Coverage Report

Created: 2025-08-28 07:12

/src/opus/celt/mathops.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (c) 2002-2008 Jean-Marc Valin
2
   Copyright (c) 2007-2008 CSIRO
3
   Copyright (c) 2007-2009 Xiph.Org Foundation
4
   Copyright (c) 2024 Arm Limited
5
   Written by Jean-Marc Valin */
6
/**
7
   @file mathops.h
8
   @brief Various math functions
9
*/
10
/*
11
   Redistribution and use in source and binary forms, with or without
12
   modification, are permitted provided that the following conditions
13
   are met:
14
15
   - Redistributions of source code must retain the above copyright
16
   notice, this list of conditions and the following disclaimer.
17
18
   - Redistributions in binary form must reproduce the above copyright
19
   notice, this list of conditions and the following disclaimer in the
20
   documentation and/or other materials provided with the distribution.
21
22
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
26
   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
27
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
28
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
29
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
31
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
32
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33
*/
34
35
#ifdef HAVE_CONFIG_H
36
#include "config.h"
37
#endif
38
39
#include "float_cast.h"
40
#include "mathops.h"
41
42
/*Compute floor(sqrt(_val)) with exact arithmetic.
43
  _val must be greater than 0.
44
  This has been tested on all possible 32-bit inputs greater than 0.*/
45
287k
unsigned isqrt32(opus_uint32 _val){
46
287k
  unsigned b;
47
287k
  unsigned g;
48
287k
  int      bshift;
49
  /*Uses the second method from
50
     http://www.azillionmonkeys.com/qed/sqroot.html
51
    The main idea is to search for the largest binary digit b such that
52
     (g+b)*(g+b) <= _val, and add it to the solution g.*/
53
287k
  g=0;
54
287k
  bshift=(EC_ILOG(_val)-1)>>1;
55
287k
  b=1U<<bshift;
56
2.02M
  do{
57
2.02M
    opus_uint32 t;
58
2.02M
    t=(((opus_uint32)g<<1)+b)<<bshift;
59
2.02M
    if(t<=_val){
60
1.15M
      g+=b;
61
1.15M
      _val-=t;
62
1.15M
    }
63
2.02M
    b>>=1;
64
2.02M
    bshift--;
65
2.02M
  }
66
2.02M
  while(bshift>=0);
67
287k
  return g;
68
287k
}
69
70
#ifdef FIXED_POINT
71
72
opus_val32 frac_div32_q29(opus_val32 a, opus_val32 b)
73
{
74
   opus_val16 rcp;
75
   opus_val32 result, rem;
76
   int shift = celt_ilog2(b)-29;
77
   a = VSHR32(a,shift);
78
   b = VSHR32(b,shift);
79
   /* 16-bit reciprocal */
80
   rcp = ROUND16(celt_rcp(ROUND16(b,16)),3);
81
   result = MULT16_32_Q15(rcp, a);
82
   rem = PSHR32(a,2)-MULT32_32_Q31(result, b);
83
   result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2));
84
   return result;
85
}
86
87
opus_val32 frac_div32(opus_val32 a, opus_val32 b) {
88
   opus_val32 result = frac_div32_q29(a,b);
89
   if (result >= 536870912)       /*  2^29 */
90
      return 2147483647;          /*  2^31 - 1 */
91
   else if (result <= -536870912) /* -2^29 */
92
      return -2147483647;         /* -2^31 */
93
   else
94
      return SHL32(result, 2);
95
}
96
97
/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
98
opus_val16 celt_rsqrt_norm(opus_val32 x)
99
{
100
   opus_val16 n;
101
   opus_val16 r;
102
   opus_val16 r2;
103
   opus_val16 y;
104
   /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
105
   n = x-32768;
106
   /* Get a rough initial guess for the root.
107
      The optimal minimax quadratic approximation (using relative error) is
108
       r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
109
      Coefficients here, and the final result r, are Q14.*/
110
   r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
111
   /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
112
      We can compute the result from n and r using Q15 multiplies with some
113
       adjustment, carefully done to avoid overflow.
114
      Range of y is [-1564,1594]. */
115
   r2 = MULT16_16_Q15(r, r);
116
   y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
117
   /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
118
      This yields the Q14 reciprocal square root of the Q16 x, with a maximum
119
       relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
120
       peak absolute error of 2.26591/16384. */
121
   return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
122
              SUB16(MULT16_16_Q15(y, 12288), 16384))));
123
}
124
125
/** Sqrt approximation (QX input, QX/2 output) */
126
opus_val32 celt_sqrt(opus_val32 x)
127
{
128
   int k;
129
   opus_val16 n;
130
   opus_val32 rt;
131
   /* These coeffs are optimized in fixed-point to minimize both RMS and max error
132
      of sqrt(x) over .25<x<1 without exceeding 32767.
133
      The RMS error is 3.4e-5 and the max is 8.2e-5. */
134
   static const opus_val16 C[6] = {23171, 11574, -2901, 1592, -1002, 336};
135
   if (x==0)
136
      return 0;
137
   else if (x>=1073741824)
138
      return 32767;
139
   k = (celt_ilog2(x)>>1)-7;
140
   x = VSHR32(x, 2*k);
141
   n = x-32768;
142
   rt = ADD32(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
143
              MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, ADD16(C[4], MULT16_16_Q15(n, (C[5])))))))))));
144
   rt = VSHR32(rt,7-k);
145
   return rt;
146
}
147
148
#define L1 32767
149
#define L2 -7651
150
#define L3 8277
151
#define L4 -626
152
153
static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x)
154
{
155
   opus_val16 x2;
156
157
   x2 = MULT16_16_P15(x,x);
158
   return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
159
                                                                                ))))))));
160
}
161
162
#undef L1
163
#undef L2
164
#undef L3
165
#undef L4
166
167
opus_val16 celt_cos_norm(opus_val32 x)
168
{
169
   x = x&0x0001ffff;
170
   if (x>SHL32(EXTEND32(1), 16))
171
      x = SUB32(SHL32(EXTEND32(1), 17),x);
172
   if (x&0x00007fff)
173
   {
174
      if (x<SHL32(EXTEND32(1), 15))
175
      {
176
         return _celt_cos_pi_2(EXTRACT16(x));
177
      } else {
178
         return NEG16(_celt_cos_pi_2(EXTRACT16(65536-x)));
179
      }
180
   } else {
181
      if (x&0x0000ffff)
182
         return 0;
183
      else if (x&0x0001ffff)
184
         return -32767;
185
      else
186
         return 32767;
187
   }
188
}
189
190
/** Reciprocal approximation (Q15 input, Q16 output) */
191
opus_val32 celt_rcp(opus_val32 x)
192
{
193
   int i;
194
   opus_val16 n;
195
   opus_val16 r;
196
   celt_sig_assert(x>0);
197
   i = celt_ilog2(x);
198
   /* n is Q15 with range [0,1). */
199
   n = VSHR32(x,i-15)-32768;
200
   /* Start with a linear approximation:
201
      r = 1.8823529411764706-0.9411764705882353*n.
202
      The coefficients and the result are Q14 in the range [15420,30840].*/
203
   r = ADD16(30840, MULT16_16_Q15(-15420, n));
204
   /* Perform two Newton iterations:
205
      r -= r*((r*n)-1.Q15)
206
         = r*((r*n)+(r-1.Q15)). */
207
   r = SUB16(r, MULT16_16_Q15(r,
208
             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
209
   /* We subtract an extra 1 in the second iteration to avoid overflow; it also
210
       neatly compensates for truncation error in the rest of the process. */
211
   r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
212
             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
213
   /* r is now the Q15 solution to 2/(n+1), with a maximum relative error
214
       of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
215
       error of 1.24665/32768. */
216
   return VSHR32(EXTEND32(r),i-16);
217
}
218
219
#endif
220
221
#ifndef DISABLE_FLOAT_API
222
223
void celt_float2int16_c(const float * OPUS_RESTRICT in, short * OPUS_RESTRICT out, int cnt)
224
0
{
225
0
   int i;
226
0
   for (i = 0; i < cnt; i++)
227
0
   {
228
0
      out[i] = FLOAT2INT16(in[i]);
229
0
   }
230
0
}
231
232
int opus_limit2_checkwithin1_c(float * samples, int cnt)
233
312k
{
234
312k
   int i;
235
312k
   if (cnt <= 0)
236
0
   {
237
0
      return 1;
238
0
   }
239
240
692M
   for (i = 0; i < cnt; i++)
241
692M
   {
242
692M
      float clippedVal = samples[i];
243
692M
      clippedVal = FMAX(-2.0f, clippedVal);
244
692M
      clippedVal = FMIN(2.0f, clippedVal);
245
692M
      samples[i] = clippedVal;
246
692M
   }
247
248
   /* C implementation can't provide quick hint. Assume it might exceed -1/+1. */
249
312k
   return 0;
250
312k
}
251
252
#endif /* DISABLE_FLOAT_API */