.87k | x=x0+1+(fs-(x0+1)*p0); |
807 | 20.0k | ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); |
808 | 20.0k | itheta = x; |
809 | 20.0k | } |
810 | 480k | } else if (B0>1 || stereo) { |
811 | | /* Uniform pdf */ |
812 | 193k | if (encode) |
813 | 0 | ec_enc_uint(ec, itheta, qn+1); |
814 | 193k | else |
815 | 193k | itheta = ec_dec_uint(ec, qn+1); |
816 | 287k | } else { |
817 | 287k | int fs=1, ft; |
818 | 287k | ft = ((qn>>1)+1)*((qn>>1)+1); |
819 | 287k | if (encode) |
820 | 0 | { |
821 | 0 | int fl; |
822 | |
|
823 | 0 | fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; |
824 | 0 | fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : |
825 | 0 | ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); |
826 | |
|
827 | 0 | ec_encode(ec, fl, fl+fs, ft); |
828 | 287k | } else { |
829 | | /* Triangular pdf */ |
830 | 287k | int fl=0; |
831 | 287k | int fm; |
832 | 287k | fm = ec_decode(ec, ft); |
833 | | |
834 | 287k | if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) |
835 | 136k | { |
836 | 136k | itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; |
837 | 136k | fs = itheta + 1; |
838 | 136k | fl = itheta*(itheta + 1)>>1; |
839 | 136k | } |
840 | 150k | else |
841 | 150k | { |
842 | 150k | itheta = (2*(qn + 1) |
843 | 150k | - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; |
844 | 150k | fs = qn + 1 - itheta; |
845 | 150k | fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); |
846 | 150k | } |
847 | | |
848 | 287k | ec_dec_update(ec, fl, fl+fs, ft); |
849 | 287k | } |
850 | 287k | } |
851 | 500k | celt_assert(itheta>=0); |
852 | 500k | itheta = celt_udiv((opus_int32)itheta*16384, qn); |
853 | 500k | if (encode && stereo) |
854 | 0 | { |
855 | 0 | if (itheta==0) |
856 | 0 | intensity_stereo(m, X, Y, bandE, i, N); |
857 | 0 | else |
858 | 0 | stereo_split(X, Y, N); |
859 | 0 | } |
860 | | /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. |
861 | | Let's do that at higher complexity */ |
862 | 500k | } else if (stereo) { |
863 | 210k | if (encode) |
864 | 0 | { |
865 | 0 | inv = itheta > 8192 && !ctx->disable_inv; |
866 | 0 | if (inv) |
867 | 0 | { |
868 | 0 | int j; |
869 | 0 | for (j=0;j<N;j++) |
870 | 0 | Y[j] = -Y[j]; |
871 | 0 | } |
872 | 0 | intensity_stereo(m, X, Y, bandE, i, N); |
873 | 0 | } |
874 | 210k | if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES) |
875 | 75.9k | { |
876 | 75.9k | if (encode) |
877 | 0 | ec_enc_bit_logp(ec, inv, 2); |
878 | 75.9k | else |
879 | 75.9k | inv = ec_dec_bit_logp(ec, 2); |
880 | 75.9k | } else |
881 | 134k | inv = 0; |
882 | | /* inv flag override to avoid problems with downmixing. */ |
883 | 210k | if (ctx->disable_inv) |
884 | 0 | inv = 0; |
885 | 210k | itheta = 0; |
886 | 210k | } |
887 | 711k | qalloc = ec_tell_frac(ec) - tell; |
888 | 711k | *b -= qalloc; |
889 | | |
890 | 711k | if (itheta == 0) |
891 | 219k | { |
892 | 219k | imid = 32767; |
893 | 219k | iside = 0; |
894 | 219k | *fill &= (1<<B)-1; |
895 | 219k | delta = -16384; |
896 | 491k | } else if (itheta == 16384) |
897 | 5.99k | { |
898 | 5.99k | imid = 0; |
899 | 5.99k | iside = 32767; |
900 | 5.99k | *fill &= ((1<<B)-1)<<B; |
901 | 5.99k | delta = 16384; |
902 | 485k | } else { |
903 | 485k | imid = bitexact_cos((opus_int16)itheta); |
904 | 485k | iside = bitexact_cos((opus_int16)(16384-itheta)); |
905 | | /* This is the mid vs side allocation that minimizes squared error |
906 | | in that band. */ |
907 | 485k | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); |
908 | 485k | } |
909 | | |
910 | 711k | sctx->inv = inv; |
911 | 711k | sctx->imid = imid; |
912 | 711k | sctx->iside = iside; |
913 | 711k | sctx->delta = delta; |
914 | 711k | sctx->itheta = itheta; |
915 | 711k | sctx->qalloc = qalloc; |
916 | 711k | } |
917 | | static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, |
918 | | celt_norm *lowband_out) |
919 | 191k | { |
920 | 191k | int c; |
921 | 191k | int stereo; |
922 | 191k | celt_norm *x = X; |
923 | 191k | int encode; |
924 | 191k | ec_ctx *ec; |
925 | | |
926 | 191k | encode = ctx->encode; |
927 | 191k | ec = ctx->ec; |
928 | | |
929 | 191k | stereo = Y != NULL; |
930 | 230k | c=0; do { |
931 | 230k | int sign=0; |
932 | 230k | if (ctx->remaining_bits>=1<<BITRES) |
933 | 89.1k | { |
934 | 89.1k | if (encode) |
935 | 0 | { |
936 | 0 | sign = x[0]<0; |
937 | 0 | ec_enc_bits(ec, sign, 1); |
938 | 89.1k | } else { |
939 | 89.1k | sign = ec_dec_bits(ec, 1); |
940 | 89.1k | } |
941 | 89.1k | ctx->remaining_bits -= 1<<BITRES; |
942 | 89.1k | } |
943 | 230k | if (ctx->resynth) |
944 | 230k | x[0] = sign ? -NORM_SCALING : NORM_SCALING; |
945 | 230k | x = Y; |
946 | 230k | } while (++c<1+stereo); |
947 | 191k | if (lowband_out) |
948 | 191k | lowband_out[0] = SHR16(X[0],4); |
949 | 191k | return 1; |
950 | 191k | } |
951 | | |
952 | | /* This function is responsible for encoding and decoding a mono partition. |
953 | | It can split the band in two and transmit the energy difference with |
954 | | the two half-bands. It can be called recursively so bands can end up being |
955 | | split in 8 parts. */ |
956 | | static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X, |
957 | | int N, int b, int B, celt_norm *lowband, |
958 | | int LM, |
959 | | opus_val32 gain, int fill) |
960 | 2.39M | { |
961 | 2.39M | const unsigned char *cache; |
962 | 2.39M | int q; |
963 | 2.39M | int curr_bits; |
964 | 2.39M | int imid=0, iside=0; |
965 | 2.39M | int B0=B; |
966 | 2.39M | opus_val32 mid=0, side=0; |
967 | 2.39M | unsigned cm=0; |
968 | 2.39M | celt_norm *Y=NULL; |
969 | 2.39M | int encode; |
970 | 2.39M | const CELTMode *m; |
971 | 2.39M | int i; |
972 | 2.39M | int spread; |
973 | 2.39M | ec_ctx *ec; |
974 | | |
975 | 2.39M | encode = ctx->encode; |
976 | 2.39M | m = ctx->m; |
977 | 2.39M | i = ctx->i; |
978 | 2.39M | spread = ctx->spread; |
979 | 2.39M | ec = ctx->ec; |
980 | | |
981 | | /* If we need 1.5 more bit than we can produce, split the band in two. */ |
982 | 2.39M | cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; |
983 | 2.39M | if (LM != -1 && b > cache[cache[0]]+12 && N>2) |
984 | 460k | { |
985 | 460k | int mbits, sbits, delta; |
986 | 460k | int itheta; |
987 | 460k | int qalloc; |
988 | 460k | struct split_ctx sctx; |
989 | 460k | celt_norm *next_lowband2=NULL; |
990 | 460k | opus_int32 rebalance; |
991 | | |
992 | 460k | N >>= 1; |
993 | 460k | Y = X+N; |
994 | 460k | LM -= 1; |
995 | 460k | if (B==1) |
996 | 287k | fill = (fill&1)|(fill<<1); |
997 | 460k | B = (B+1)>>1; |
998 | | |
999 | 460k | compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill); |
1000 | 460k | imid = sctx.imid; |
1001 | 460k | iside = sctx.iside; |
1002 | 460k | delta = sctx.delta; |
1003 | 460k | itheta = sctx.itheta; |
1004 | 460k | qalloc = sctx.qalloc; |
1005 | | #ifdef FIXED_POINT |
1006 | | mid = SHL32(EXTEND32(imid), 16); |
1007 | | side = SHL32(EXTEND32(iside), 16); |
1008 | | #else |
1009 | 460k | mid = (1.f/32768)*imid; |
1010 | 460k | side = (1.f/32768)*iside; |
1011 | 460k | #endif |
1012 | | |
1013 | | /* Give more bits to low-energy MDCTs than they would otherwise deserve */ |
1014 | 460k | if (B0>1 && (itheta&0x3fff)) |
1015 | 169k | { |
1016 | 169k | if (itheta > 8192) |
1017 | | /* Rough approximation for pre-echo masking */ |
1018 | 72.9k | delta -= delta>>(4-LM); |
1019 | 96.3k | else |
1020 | | /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ |
1021 | 96.3k | delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); |
1022 | 169k | } |
1023 | 460k | mbits = IMAX(0, IMIN(b, (b-delta)/2)); |
1024 | 460k | sbits = b-mbits; |
1025 | 460k | ctx->remaining_bits -= qalloc; |
1026 | | |
1027 | 460k | if (lowband) |
1028 | 417k | next_lowband2 = lowband+N; /* >32-bit split case */ |
1029 | | |
1030 | 460k | rebalance = ctx->remaining_bits; |
1031 | 460k | if (mbits >= sbits) |
1032 | 231k | { |
1033 | 231k | cm = quant_partition(ctx, X, N, mbits, B, lowband, LM, |
1034 | 231k | MULT32_32_Q31(gain,mid), fill); |
1035 | 231k | rebalance = mbits - (rebalance-ctx->remaining_bits); |
1036 | 231k | if (rebalance > 3<<BITRES && itheta!=0) |
1037 | 154k | sbits += rebalance - (3<<BITRES); |
1038 | 231k | cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, |
1039 | 231k | MULT32_32_Q31(gain,side), fill>>B)<<(B0>>1); |
1040 | 231k | } else { |
1041 | 229k | cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, |
1042 | 229k | MULT32_32_Q31(gain,side), fill>>B)<<(B0>>1); |
1043 | 229k | rebalance = sbits - (rebalance-ctx->remaining_bits); |
1044 | 229k | if (rebalance > 3<<BITRES && itheta!=16384) |
1045 | 156k | mbits += rebalance - (3<<BITRES); |
1046 | 229k | cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM, |
1047 | 229k | MULT32_32_Q31(gain,mid), fill); |
1048 | 229k | } |
1049 | 1.93M | } else { |
1050 | | /* This is the basic no-split case */ |
1051 | 1.93M | q = bits2pulses(m, i, LM, b); |
1052 | 1.93M | curr_bits = pulses2bits(m, i, LM, q); |
1053 | 1.93M | ctx->remaining_bits -= curr_bits; |
1054 | | |
1055 | | /* Ensures we can never bust the budget */ |
1056 | 1.95M | while (ctx->remaining_bits < 0 && q > 0) |
1057 | 19.0k | { |
1058 | 19.0k | ctx->remaining_bits += curr_bits; |
1059 | 19.0k | q--; |
1060 | 19.0k | curr_bits = pulses2bits(m, i, LM, q); |
1061 | 19.0k | ctx->remaining_bits -= curr_bits; |
1062 | 19.0k | } |
1063 | | |
1064 | 1.93M | if (q!=0) |
1065 | 1.13M | { |
1066 | 1.13M | int K = get_pulses(q); |
1067 | | |
1068 | | /* Finally do the actual quantization */ |
1069 | 1.13M | if (encode) |
1070 | 0 | { |
1071 | 0 | cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth, ctx->arch); |
1072 | 1.13M | } else { |
1073 | 1.13M | cm = alg_unquant(X, N, K, spread, B, ec, gain); |
1074 | 1.13M | } |
1075 | 1.13M | } else { |
1076 | | /* If there's no pulse, fill the band anyway */ |
1077 | 808k | int j; |
1078 | 808k | if (ctx->resynth) |
1079 | 808k | { |
1080 | 808k | unsigned cm_mask; |
1081 | | /* B can be as large as 16, so this shift might overflow an int on a |
1082 | | 16-bit platform; use a long to get defined behavior.*/ |
1083 | 808k | cm_mask = (unsigned)(1UL<<B)-1; |
1084 | 808k | fill &= cm_mask; |
1085 | 808k | if (!fill) |
1086 | 171k | { |
1087 | 171k | OPUS_CLEAR(X, N); |
1088 | 637k | } else { |
1089 | 637k | if (lowband == NULL) |
1090 | 39.7k | { |
1091 | | /* Noise */ |
1092 | 1.33M | for (j=0;j<N;j++) |
1093 | 1.29M | { |
1094 | 1.29M | ctx->seed = celt_lcg_rand(ctx->seed); |
1095 | 1.29M | X[j] = (celt_norm)((opus_int32)ctx->seed>>20); |
1096 | 1.29M | } |
1097 | 39.7k | cm = cm_mask; |
1098 | 597k | } else { |
1099 | | /* Folded spectrum */ |
1100 | 11.7M | for (j=0;j<N;j++) |
1101 | 11.1M | { |
1102 | 11.1M | opus_val16 tmp; |
1103 | 11.1M | ctx->seed = celt_lcg_rand(ctx->seed); |
1104 | | /* About 48 dB below the "normal" folding level */ |
1105 | 11.1M | tmp = QCONST16(1.0f/256, 10); |
1106 | 11.1M | tmp = (ctx->seed)&0x8000 ? tmp : -tmp; |
1107 | 11.1M | X[j] = lowband[j]+tmp; |
1108 | 11.1M | } |
1109 | 597k | cm = fill; |
1110 | 597k | } |
1111 | 637k | renormalise_vector(X, N, gain, ctx->arch); |
1112 | 637k | } |
1113 | 808k | } |
1114 | 808k | } |
1115 | 1.93M | } |
1116 | | |
1117 | 2.39M | return cm; |
1118 | 2.39M | } |
1119 | | |
1120 | | |
1121 | | /* This function is responsible for encoding and decoding a band for the mono case. */ |
1122 | | static unsigned quant_band(struct band_ctx *ctx, celt_norm *X, |
1123 | | int N, int b, int B, celt_norm *lowband, |
1124 | | int LM, celt_norm *lowband_out, |
1125 | | opus_val32 gain, celt_norm *lowband_scratch, int fill) |
1126 | 1.63M | { |
1127 | 1.63M | int N0=N; |
1128 | 1.63M | int N_B=N; |
1129 | 1.63M | int N_B0; |
1130 | 1.63M | int B0=B; |
1131 | 1.63M | int time_divide=0; |
1132 | 1.63M | int recombine=0; |
1133 | 1.63M | int longBlocks; |
1134 | 1.63M | unsigned cm=0; |
1135 | 1.63M | int k; |
1136 | 1.63M | int encode; |
1137 | 1.63M | int tf_change; |
1138 | | |
1139 | 1.63M | encode = ctx->encode; |
1140 | 1.63M | tf_change = ctx->tf_change; |
1141 | | |
1142 | 1.63M | longBlocks = B0==1; |
1143 | | |
1144 | 1.63M | N_B = celt_udiv(N_B, B); |
1145 | | |
1146 | | /* Special case for one sample */ |
1147 | 1.63M | if (N==1) |
1148 | 152k | { |
1149 | 152k | return quant_band_n1(ctx, X, NULL, lowband_out); |
1150 | 152k | } |
1151 | | |
1152 | 1.47M | if (tf_change>0) |
1153 | 80.7k | recombine = tf_change; |
1154 | | /* Band recombining to increase frequency resolution */ |
1155 | | |
1156 | 1.47M | if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) |
1157 | 338k | { |
1158 | 338k | OPUS_COPY(lowband_scratch, lowband, N); |
1159 | 338k | lowband = lowband_scratch; |
1160 | 338k | } |
1161 | | |
1162 | 1.61M | for (k=0;k<recombine;k++) |
1163 | 133k | { |
1164 | 133k | static const unsigned char bit_interleave_table[16]={ |
1165 | 133k | 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 |
1166 | 133k | }; |
1167 | 133k | if (encode) |
1168 | 0 | haar1(X, N>>k, 1<<k); |
1169 | 133k | if (lowband) |
1170 | 114k | haar1(lowband, N>>k, 1<<k); |
1171 | 133k | fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; |
1172 | 133k | } |
1173 | 1.47M | B>>=recombine; |
1174 | 1.47M | N_B<<=recombine; |
1175 | | |
1176 | | /* Increasing the time resolution */ |
1177 | 2.18M | while ((N_B&1) == 0 && tf_change<0) |
1178 | 709k | { |
1179 | 709k | if (encode) |
1180 | 0 | haar1(X, N_B, B); |
1181 | 709k | if (lowband) |
1182 | 607k | haar1(lowband, N_B, B); |
1183 | 709k | fill |= fill<<B; |
1184 | 709k | B <<= 1; |
1185 | 709k | N_B >>= 1; |
1186 | 709k | time_divide++; |
1187 | 709k | tf_change++; |
1188 | 709k | } |
1189 | 1.47M | B0=B; |
1190 | 1.47M | N_B0 = N_B; |
1191 | | |
1192 | | /* Reorganize the samples in time order instead of frequency order */ |
1193 | 1.47M | if (B0>1) |
1194 | 360k | { |
1195 | 360k | if (encode) |
1196 | 0 | deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); |
1197 | 360k | if (lowband) |
1198 | 307k | deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); |
1199 | 360k | } |
1200 | | |
1201 | 1.47M | cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill); |
1202 | | |
1203 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
1204 | 1.47M | if (ctx->resynth) |
1205 | 1.47M | { |
1206 | | /* Undo the sample reorganization going from time order to frequency order */ |
1207 | 1.47M | if (B0>1) |
1208 | 360k | interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); |
1209 | | |
1210 | | /* Undo time-freq changes that we did earlier */ |
1211 | 1.47M | N_B = N_B0; |
1212 | 1.47M | B = B0; |
1213 | 2.18M | for (k=0;k<time_divide;k++) |
1214 | 709k | { |
1215 | 709k | B >>= 1; |
1216 | 709k | N_B <<= 1; |
1217 | 709k | cm |= cm>>B; |
1218 | 709k | haar1(X, N_B, B); |
1219 | 709k | } |
1220 | | |
1221 | 1.61M | for (k=0;k<recombine;k++) |
1222 | 133k | { |
1223 | 133k | static const unsigned char bit_deinterleave_table[16]={ |
1224 | 133k | 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, |
1225 | 133k | 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF |
1226 | 133k | }; |
1227 | 133k | cm = bit_deinterleave_table[cm]; |
1228 | 133k | haar1(X, N0>>k, 1<<k); |
1229 | 133k | } |
1230 | 1.47M | B<<=recombine; |
1231 | | |
1232 | | /* Scale output for later folding */ |
1233 | 1.47M | if (lowband_out) |
1234 | 1.18M | { |
1235 | 1.18M | int j; |
1236 | 1.18M | opus_val16 n; |
1237 | 1.18M | n = celt_sqrt(SHL32(EXTEND32(N0),22)); |
1238 | 13.3M | for (j=0;j<N0;j++) |
1239 | 12.1M | lowband_out[j] = MULT16_16_Q15(n,X[j]); |
1240 | 1.18M | } |
1241 | 1.47M | cm &= (1<<B)-1; |
1242 | 1.47M | } |
1243 | 1.47M | return cm; |
1244 | 1.63M | } |
1245 | | |
1246 | | #ifdef FIXED_POINT |
1247 | | #define MIN_STEREO_ENERGY 2 |
1248 | | #else |
1249 | 0 | #define MIN_STEREO_ENERGY 1e-10f |
1250 | | #endif |
1251 | | |
1252 | | /* This function is responsible for encoding and decoding a band for the stereo case. */ |
1253 | | static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, |
1254 | | int N, int b, int B, celt_norm *lowband, |
1255 | | int LM, celt_norm *lowband_out, |
1256 | | celt_norm *lowband_scratch, int fill) |
1257 | 289k | { |
1258 | 289k | int imid=0, iside=0; |
1259 | 289k | int inv = 0; |
1260 | 289k | opus_val32 mid=0, side=0; |
1261 | 289k | unsigned cm=0; |
1262 | 289k | int mbits, sbits, delta; |
1263 | 289k | int itheta; |
1264 | 289k | int qalloc; |
1265 | 289k | struct split_ctx sctx; |
1266 | 289k | int orig_fill; |
1267 | 289k | int encode; |
1268 | 289k | ec_ctx *ec; |
1269 | | |
1270 | 289k | encode = ctx->encode; |
1271 | 289k | ec = ctx->ec; |
1272 | | |
1273 | | /* Special case for one sample */ |
1274 | 289k | if (N==1) |
1275 | 38.9k | { |
1276 | 38.9k | return quant_band_n1(ctx, X, Y, lowband_out); |
1277 | 38.9k | } |
1278 | | |
1279 | 250k | orig_fill = fill; |
1280 | | |
1281 | 250k | if (encode) { |
1282 | 0 | if (ctx->bandE[ctx->i] < MIN_STEREO_ENERGY || ctx->bandE[ctx->m->nbEBands+ctx->i] < MIN_STEREO_ENERGY) { |
1283 | 0 | if (ctx->bandE[ctx->i] > ctx->bandE[ctx->m->nbEBands+ctx->i]) OPUS_COPY(Y, X, N); |
1284 | 0 | else OPUS_COPY(X, Y, N); |
1285 | 0 | } |
1286 | 0 | } |
1287 | 250k | compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill); |
1288 | 250k | inv = sctx.inv; |
1289 | 250k | imid = sctx.imid; |
1290 | 250k | iside = sctx.iside; |
1291 | 250k | delta = sctx.delta; |
1292 | 250k | itheta = sctx.itheta; |
1293 | 250k | qalloc = sctx.qalloc; |
1294 | | #ifdef FIXED_POINT |
1295 | | mid = SHL32(EXTEND32(imid), 16); |
1296 | | side = SHL32(EXTEND32(iside), 16); |
1297 | | #else |
1298 | 250k | mid = (1.f/32768)*imid; |
1299 | 250k | side = (1.f/32768)*iside; |
1300 | 250k | #endif |
1301 | | |
1302 | | /* This is a special case for N=2 that only works for stereo and takes |
1303 | | advantage of the fact that mid and side are orthogonal to encode |
1304 | | the side with just one bit. */ |
1305 | 250k | if (N==2) |
1306 | 71.1k | { |
1307 | 71.1k | int c; |
1308 | 71.1k | int sign=0; |
1309 | 71.1k | celt_norm *x2, *y2; |
1310 | 71.1k | mbits = b; |
1311 | 71.1k | sbits = 0; |
1312 | | /* Only need one bit for the side. */ |
1313 | 71.1k | if (itheta != 0 && itheta != 16384) |
1314 | 16.0k | sbits = 1<<BITRES; |
1315 | 71.1k | mbits -= sbits; |
1316 | 71.1k | c = itheta > 8192; |
1317 | 71.1k | ctx->remaining_bits -= qalloc+sbits; |
1318 | | |
1319 | 71.1k | x2 = c ? Y : X; |
1320 | 71.1k | y2 = c ? X : Y; |
1321 | 71.1k | if (sbits) |
1322 | 16.0k | { |
1323 | 16.0k | if (encode) |
1324 | 0 | { |
1325 | | /* Here we only need to encode a sign for the side. */ |
1326 | 0 | sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; |
1327 | 0 | ec_enc_bits(ec, sign, 1); |
1328 | 16.0k | } else { |
1329 | 16.0k | sign = ec_dec_bits(ec, 1); |
1330 | 16.0k | } |
1331 | 16.0k | } |
1332 | 71.1k | sign = 1-2*sign; |
1333 | | /* We use orig_fill here because we want to fold the side, but if |
1334 | | itheta==16384, we'll have cleared the low bits of fill. */ |
1335 | 71.1k | cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q31ONE, |
1336 | 71.1k | lowband_scratch, orig_fill); |
1337 | | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), |
1338 | | and there's no need to worry about mixing with the other channel. */ |
1339 | 71.1k | y2[0] = -sign*x2[1]; |
1340 | 71.1k | y2[1] = sign*x2[0]; |
1341 | 71.1k | if (ctx->resynth) |
1342 | 71.1k | { |
1343 | 71.1k | celt_norm tmp; |
1344 | 71.1k | X[0] = MULT32_32_Q31(mid, X[0]); |
1345 | 71.1k | X[1] = MULT32_32_Q31(mid, X[1]); |
1346 | 71.1k | Y[0] = MULT32_32_Q31(side, Y[0]); |
1347 | 71.1k | Y[1] = MULT32_32_Q31(side, Y[1]); |
1348 | 71.1k | tmp = X[0]; |
1349 | 71.1k | X[0] = SUB16(tmp,Y[0]); |
1350 | 71.1k | Y[0] = ADD16(tmp,Y[0]); |
1351 | 71.1k | tmp = X[1]; |
1352 | 71.1k | X[1] = SUB16(tmp,Y[1]); |
1353 | 71.1k | Y[1] = ADD16(tmp,Y[1]); |
1354 | 71.1k | } |
1355 | 179k | } else { |
1356 | | /* "Normal" split code */ |
1357 | 179k | opus_int32 rebalance; |
1358 | | |
1359 | 179k | mbits = IMAX(0, IMIN(b, (b-delta)/2)); |
1360 | 179k | sbits = b-mbits; |
1361 | 179k | ctx->remaining_bits -= qalloc; |
1362 | | |
1363 | 179k | rebalance = ctx->remaining_bits; |
1364 | 179k | if (mbits >= sbits) |
1365 | 172k | { |
1366 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized |
1367 | | mid for folding later. */ |
1368 | 172k | cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, |
1369 | 172k | lowband_scratch, fill); |
1370 | 172k | rebalance = mbits - (rebalance-ctx->remaining_bits); |
1371 | 172k | if (rebalance > 3<<BITRES && itheta!=0) |
1372 | 1.04k | sbits += rebalance - (3<<BITRES); |
1373 | | |
1374 | | /* For a stereo split, the high bits of fill are always zero, so no |
1375 | | folding will be done to the side. */ |
1376 | 172k | cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B); |
1377 | 172k | } else { |
1378 | | /* For a stereo split, the high bits of fill are always zero, so no |
1379 | | folding will be done to the side. */ |
1380 | 6.57k | cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B); |
1381 | 6.57k | rebalance = sbits - (rebalance-ctx->remaining_bits); |
1382 | 6.57k | if (rebalance > 3<<BITRES && itheta!=16384) |
1383 | 373 | mbits += rebalance - (3<<BITRES); |
1384 | | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized |
1385 | | mid for folding later. */ |
1386 | 6.57k | cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q31ONE, |
1387 | 6.57k | lowband_scratch, fill); |
1388 | 6.57k | } |
1389 | 179k | } |
1390 | | |
1391 | | |
1392 | | /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
1393 | 250k | if (ctx->resynth) |
1394 | 250k | { |
1395 | 250k | if (N!=2) |
1396 | 179k | stereo_merge(X, Y, mid, N, ctx->arch); |
1397 | 250k | if (inv) |
1398 | 17.5k | { |
1399 | 17.5k | int j; |
1400 | 267k | for (j=0;j<N;j++) |
1401 | 250k | Y[j] = -Y[j]; |
1402 | 17.5k | } |
1403 | 250k | } |
1404 | 250k | return cm; |
1405 | 289k | } |
1406 | | |
1407 | | #ifndef DISABLE_UPDATE_DRAFT |
1408 | | static void special_hybrid_folding(const CELTMode *m, celt_norm *norm, celt_norm *norm2, int start, int M, int dual_stereo) |
1409 | 116k | { |
1410 | 116k | int n1, n2; |
1411 | 116k | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
1412 | 116k | n1 = M*(eBands[start+1]-eBands[start]); |
1413 | 116k | n2 = M*(eBands[start+2]-eBands[start+1]); |
1414 | | /* Duplicate enough of the first band folding data to be able to fold the second band. |
1415 | | Copies no data for CELT-only mode. */ |
1416 | 116k | OPUS_COPY(&norm[n1], &norm[2*n1 - n2], n2-n1); |
1417 | 116k | if (dual_stereo) |
1418 | 5.89k | OPUS_COPY(&norm2[n1], &norm2[2*n1 - n2], n2-n1); |
1419 | 116k | } |
1420 | | #endif |
1421 | | |
1422 | | void quant_all_bands(int encode, const CELTMode *m, int start, int end, |
1423 | | celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, |
1424 | | const celt_ener *bandE, int *pulses, int shortBlocks, int spread, |
1425 | | int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits, |
1426 | | opus_int32 balance, ec_ctx *ec, int LM, int codedBands, |
1427 | | opus_uint32 *seed, int complexity, int arch, int disable_inv) |
1428 | 116k | { |
1429 | 116k | int i; |
1430 | 116k | opus_int32 remaining_bits; |
1431 | 116k | const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
1432 | 116k | celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; |
1433 | 116k | VARDECL(celt_norm, _norm); |
1434 | 116k | VARDECL(celt_norm, _lowband_scratch); |
1435 | 116k | VARDECL(celt_norm, X_save); |
1436 | 116k | VARDECL(celt_norm, Y_save); |
1437 | 116k | VARDECL(celt_norm, X_save2); |
1438 | 116k | VARDECL(celt_norm, Y_save2); |
1439 | 116k | VARDECL(celt_norm, norm_save2); |
1440 | 116k | int resynth_alloc; |
1441 | 116k | celt_norm *lowband_scratch; |
1442 | 116k | int B; |
1443 | 116k | int M; |
1444 | 116k | int lowband_offset; |
1445 | 116k | int update_lowband = 1; |
1446 | 116k | int C = Y_ != NULL ? 2 : 1; |
1447 | 116k | int norm_offset; |
1448 | 116k | int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8; |
1449 | | #ifdef RESYNTH |
1450 | | int resynth = 1; |
1451 | | #else |
1452 | 116k | int resynth = !encode || theta_rdo; |
1453 | 116k | #endif |
1454 | 116k | struct band_ctx ctx; |
1455 | 116k | SAVE_STACK; |
1456 | | |
1457 | 116k | M = 1<<LM; |
1458 | 116k | B = shortBlocks ? M : 1; |
1459 | 116k | norm_offset = M*eBands[start]; |
1460 | | /* No need to allocate norm for the last band because we don't need an |
1461 | | output in that band. */ |
1462 | 116k | ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); |
1463 | 116k | norm = _norm; |
1464 | 116k | norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; |
1465 | | |
1466 | | /* For decoding, we can use the last band as scratch space because we don't need that |
1467 | | scratch space for the last band and we don't care about the data there until we're |
1468 | | decoding the last band. */ |
1469 | 116k | if (encode && resynth) |
1470 | 0 | resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]); |
1471 | 116k | else |
1472 | 116k | resynth_alloc = ALLOC_NONE; |
1473 | 116k | ALLOC(_lowband_scratch, resynth_alloc, celt_norm); |
1474 | 116k | if (encode && resynth) |
1475 | 0 | lowband_scratch = _lowband_scratch; |
1476 | 116k | else |
1477 | 116k | lowband_scratch = X_+M*eBands[m->effEBands-1]; |
1478 | 116k | ALLOC(X_save, resynth_alloc, celt_norm); |
1479 | 116k | ALLOC(Y_save, resynth_alloc, celt_norm); |
1480 | 116k | ALLOC(X_save2, resynth_alloc, celt_norm); |
1481 | 116k | ALLOC(Y_save2, resynth_alloc, celt_norm); |
1482 | 116k | ALLOC(norm_save2, resynth_alloc, celt_norm); |
1483 | | |
1484 | 116k | lowband_offset = 0; |
1485 | 116k | ctx.bandE = bandE; |
1486 | 116k | ctx.ec = ec; |
1487 | 116k | ctx.encode = encode; |
1488 | 116k | ctx.intensity = intensity; |
1489 | 116k | ctx.m = m; |
1490 | 116k | ctx.seed = *seed; |
1491 | 116k | ctx.spread = spread; |
1492 | 116k | ctx.arch = arch; |
1493 | 116k | ctx.disable_inv = disable_inv; |
1494 | 116k | ctx.resynth = resynth; |
1495 | 116k | ctx.theta_round = 0; |
1496 | | /* Avoid injecting noise in the first band on transients. */ |
1497 | 116k | ctx.avoid_split_noise = B > 1; |
1498 | 1.55M | for (i=start;i<end;i++) |
1499 | 1.44M | { |
1500 | 1.44M | opus_int32 tell; |
1501 | 1.44M | int b; |
1502 | 1.44M | int N; |
1503 | 1.44M | opus_int32 curr_balance; |
1504 | 1.44M | int effective_lowband=-1; |
1505 | 1.44M | celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; |
1506 | 1.44M | int tf_change=0; |
1507 | 1.44M | unsigned x_cm; |
1508 | 1.44M | unsigned y_cm; |
1509 | 1.44M | int last; |
1510 | | |
1511 | 1.44M | ctx.i = i; |
1512 | 1.44M | last = (i==end-1); |
1513 | | |
1514 | 1.44M | X = X_+M*eBands[i]; |
1515 | 1.44M | if (Y_!=NULL) |
1516 | 339k | Y = Y_+M*eBands[i]; |
1517 | 1.10M | else |
1518 | 1.10M | Y = NULL; |
1519 | 1.44M | N = M*eBands[i+1]-M*eBands[i]; |
1520 | 1.44M | celt_assert(N > 0); |
1521 | 1.44M | tell = ec_tell_frac(ec); |
1522 | | |
1523 | | /* Compute how many bits we want to allocate to this band */ |
1524 | 1.44M | if (i != start) |
1525 | 1.32M | balance -= tell; |
1526 | 1.44M | remaining_bits = total_bits-tell-1; |
1527 | 1.44M | ctx.remaining_bits = remaining_bits; |
1528 | 1.44M | if (i <= codedBands-1) |
1529 | 762k | { |
1530 | 762k | curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); |
1531 | 762k | b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); |
1532 | 762k | } else { |
1533 | 678k | b = 0; |
1534 | 678k | } |
1535 | | |
1536 | 1.44M | #ifndef DISABLE_UPDATE_DRAFT |
1537 | 1.44M | if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0)) |
1538 | 637k | lowband_offset = i; |
1539 | 1.44M | if (i == start+1) |
1540 | 116k | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); |
1541 | | #else |
1542 | | if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) |
1543 | | lowband_offset = i; |
1544 | | #endif |
1545 | | |
1546 | 1.44M | tf_change = tf_res[i]; |
1547 | 1.44M | ctx.tf_change = tf_change; |
1548 | 1.44M | if (i>=m->effEBands) |
1549 | 0 | { |
1550 | 0 | X=norm; |
1551 | 0 | if (Y_!=NULL) |
1552 | 0 | Y = norm; |
1553 | 0 | lowband_scratch = NULL; |
1554 | 0 | } |
1555 | 1.44M | if (last && !theta_rdo) |
1556 | 116k | lowband_scratch = NULL; |
1557 | | |
1558 | | /* Get a conservative estimate of the collapse_mask's for the bands we're |
1559 | | going to be folding from. */ |
1560 | 1.44M | if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) |
1561 | 1.23M | { |
1562 | 1.23M | int fold_start; |
1563 | 1.23M | int fold_end; |
1564 | 1.23M | int fold_i; |
1565 | | /* This ensures we never repeat spectral content within one band */ |
1566 | 1.23M | effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); |
1567 | 1.23M | fold_start = lowband_offset; |
1568 | 1.60M | while(M*eBands[--fold_start] > effective_lowband+norm_offset); |
1569 | 1.23M | fold_end = lowband_offset-1; |
1570 | 1.23M | #ifndef DISABLE_UPDATE_DRAFT |
1571 | 2.10M | while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N); |
1572 | | #else |
1573 | | while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); |
1574 | | #endif |
1575 | 1.23M | x_cm = y_cm = 0; |
1576 | 2.46M | fold_i = fold_start; do { |
1577 | 2.46M | x_cm |= collapse_masks[fold_i*C+0]; |
1578 | 2.46M | y_cm |= collapse_masks[fold_i*C+C-1]; |
1579 | 2.46M | } while (++fold_i<fold_end); |
1580 | 1.23M | } |
1581 | | /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost |
1582 | | always) be non-zero. */ |
1583 | 202k | else |
1584 | 202k | x_cm = y_cm = (1<<B)-1; |
1585 | | |
1586 | 1.44M | if (dual_stereo && i==intensity) |
1587 | 5.19k | { |
1588 | 5.19k | int j; |
1589 | | |
1590 | | /* Switch off dual stereo to do intensity. */ |
1591 | 5.19k | dual_stereo = 0; |
1592 | 5.19k | if (resynth) |
1593 | 222k | for (j=0;j<M*eBands[i]-norm_offset;j++) |
1594 | 216k | norm[j] = HALF32(norm[j]+norm2[j]); |
1595 | 5.19k | } |
1596 | 1.44M | if (dual_stereo) |
1597 | 49.6k | { |
1598 | 49.6k | x_cm = quant_band(&ctx, X, N, b/2, B, |
1599 | 49.6k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1600 | 49.6k | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm); |
1601 | 49.6k | y_cm = quant_band(&ctx, Y, N, b/2, B, |
1602 | 49.6k | effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, |
1603 | 49.6k | last?NULL:norm2+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, y_cm); |
1604 | 1.39M | } else { |
1605 | 1.39M | if (Y!=NULL) |
1606 | 289k | { |
1607 | 289k | if (theta_rdo && i < intensity) |
1608 | 0 | { |
1609 | 0 | ec_ctx ec_save, ec_save2; |
1610 | 0 | struct band_ctx ctx_save, ctx_save2; |
1611 | 0 | opus_val32 dist0, dist1; |
1612 | 0 | unsigned cm, cm2; |
1613 | 0 | int nstart_bytes, nend_bytes, save_bytes; |
1614 | 0 | unsigned char *bytes_buf; |
1615 | 0 | unsigned char bytes_save[1275]; |
1616 | 0 | opus_val16 w[2]; |
1617 | 0 | compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w); |
1618 | | /* Make a copy. */ |
1619 | 0 | cm = x_cm|y_cm; |
1620 | 0 | ec_save = *ec; |
1621 | 0 | ctx_save = ctx; |
1622 | 0 | OPUS_COPY(X_save, X, N); |
1623 | 0 | OPUS_COPY(Y_save, Y, N); |
1624 | | /* Encode and round down. */ |
1625 | 0 | ctx.theta_round = -1; |
1626 | 0 | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
1627 | 0 | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1628 | 0 | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm); |
1629 | 0 | dist0 = MULT16_32_Q15(w[0], celt_inner_prod(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod(Y_save, Y, N, arch)); |
1630 | | |
1631 | | /* Save first result. */ |
1632 | 0 | cm2 = x_cm; |
1633 | 0 | ec_save2 = *ec; |
1634 | 0 | ctx_save2 = ctx; |
1635 | 0 | OPUS_COPY(X_save2, X, N); |
1636 | 0 | OPUS_COPY(Y_save2, Y, N); |
1637 | 0 | if (!last) |
1638 | 0 | OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N); |
1639 | 0 | nstart_bytes = ec_save.offs; |
1640 | 0 | nend_bytes = ec_save.storage; |
1641 | 0 | bytes_buf = ec_save.buf+nstart_bytes; |
1642 | 0 | save_bytes = nend_bytes-nstart_bytes; |
1643 | 0 | OPUS_COPY(bytes_save, bytes_buf, save_bytes); |
1644 | | |
1645 | | /* Restore */ |
1646 | 0 | *ec = ec_save; |
1647 | 0 | ctx = ctx_save; |
1648 | 0 | OPUS_COPY(X, X_save, N); |
1649 | 0 | OPUS_COPY(Y, Y_save, N); |
1650 | 0 | #ifndef DISABLE_UPDATE_DRAFT |
1651 | 0 | if (i == start+1) |
1652 | 0 | special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); |
1653 | 0 | #endif |
1654 | | /* Encode and round up. */ |
1655 | 0 | ctx.theta_round = 1; |
1656 | 0 | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
1657 | 0 | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1658 | 0 | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm); |
1659 | 0 | dist1 = MULT16_32_Q15(w[0], celt_inner_prod(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod(Y_save, Y, N, arch)); |
1660 | 0 | if (dist0 >= dist1) { |
1661 | 0 | x_cm = cm2; |
1662 | 0 | *ec = ec_save2; |
1663 | 0 | ctx = ctx_save2; |
1664 | 0 | OPUS_COPY(X, X_save2, N); |
1665 | 0 | OPUS_COPY(Y, Y_save2, N); |
1666 | 0 | if (!last) |
1667 | 0 | OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N); |
1668 | 0 | OPUS_COPY(bytes_buf, bytes_save, save_bytes); |
1669 | 0 | } |
1670 | 289k | } else { |
1671 | 289k | ctx.theta_round = 0; |
1672 | 289k | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
1673 | 289k | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1674 | 289k | last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm); |
1675 | 289k | } |
1676 | 1.10M | } else { |
1677 | 1.10M | x_cm = quant_band(&ctx, X, N, b, B, |
1678 | 1.10M | effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
1679 | 1.10M | last?NULL:norm+M*eBands[i]-norm_offset, Q31ONE, lowband_scratch, x_cm|y_cm); |
1680 | 1.10M | } |
1681 | 1.39M | y_cm = x_cm; |
1682 | 1.39M | } |
1683 | 1.44M | collapse_masks[i*C+0] = (unsigned char)x_cm; |
1684 | 1.44M | collapse_masks[i*C+C-1] = (unsigned char)y_cm; |
1685 | 1.44M | balance += pulses[i] + tell; |
1686 | | |
1687 | | /* Update the folding position only as long as we have 1 bit/sample depth. */ |
1688 | 1.44M | update_lowband = b>(N<<BITRES); |
1689 | | /* We only need to avoid noise on a split for the first band. After that, we |
1690 | | have folding. */ |
1691 | 1.44M | ctx.avoid_split_noise = 0; |
1692 | 1.44M | } |
1693 | 116k | *seed = ctx.seed; |
1694 | | |
1695 | 116k | RESTORE_STACK; |
1696 | 116k | } |