Coverage Report

Created: 2025-08-28 07:12

/src/opus/silk/x86/NSQ_del_dec_avx2.c
Line
Count
Source (jump to first uncovered line)
1
/***********************************************************************
2
Copyright (c) 2021 Google Inc.
3
Redistribution and use in source and binary forms, with or without
4
modification, are permitted provided that the following conditions
5
are met:
6
- Redistributions of source code must retain the above copyright notice,
7
this list of conditions and the following disclaimer.
8
- Redistributions in binary form must reproduce the above copyright
9
notice, this list of conditions and the following disclaimer in the
10
documentation and/or other materials provided with the distribution.
11
- Neither the name of Internet Society, IETF or IETF Trust, nor the
12
names of specific contributors, may be used to endorse or promote
13
products derived from this software without specific prior written
14
permission.
15
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25
POSSIBILITY OF SUCH DAMAGE.
26
***********************************************************************/
27
28
#ifdef HAVE_CONFIG_H
29
#include "config.h"
30
#endif
31
32
#ifdef OPUS_CHECK_ASM
33
#include <string.h>
34
#endif
35
36
#include "opus_defines.h"
37
#include <immintrin.h>
38
39
#include "main.h"
40
#include "stack_alloc.h"
41
#include "NSQ.h"
42
#include "celt/x86/x86cpu.h"
43
44
/* Returns TRUE if all assumptions met */
45
static OPUS_INLINE int verify_assumptions(const silk_encoder_state *psEncC)
46
0
{
47
    /* This optimization is based on these assumptions        */
48
    /* These assumptions are fundamental and hence assert are */
49
    /* used. Should any assert triggers, we have to re-visit  */
50
    /* all related code to make sure it still functions the   */
51
    /* same as the C implementation.                          */
52
0
    silk_assert(MAX_DEL_DEC_STATES  <= 4      &&
53
0
                MAX_FRAME_LENGTH     % 4 == 0 &&
54
0
                MAX_SUB_FRAME_LENGTH % 4 == 0 &&
55
0
                LTP_MEM_LENGTH_MS    % 4 == 0 );
56
0
    silk_assert(psEncC->fs_kHz ==  8 ||
57
0
                psEncC->fs_kHz == 12 ||
58
0
                psEncC->fs_kHz == 16 );
59
0
    silk_assert(psEncC->nb_subfr <= MAX_NB_SUBFR &&
60
0
                psEncC->nb_subfr > 0             );
61
0
    silk_assert(psEncC->nStatesDelayedDecision <= MAX_DEL_DEC_STATES &&
62
0
                psEncC->nStatesDelayedDecision > 0                   );
63
0
    silk_assert(psEncC->ltp_mem_length == psEncC->fs_kHz * LTP_MEM_LENGTH_MS);
64
65
    /* Regressions were observed on certain AMD Zen CPUs when      */
66
    /* nStatesDelayedDecision is 1 or 2. Ideally we should detect  */
67
    /* these CPUs and enable this optimization on others; however, */
68
    /* there is no good way to do so under current OPUS framework. */
69
0
    return psEncC->nStatesDelayedDecision == 3 ||
70
0
           psEncC->nStatesDelayedDecision == 4;
71
0
}
72
73
/* Intrinsics not defined on MSVC */
74
#ifdef _MSC_VER
75
#include <intsafe.h>
76
static inline int __builtin_sadd_overflow(opus_int32 a, opus_int32 b, opus_int32* res)
77
{
78
    *res = a+b;
79
    return (*res ^ a) & (*res ^ b) & 0x80000000;
80
}
81
static inline int __builtin_ctz(unsigned int x)
82
{
83
    DWORD res = 0;
84
    return _BitScanForward(&res, x) ? res : 32;
85
}
86
#endif
87
88
static OPUS_INLINE __m128i silk_cvtepi64_epi32_high(__m256i num)
89
0
{
90
0
    return _mm256_castsi256_si128(_mm256_permutevar8x32_epi32(num, _mm256_set_epi32(0, 0, 0, 0, 7, 5, 3, 1)));
91
0
}
92
93
static OPUS_INLINE opus_int16 silk_sat16(opus_int32 num)
94
0
{
95
0
    num = num > silk_int16_MAX ? silk_int16_MAX : num;
96
0
    num = num < silk_int16_MIN ? silk_int16_MIN : num;
97
0
    return num;
98
0
}
99
100
static OPUS_INLINE opus_int32 silk_sar_round_32(opus_int32 a, int bits)
101
0
{
102
0
    silk_assert(bits > 0 && bits < 31);
103
0
    a += 1 << (bits-1);
104
0
    return a >> bits;
105
0
}
106
107
static OPUS_INLINE opus_int64 silk_sar_round_smulww(opus_int32 a, opus_int32 b, int bits)
108
0
{
109
0
    opus_int64 t;
110
0
    silk_assert(bits > 0 && bits < 63);
111
#ifdef OPUS_CHECK_ASM
112
    return silk_RSHIFT_ROUND(silk_SMULWW(a, b), bits);
113
#else
114
    /* This code is more correct, but it won't overflow like the C code in some rare cases. */
115
0
    silk_assert(bits > 0 && bits < 63);
116
0
    t = ((opus_int64)a) * ((opus_int64)b);
117
0
    bits += 16;
118
0
    t += 1ull << (bits-1);
119
0
    return t >> bits;
120
0
#endif
121
0
}
122
123
static OPUS_INLINE opus_int32 silk_add_sat32(opus_int32 a, opus_int32 b)
124
0
{
125
0
    opus_int32 sum;
126
0
    if (__builtin_sadd_overflow(a, b, &sum))
127
0
    {
128
0
        return a >= 0 ? silk_int32_MAX : silk_int32_MIN;
129
0
    }
130
0
    return sum;
131
0
}
132
133
static OPUS_INLINE __m128i silk_mm_srai_round_epi32(__m128i a, int bits)
134
0
{
135
0
    silk_assert(bits > 0 && bits < 31);
136
0
    return _mm_srai_epi32(_mm_add_epi32(a, _mm_set1_epi32(1 << (bits - 1))), bits);
137
0
}
138
139
/* add/subtract with output saturated */
140
static OPUS_INLINE __m128i silk_mm_add_sat_epi32(__m128i a, __m128i b)
141
0
{
142
0
    __m128i r = _mm_add_epi32(a, b);
143
0
    __m128i OF = _mm_and_si128(_mm_xor_si128(a, r), _mm_xor_si128(b, r));           /* OF = (sum ^ a) & (sum ^ b)   */
144
0
    __m128i SAT = _mm_add_epi32(_mm_srli_epi32(a, 31), _mm_set1_epi32(0x7FFFFFFF)); /* SAT = (a >> 31) + 0x7FFFFFFF */
145
0
    return _mm_blendv_epi8(r, SAT, _mm_srai_epi32(OF, 31));
146
0
}
147
static OPUS_INLINE __m128i silk_mm_sub_sat_epi32(__m128i a, __m128i b)
148
0
{
149
0
    __m128i r = _mm_sub_epi32(a, b);
150
0
    __m128i OF = _mm_andnot_si128(_mm_xor_si128(b, r), _mm_xor_si128(a, r));        /* OF = (sum ^ a) & (sum ^ ~b) = (sum ^ a) & ~(sum ^ b) */
151
0
    __m128i SAT = _mm_add_epi32(_mm_srli_epi32(a, 31), _mm_set1_epi32(0x7FFFFFFF)); /* SAT = (a >> 31) + 0x7FFFFFFF                         */
152
0
    return _mm_blendv_epi8(r, SAT, _mm_srai_epi32(OF, 31));
153
0
}
154
static OPUS_INLINE __m256i silk_mm256_sub_sat_epi32(__m256i a, __m256i b)
155
0
{
156
0
    __m256i r = _mm256_sub_epi32(a, b);
157
0
    __m256i OF = _mm256_andnot_si256(_mm256_xor_si256(b, r), _mm256_xor_si256(a, r));        /* OF = (sum ^ a) & (sum ^ ~b) = (sum ^ a) & ~(sum ^ b) */
158
0
    __m256i SAT = _mm256_add_epi32(_mm256_srli_epi32(a, 31), _mm256_set1_epi32(0x7FFFFFFF)); /* SAT = (a >> 31) + 0x7FFFFFFF                         */
159
0
    return _mm256_blendv_epi8(r, SAT, _mm256_srai_epi32(OF, 31));
160
0
}
161
162
static OPUS_INLINE __m128i silk_mm_limit_epi32(__m128i num, opus_int32 limit1, opus_int32 limit2)
163
0
{
164
0
    opus_int32 lo = limit1 < limit2 ? limit1 : limit2;
165
0
    opus_int32 hi = limit1 > limit2 ? limit1 : limit2;
166
167
0
    num = _mm_min_epi32(num, _mm_set1_epi32(hi));
168
0
    num = _mm_max_epi32(num, _mm_set1_epi32(lo));
169
0
    return num;
170
0
}
171
172
/* cond < 0 ? -num : num */
173
static OPUS_INLINE __m128i silk_mm_sign_epi32(__m128i num, __m128i cond)
174
0
{
175
0
    return _mm_sign_epi32(num, _mm_or_si128(cond, _mm_set1_epi32(1)));
176
0
}
177
static OPUS_INLINE __m256i silk_mm256_sign_epi32(__m256i num, __m256i cond)
178
0
{
179
0
    return _mm256_sign_epi32(num, _mm256_or_si256(cond, _mm256_set1_epi32(1)));
180
0
}
181
182
/* (a32 * b32) >> 16 */
183
static OPUS_INLINE __m128i silk_mm_smulww_epi32(__m128i a, opus_int32 b)
184
0
{
185
0
    return silk_cvtepi64_epi32_high(_mm256_slli_epi64(_mm256_mul_epi32(_mm256_cvtepi32_epi64(a), _mm256_set1_epi32(b)), 16));
186
0
}
187
188
/* (a32 * (opus_int32)((opus_int16)(b32))) >> 16 output have to be 32bit int */
189
static OPUS_INLINE __m128i silk_mm_smulwb_epi32(__m128i a, opus_int32 b)
190
0
{
191
0
    return silk_cvtepi64_epi32_high(_mm256_mul_epi32(_mm256_cvtepi32_epi64(a), _mm256_set1_epi32((opus_uint32)b<<16)));
192
0
}
193
194
/* (opus_int32)((opus_int16)(a3))) * (opus_int32)((opus_int16)(b32)) output have to be 32bit int */
195
static OPUS_INLINE __m256i silk_mm256_smulbb_epi32(__m256i a, __m256i b)
196
0
{
197
0
    const char FF = (char)0xFF;
198
0
    __m256i msk = _mm256_set_epi8(
199
0
        FF, FF, FF, FF, FF, FF, FF, FF, 13, 12, 9, 8, 5, 4, 1, 0,
200
0
        FF, FF, FF, FF, FF, FF, FF, FF, 13, 12, 9, 8, 5, 4, 1, 0);
201
0
    __m256i lo = _mm256_mullo_epi16(a, b);
202
0
    __m256i hi = _mm256_mulhi_epi16(a, b);
203
0
    lo = _mm256_shuffle_epi8(lo, msk);
204
0
    hi = _mm256_shuffle_epi8(hi, msk);
205
0
    return _mm256_unpacklo_epi16(lo, hi);
206
0
}
207
208
static OPUS_INLINE __m256i silk_mm256_reverse_epi32(__m256i v)
209
0
{
210
0
    v = _mm256_shuffle_epi32(v, 0x1B);
211
0
    v = _mm256_permute4x64_epi64(v, 0x4E);
212
0
    return v;
213
0
}
214
215
static OPUS_INLINE opus_int32 silk_mm256_hsum_epi32(__m256i v)
216
0
{
217
0
    __m128i sum = _mm_add_epi32(_mm256_extracti128_si256(v, 1), _mm256_extracti128_si256(v, 0));
218
0
    sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E));
219
0
    sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1));
220
0
    return _mm_cvtsi128_si32(sum);
221
0
}
222
223
static OPUS_INLINE __m128i silk_mm_hmin_epi32(__m128i num)
224
0
{
225
0
    num = _mm_min_epi32(num, _mm_shuffle_epi32(num, 0x4E)); /* 0123 -> 2301 */
226
0
    num = _mm_min_epi32(num, _mm_shuffle_epi32(num, 0xB1)); /* 0123 -> 1032 */
227
0
    return num;
228
0
}
229
230
static OPUS_INLINE __m128i silk_mm_hmax_epi32(__m128i num)
231
0
{
232
0
    num = _mm_max_epi32(num, _mm_shuffle_epi32(num, 0x4E)); /* 0123 -> 2310 */
233
0
    num = _mm_max_epi32(num, _mm_shuffle_epi32(num, 0xB1)); /* 0123 -> 1032 */
234
0
    return num;
235
0
}
236
237
static OPUS_INLINE __m128i silk_mm_mask_hmin_epi32(__m128i num, __m128i mask)
238
0
{
239
0
    num = _mm_blendv_epi8(num, _mm_set1_epi32(silk_int32_MAX), mask);
240
0
    return silk_mm_hmin_epi32(num);
241
0
}
242
243
static OPUS_INLINE __m128i silk_mm_mask_hmax_epi32(__m128i num, __m128i mask)
244
0
{
245
0
    num = _mm_blendv_epi8(num, _mm_set1_epi32(silk_int32_MIN), mask);
246
0
    return silk_mm_hmax_epi32(num);
247
0
}
248
249
static OPUS_INLINE __m128i silk_mm256_rand_epi32(__m128i seed)
250
0
{
251
0
    seed = _mm_mullo_epi32(seed, _mm_set1_epi32(RAND_MULTIPLIER));
252
0
    seed = _mm_add_epi32(seed, _mm_set1_epi32(RAND_INCREMENT));
253
0
    return seed;
254
0
}
255
256
static OPUS_INLINE opus_int32 silk_index_of_first_equal_epi32(__m128i a, __m128i b)
257
0
{
258
0
    unsigned int mask = _mm_movemask_epi8(_mm_cmpeq_epi32(a, b)) & 0x1111;
259
0
    silk_assert(mask != 0);
260
0
    return __builtin_ctz(mask) >> 2;
261
0
}
262
263
static __m128i silk_index_to_selector(opus_int32 index)
264
0
{
265
0
    silk_assert(index < 4);
266
0
    index <<= 2;
267
0
    return _mm_set_epi8(
268
0
        index + 3, index + 2, index + 1, index + 0,
269
0
        index + 3, index + 2, index + 1, index + 0,
270
0
        index + 3, index + 2, index + 1, index + 0,
271
0
        index + 3, index + 2, index + 1, index + 0);
272
0
}
273
274
static opus_int32 silk_select_winner(__m128i num, __m128i selector)
275
0
{
276
0
    return _mm_cvtsi128_si32(_mm_shuffle_epi8(num, selector));
277
0
}
278
279
typedef struct
280
{
281
    __m128i RandState;
282
    __m128i Q_Q10;
283
    __m128i Xq_Q14;
284
    __m128i Pred_Q15;
285
    __m128i Shape_Q14;
286
} NSQ_del_dec_sample_struct;
287
288
typedef struct
289
{
290
    __m128i sLPC_Q14[MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH];
291
    __m128i LF_AR_Q14;
292
    __m128i Seed;
293
    __m128i SeedInit;
294
    __m128i RD_Q10;
295
    __m128i Diff_Q14;
296
    __m128i sAR2_Q14[MAX_SHAPE_LPC_ORDER];
297
    NSQ_del_dec_sample_struct Samples[DECISION_DELAY];
298
} NSQ_del_dec_struct;
299
300
static OPUS_INLINE void silk_nsq_del_dec_scale_states_avx2(
301
    const silk_encoder_state *psEncC,          /* I    Encoder State                   */
302
    silk_nsq_state *NSQ,                       /* I/O  NSQ state                       */
303
    NSQ_del_dec_struct *psDelDec,              /* I/O  Delayed decision states         */
304
    const opus_int16 x16[],                    /* I    Input                           */
305
    opus_int32 x_sc_Q10[MAX_SUB_FRAME_LENGTH], /* O    Input scaled with 1/Gain in Q10 */
306
    const opus_int16 sLTP[],                   /* I    Re-whitened LTP state in Q0     */
307
    opus_int32 sLTP_Q15[],                     /* O    LTP state matching scaled input */
308
    opus_int subfr,                            /* I    Subframe number                 */
309
    const opus_int LTP_scale_Q14,              /* I    LTP state scaling               */
310
    const opus_int32 Gains_Q16[MAX_NB_SUBFR],  /* I                                    */
311
    const opus_int pitchL[MAX_NB_SUBFR],       /* I    Pitch lag                       */
312
    const opus_int signal_type,                /* I    Signal type                     */
313
    const opus_int decisionDelay               /* I    Decision delay                  */
314
);
315
316
/*******************************************/
317
/* LPC analysis filter                     */
318
/* NB! State is kept internally and the    */
319
/* filter always starts with zero state    */
320
/* first d output samples are set to zero  */
321
/*******************************************/
322
static OPUS_INLINE void silk_LPC_analysis_filter_avx2(
323
    opus_int16                  *out,               /* O    Output signal                           */
324
    const opus_int16            *in,                /* I    Input signal                            */
325
    const opus_int16            *B,                 /* I    MA prediction coefficients, Q12 [order] */
326
    const opus_int32            len,                /* I    Signal length                           */
327
    const opus_int32            order               /* I    Filter order                            */
328
);
329
330
/******************************************/
331
/* Noise shape quantizer for one subframe */
332
/******************************************/
333
static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_avx2(
334
    silk_nsq_state *NSQ,                        /* I/O  NSQ state                          */
335
    NSQ_del_dec_struct psDelDec[],              /* I/O  Delayed decision states            */
336
    opus_int signalType,                        /* I    Signal type                        */
337
    const opus_int32 x_Q10[],                   /* I                                       */
338
    opus_int8 pulses[],                         /* O                                       */
339
    opus_int16 xq[],                            /* O                                       */
340
    opus_int32 sLTP_Q15[],                      /* I/O  LTP filter state                   */
341
    opus_int32 delayedGain_Q10[DECISION_DELAY], /* I/O  Gain delay buffer                  */
342
    const opus_int16 a_Q12[],                   /* I    Short term prediction coefs        */
343
    const opus_int16 b_Q14[],                   /* I    Long term prediction coefs         */
344
    const opus_int16 AR_shp_Q13[],              /* I    Noise shaping coefs                */
345
    opus_int lag,                               /* I    Pitch lag                          */
346
    opus_int32 HarmShapeFIRPacked_Q14,          /* I                                       */
347
    opus_int Tilt_Q14,                          /* I    Spectral tilt                      */
348
    opus_int32 LF_shp_Q14,                      /* I                                       */
349
    opus_int32 Gain_Q16,                        /* I                                       */
350
    opus_int Lambda_Q10,                        /* I                                       */
351
    opus_int offset_Q10,                        /* I                                       */
352
    opus_int length,                            /* I    Input length                       */
353
    opus_int subfr,                             /* I    Subframe number                    */
354
    opus_int shapingLPCOrder,                   /* I    Shaping LPC filter order           */
355
    opus_int predictLPCOrder,                   /* I    Prediction filter order            */
356
    opus_int warping_Q16,                       /* I                                       */
357
    __m128i MaskDelDec,                         /* I    Mask of states in decision tree    */
358
    opus_int *smpl_buf_idx,                     /* I/O  Index to newest samples in buffers */
359
    opus_int decisionDelay                      /* I                                       */
360
);
361
362
void silk_NSQ_del_dec_avx2(
363
    const silk_encoder_state *psEncC,                            /* I    Encoder State               */
364
    silk_nsq_state *NSQ,                                         /* I/O  NSQ state                   */
365
    SideInfoIndices *psIndices,                                  /* I/O  Quantization Indices        */
366
    const opus_int16 x16[],                                      /* I    Input                       */
367
    opus_int8 pulses[],                                          /* O    Quantized pulse signal      */
368
    const opus_int16 *PredCoef_Q12,                              /* I    Short term prediction coefs */
369
    const opus_int16 LTPCoef_Q14[LTP_ORDER * MAX_NB_SUBFR],      /* I    Long term prediction coefs  */
370
    const opus_int16 AR_Q13[MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER], /* I    Noise shaping coefs         */
371
    const opus_int HarmShapeGain_Q14[MAX_NB_SUBFR],              /* I    Long term shaping coefs     */
372
    const opus_int Tilt_Q14[MAX_NB_SUBFR],                       /* I    Spectral tilt               */
373
    const opus_int32 LF_shp_Q14[MAX_NB_SUBFR],                   /* I    Low frequency shaping coefs */
374
    const opus_int32 Gains_Q16[MAX_NB_SUBFR],                    /* I    Quantization step sizes     */
375
    const opus_int32 pitchL[MAX_NB_SUBFR],                       /* I    Pitch lags                  */
376
    const opus_int Lambda_Q10,                                   /* I    Rate/distortion tradeoff    */
377
    const opus_int LTP_scale_Q14                                 /* I    LTP state scaling           */
378
)
379
0
{
380
#ifdef OPUS_CHECK_ASM
381
    silk_nsq_state NSQ_c;
382
    SideInfoIndices psIndices_c;
383
    opus_int8 pulses_c[MAX_FRAME_LENGTH];
384
    const opus_int8 *const pulses_a = pulses;
385
386
    silk_memcpy(&NSQ_c, NSQ, sizeof(NSQ_c));
387
    silk_memcpy(&psIndices_c, psIndices, sizeof(psIndices_c));
388
    silk_memcpy(pulses_c, pulses, sizeof(pulses_c));
389
    silk_NSQ_del_dec_c(psEncC, &NSQ_c, &psIndices_c, x16, pulses_c, PredCoef_Q12, LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16,
390
                       pitchL, Lambda_Q10, LTP_scale_Q14);
391
#endif
392
393
0
    if (!verify_assumptions(psEncC))
394
0
    {
395
0
        silk_NSQ_del_dec_c(psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14);
396
0
        return;
397
0
    }
398
399
0
    opus_int i, k, lag, start_idx, LSF_interpolation_flag, Winner_ind, subfr;
400
0
    opus_int last_smple_idx, smpl_buf_idx, decisionDelay;
401
0
    const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13;
402
0
    opus_int16 *pxq;
403
0
    VARDECL(opus_int32, sLTP_Q15);
404
0
    VARDECL(opus_int16, sLTP);
405
0
    opus_int32 HarmShapeFIRPacked_Q14;
406
0
    opus_int offset_Q10;
407
0
    opus_int32 Gain_Q10;
408
0
    opus_int32 x_sc_Q10[MAX_SUB_FRAME_LENGTH];
409
0
    opus_int32 delayedGain_Q10[DECISION_DELAY];
410
0
    NSQ_del_dec_struct psDelDec = {0};
411
0
    NSQ_del_dec_sample_struct *psSample;
412
0
    __m128i RDmin_Q10, MaskDelDec, Winner_selector;
413
0
    SAVE_STACK;
414
415
0
    MaskDelDec = _mm_cvtepi8_epi32(_mm_cvtsi32_si128(0xFFFFFF00ul << ((psEncC->nStatesDelayedDecision - 1) << 3)));
416
417
    /* Set unvoiced lag to the previous one, overwrite later for voiced */
418
0
    lag = NSQ->lagPrev;
419
420
0
    silk_assert(NSQ->prev_gain_Q16 != 0);
421
0
    psDelDec.Seed = _mm_and_si128(
422
0
        _mm_add_epi32(_mm_set_epi32(3, 2, 1, 0), _mm_set1_epi32(psIndices->Seed)),
423
0
        _mm_set1_epi32(3));
424
0
    psDelDec.SeedInit = psDelDec.Seed;
425
0
    psDelDec.RD_Q10 = _mm_setzero_si128();
426
0
    psDelDec.LF_AR_Q14 = _mm_set1_epi32(NSQ->sLF_AR_shp_Q14);
427
0
    psDelDec.Diff_Q14 = _mm_set1_epi32(NSQ->sDiff_shp_Q14);
428
0
    psDelDec.Samples[0].Shape_Q14 = _mm_set1_epi32(NSQ->sLTP_shp_Q14[psEncC->ltp_mem_length - 1]);
429
0
    for (i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
430
0
    {
431
0
        psDelDec.sLPC_Q14[i] = _mm_set1_epi32(NSQ->sLPC_Q14[i]);
432
0
    }
433
0
    for (i = 0; i < MAX_SHAPE_LPC_ORDER; i++)
434
0
    {
435
0
        psDelDec.sAR2_Q14[i] = _mm_set1_epi32(NSQ->sAR2_Q14[i]);
436
0
    }
437
438
0
    offset_Q10 = silk_Quantization_Offsets_Q10[psIndices->signalType >> 1][psIndices->quantOffsetType];
439
0
    smpl_buf_idx = 0; /* index of oldest samples */
440
441
0
    decisionDelay = silk_min_int(DECISION_DELAY, psEncC->subfr_length);
442
443
    /* For voiced frames limit the decision delay to lower than the pitch lag */
444
0
    if (psIndices->signalType == TYPE_VOICED)
445
0
    {
446
0
        for (k = 0; k < psEncC->nb_subfr; k++)
447
0
        {
448
0
            decisionDelay = silk_min_int(decisionDelay, pitchL[k] - LTP_ORDER / 2 - 1);
449
0
        }
450
0
    }
451
0
    else
452
0
    {
453
0
        if (lag > 0)
454
0
        {
455
0
            decisionDelay = silk_min_int(decisionDelay, lag - LTP_ORDER / 2 - 1);
456
0
        }
457
0
    }
458
459
0
    if (psIndices->NLSFInterpCoef_Q2 == 4)
460
0
    {
461
0
        LSF_interpolation_flag = 0;
462
0
    }
463
0
    else
464
0
    {
465
0
        LSF_interpolation_flag = 1;
466
0
    }
467
468
0
    ALLOC(sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32);
469
0
    ALLOC(sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16);
470
    /* Set up pointers to start of sub frame */
471
0
    pxq = &NSQ->xq[psEncC->ltp_mem_length];
472
0
    NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length;
473
0
    NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
474
0
    subfr = 0;
475
0
    for (k = 0; k < psEncC->nb_subfr; k++)
476
0
    {
477
0
        A_Q12 = &PredCoef_Q12[((k >> 1) | (1 ^ LSF_interpolation_flag)) * MAX_LPC_ORDER];
478
0
        B_Q14 = &LTPCoef_Q14[k * LTP_ORDER];
479
0
        AR_shp_Q13 = &AR_Q13[k * MAX_SHAPE_LPC_ORDER];
480
481
        /* Noise shape parameters */
482
0
        silk_assert(HarmShapeGain_Q14[k] >= 0);
483
0
        HarmShapeFIRPacked_Q14  =                          silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
484
0
        HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );
485
486
0
        NSQ->rewhite_flag = 0;
487
0
        if (psIndices->signalType == TYPE_VOICED)
488
0
        {
489
            /* Voiced */
490
0
            lag = pitchL[k];
491
492
            /* Re-whitening */
493
0
            if ((k & (3 ^ (LSF_interpolation_flag << 1))) == 0)
494
0
            {
495
0
                if (k == 2)
496
0
                {
497
                    /* RESET DELAYED DECISIONS */
498
                    /* Find winner */
499
0
                    RDmin_Q10 = silk_mm_mask_hmin_epi32(psDelDec.RD_Q10, MaskDelDec);
500
0
                    Winner_ind = silk_index_of_first_equal_epi32(RDmin_Q10, psDelDec.RD_Q10);
501
0
                    Winner_selector = silk_index_to_selector(Winner_ind);
502
0
                    psDelDec.RD_Q10 = _mm_add_epi32(
503
0
                        psDelDec.RD_Q10,
504
0
                        _mm_blendv_epi8(
505
0
                            _mm_set1_epi32(silk_int32_MAX >> 4),
506
0
                            _mm_setzero_si128(),
507
0
                            _mm_cvtepi8_epi32(_mm_cvtsi32_si128(0xFFU << (unsigned)(Winner_ind << 3)))));
508
509
                    /* Copy final part of signals from winner state to output and long-term filter states */
510
0
                    last_smple_idx = smpl_buf_idx + decisionDelay;
511
0
                    for (i = 0; i < decisionDelay; i++)
512
0
                    {
513
0
                        last_smple_idx = (last_smple_idx + DECISION_DELAY - 1) % DECISION_DELAY;
514
0
                        psSample = &psDelDec.Samples[last_smple_idx];
515
0
                        pulses[i - decisionDelay] =
516
0
                            (opus_int8)silk_sar_round_32(silk_select_winner(psSample->Q_Q10, Winner_selector), 10);
517
0
                        pxq[i - decisionDelay] =
518
0
                            silk_sat16((opus_int32)silk_sar_round_smulww(silk_select_winner(psSample->Xq_Q14, Winner_selector), Gains_Q16[1], 14));
519
0
                        NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - decisionDelay + i] =
520
0
                            silk_select_winner(psSample->Shape_Q14, Winner_selector);
521
0
                    }
522
523
0
                    subfr = 0;
524
0
                }
525
526
                /* Rewhiten with new A coefs */
527
0
                start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
528
0
                silk_assert(start_idx > 0);
529
530
0
                silk_LPC_analysis_filter_avx2(&sLTP[start_idx], &NSQ->xq[start_idx + k * psEncC->subfr_length],
531
0
                                              A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder);
532
533
0
                NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
534
0
                NSQ->rewhite_flag = 1;
535
0
            }
536
0
        }
537
538
0
        silk_nsq_del_dec_scale_states_avx2(psEncC, NSQ, &psDelDec, x16, x_sc_Q10, sLTP, sLTP_Q15, k,
539
0
                                           LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType, decisionDelay);
540
541
0
        silk_noise_shape_quantizer_del_dec_avx2(NSQ, &psDelDec, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15,
542
0
                                                delayedGain_Q10, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[k], LF_shp_Q14[k],
543
0
                                                Gains_Q16[k], Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder,
544
0
                                                psEncC->predictLPCOrder, psEncC->warping_Q16, MaskDelDec, &smpl_buf_idx, decisionDelay);
545
546
0
        x16 += psEncC->subfr_length;
547
0
        pulses += psEncC->subfr_length;
548
0
        pxq += psEncC->subfr_length;
549
0
    }
550
551
    /* Find winner */
552
0
    RDmin_Q10 = silk_mm_mask_hmin_epi32(psDelDec.RD_Q10, MaskDelDec);
553
0
    Winner_selector = silk_index_to_selector(silk_index_of_first_equal_epi32(RDmin_Q10, psDelDec.RD_Q10));
554
555
    /* Copy final part of signals from winner state to output and long-term filter states */
556
0
    psIndices->Seed = silk_select_winner(psDelDec.SeedInit, Winner_selector);
557
0
    last_smple_idx = smpl_buf_idx + decisionDelay;
558
0
    Gain_Q10 = Gains_Q16[psEncC->nb_subfr - 1] >> 6;
559
0
    for (i = 0; i < decisionDelay; i++)
560
0
    {
561
0
        last_smple_idx = (last_smple_idx + DECISION_DELAY - 1) % DECISION_DELAY;
562
0
        psSample = &psDelDec.Samples[last_smple_idx];
563
564
0
        pulses[i - decisionDelay] =
565
0
            (opus_int8)silk_sar_round_32(silk_select_winner(psSample->Q_Q10, Winner_selector), 10);
566
0
        pxq[i - decisionDelay] =
567
0
            silk_sat16((opus_int32)silk_sar_round_smulww(silk_select_winner(psSample->Xq_Q14, Winner_selector), Gain_Q10, 8));
568
0
        NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - decisionDelay + i] =
569
0
            silk_select_winner(psSample->Shape_Q14, Winner_selector);
570
0
    }
571
0
    for (i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
572
0
    {
573
0
        NSQ->sLPC_Q14[i] = silk_select_winner(psDelDec.sLPC_Q14[i], Winner_selector);
574
0
    }
575
0
    for (i = 0; i < MAX_SHAPE_LPC_ORDER; i++)
576
0
    {
577
0
        NSQ->sAR2_Q14[i] = silk_select_winner(psDelDec.sAR2_Q14[i], Winner_selector);
578
0
    }
579
580
    /* Update states */
581
0
    NSQ->sLF_AR_shp_Q14 = silk_select_winner(psDelDec.LF_AR_Q14, Winner_selector);
582
0
    NSQ->sDiff_shp_Q14 = silk_select_winner(psDelDec.Diff_Q14, Winner_selector);
583
0
    NSQ->lagPrev = pitchL[psEncC->nb_subfr - 1];
584
585
    /* Save quantized speech signal */
586
0
    silk_memmove(NSQ->xq, &NSQ->xq[psEncC->frame_length], psEncC->ltp_mem_length * sizeof(opus_int16));
587
0
    silk_memmove(NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[psEncC->frame_length], psEncC->ltp_mem_length * sizeof(opus_int32));
588
589
#ifdef OPUS_CHECK_ASM
590
    silk_assert(!memcmp(&NSQ_c, NSQ, sizeof(NSQ_c)));
591
    silk_assert(!memcmp(&psIndices_c, psIndices, sizeof(psIndices_c)));
592
    silk_assert(!memcmp(pulses_c, pulses_a, sizeof(pulses_c)));
593
#endif
594
595
0
    RESTORE_STACK;
596
0
}
597
598
static OPUS_INLINE __m128i silk_noise_shape_quantizer_short_prediction_x4(const __m128i *buf32, const opus_int16 *coef16, opus_int order)
599
0
{
600
0
    __m256i out;
601
0
    silk_assert(order == 10 || order == 16);
602
603
    /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
604
0
    out = _mm256_set1_epi32(order >> 1);
605
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-0]), _mm256_set1_epi32(silk_LSHIFT(coef16[0], 16)))); /* High DWORD */
606
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-1]), _mm256_set1_epi32(silk_LSHIFT(coef16[1], 16)))); /* High DWORD */
607
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-2]), _mm256_set1_epi32(silk_LSHIFT(coef16[2], 16)))); /* High DWORD */
608
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-3]), _mm256_set1_epi32(silk_LSHIFT(coef16[3], 16)))); /* High DWORD */
609
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-4]), _mm256_set1_epi32(silk_LSHIFT(coef16[4], 16)))); /* High DWORD */
610
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-5]), _mm256_set1_epi32(silk_LSHIFT(coef16[5], 16)))); /* High DWORD */
611
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-6]), _mm256_set1_epi32(silk_LSHIFT(coef16[6], 16)))); /* High DWORD */
612
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-7]), _mm256_set1_epi32(silk_LSHIFT(coef16[7], 16)))); /* High DWORD */
613
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-8]), _mm256_set1_epi32(silk_LSHIFT(coef16[8], 16)))); /* High DWORD */
614
0
    out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-9]), _mm256_set1_epi32(silk_LSHIFT(coef16[9], 16)))); /* High DWORD */
615
616
0
    if (order == 16)
617
0
    {
618
0
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-10]), _mm256_set1_epi32(silk_LSHIFT(coef16[10], 16)))); /* High DWORD */
619
0
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-11]), _mm256_set1_epi32(silk_LSHIFT(coef16[11], 16)))); /* High DWORD */
620
0
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-12]), _mm256_set1_epi32(silk_LSHIFT(coef16[12], 16)))); /* High DWORD */
621
0
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-13]), _mm256_set1_epi32(silk_LSHIFT(coef16[13], 16)))); /* High DWORD */
622
0
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-14]), _mm256_set1_epi32(silk_LSHIFT(coef16[14], 16)))); /* High DWORD */
623
0
        out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-15]), _mm256_set1_epi32(silk_LSHIFT(coef16[15], 16)))); /* High DWORD */
624
0
    }
625
0
    return silk_cvtepi64_epi32_high(out);
626
0
}
627
628
/******************************************/
629
/* Noise shape quantizer for one subframe */
630
/******************************************/
631
static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_avx2(
632
    silk_nsq_state *NSQ,                        /* I/O  NSQ state                          */
633
    NSQ_del_dec_struct *psDelDec,               /* I/O  Delayed decision states            */
634
    opus_int signalType,                        /* I    Signal type                        */
635
    const opus_int32 x_Q10[],                   /* I                                       */
636
    opus_int8 pulses[],                         /* O                                       */
637
    opus_int16 xq[],                            /* O                                       */
638
    opus_int32 sLTP_Q15[],                      /* I/O  LTP filter state                   */
639
    opus_int32 delayedGain_Q10[DECISION_DELAY], /* I/O  Gain delay buffer                  */
640
    const opus_int16 a_Q12[],                   /* I    Short term prediction coefs        */
641
    const opus_int16 b_Q14[],                   /* I    Long term prediction coefs         */
642
    const opus_int16 AR_shp_Q13[],              /* I    Noise shaping coefs                */
643
    opus_int lag,                               /* I    Pitch lag                          */
644
    opus_int32 HarmShapeFIRPacked_Q14,          /* I                                       */
645
    opus_int Tilt_Q14,                          /* I    Spectral tilt                      */
646
    opus_int32 LF_shp_Q14,                      /* I                                       */
647
    opus_int32 Gain_Q16,                        /* I                                       */
648
    opus_int Lambda_Q10,                        /* I                                       */
649
    opus_int offset_Q10,                        /* I                                       */
650
    opus_int length,                            /* I    Input length                       */
651
    opus_int subfr,                             /* I    Subframe number                    */
652
    opus_int shapingLPCOrder,                   /* I    Shaping LPC filter order           */
653
    opus_int predictLPCOrder,                   /* I    Prediction filter order            */
654
    opus_int warping_Q16,                       /* I                                       */
655
    __m128i MaskDelDec,                         /* I    Mask of states in decision tree    */
656
    opus_int *smpl_buf_idx,                     /* I/O  Index to newest samples in buffers */
657
    opus_int decisionDelay                      /* I                                       */
658
)
659
0
{
660
0
    int i;
661
0
    opus_int32 *shp_lag_ptr = &NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2];
662
0
    opus_int32 *pred_lag_ptr = &sLTP_Q15[NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2];
663
0
    opus_int32 Gain_Q10 = Gain_Q16 >> 6;
664
665
0
    for (i = 0; i < length; i++)
666
0
    {
667
        /* Perform common calculations used in all states */
668
        /* NSQ_sample_struct */
669
        /* Low  128 bits => 1st set */
670
        /* High 128 bits => 2nd set */
671
0
        int j;
672
0
        __m256i SS_Q_Q10;
673
0
        __m256i SS_RD_Q10;
674
0
        __m256i SS_xq_Q14;
675
0
        __m256i SS_LF_AR_Q14;
676
0
        __m256i SS_Diff_Q14;
677
0
        __m256i SS_sLTP_shp_Q14;
678
0
        __m256i SS_LPC_exc_Q14;
679
0
        __m256i exc_Q14;
680
0
        __m256i q_Q10, rr_Q10, rd_Q10;
681
0
        __m256i mask;
682
0
        __m128i LPC_pred_Q14, n_AR_Q14;
683
0
        __m128i RDmin_Q10, RDmax_Q10;
684
0
        __m128i n_LF_Q14;
685
0
        __m128i r_Q10, q1_Q0, q1_Q10, q2_Q10;
686
0
        __m128i Winner_rand_state, Winner_selector;
687
0
        __m128i tmp0, tmp1;
688
0
        NSQ_del_dec_sample_struct *psLastSample, *psSample;
689
0
        opus_int32 RDmin_ind, RDmax_ind, last_smple_idx;
690
0
        opus_int32 LTP_pred_Q14, n_LTP_Q14;
691
692
        /* Long-term prediction */
693
0
        if (signalType == TYPE_VOICED)
694
0
        {
695
            /* Unrolled loop */
696
            /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
697
0
            LTP_pred_Q14 = 2;
698
0
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-0], b_Q14[0]);
699
0
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-1], b_Q14[1]);
700
0
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-2], b_Q14[2]);
701
0
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-3], b_Q14[3]);
702
0
            LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-4], b_Q14[4]);
703
0
            LTP_pred_Q14 = silk_LSHIFT(LTP_pred_Q14, 1); /* Q13 -> Q14 */
704
0
            pred_lag_ptr++;
705
0
        }
706
0
        else
707
0
        {
708
0
            LTP_pred_Q14 = 0;
709
0
        }
710
711
        /* Long-term shaping */
712
0
        if (lag > 0)
713
0
        {
714
            /* Symmetric, packed FIR coefficients */
715
0
            n_LTP_Q14 = silk_add_sat32(shp_lag_ptr[0], shp_lag_ptr[-2]);
716
0
            n_LTP_Q14 = silk_SMULWB(n_LTP_Q14, HarmShapeFIRPacked_Q14);
717
0
            n_LTP_Q14 = n_LTP_Q14 + silk_SMULWT(shp_lag_ptr[-1], HarmShapeFIRPacked_Q14);
718
0
            n_LTP_Q14 = LTP_pred_Q14 - (silk_LSHIFT(n_LTP_Q14, 2)); /* Q12 -> Q14 */
719
0
            shp_lag_ptr++;
720
0
        }
721
0
        else
722
0
        {
723
0
            n_LTP_Q14 = 0;
724
0
        }
725
726
        /* BEGIN Updating Delayed Decision States */
727
728
        /* Generate dither */
729
0
        psDelDec->Seed = silk_mm256_rand_epi32(psDelDec->Seed);
730
731
        /* Short-term prediction */
732
0
        LPC_pred_Q14 = silk_noise_shape_quantizer_short_prediction_x4(&psDelDec->sLPC_Q14[NSQ_LPC_BUF_LENGTH - 1 + i], a_Q12, predictLPCOrder);
733
0
        LPC_pred_Q14 = _mm_slli_epi32(LPC_pred_Q14, 4); /* Q10 -> Q14 */
734
735
        /* Noise shape feedback */
736
0
        silk_assert(shapingLPCOrder > 0);
737
0
        silk_assert((shapingLPCOrder & 1) == 0); /* check that order is even */
738
        /* Output of lowpass section */
739
0
        tmp0 = _mm_add_epi32(psDelDec->Diff_Q14, silk_mm_smulwb_epi32(psDelDec->sAR2_Q14[0], warping_Q16));
740
0
        n_AR_Q14 = _mm_set1_epi32(shapingLPCOrder >> 1);
741
0
        for (j = 0; j < shapingLPCOrder - 1; j++)
742
0
        {
743
            /* Output of allpass section */
744
0
            tmp1 = psDelDec->sAR2_Q14[j];
745
0
            psDelDec->sAR2_Q14[j] = tmp0;
746
0
            n_AR_Q14 = _mm_add_epi32(n_AR_Q14, silk_mm_smulwb_epi32(tmp0, AR_shp_Q13[j]));
747
0
            tmp0 = _mm_add_epi32(tmp1, silk_mm_smulwb_epi32(_mm_sub_epi32(psDelDec->sAR2_Q14[j + 1], tmp0), warping_Q16));
748
0
        }
749
0
        psDelDec->sAR2_Q14[shapingLPCOrder - 1] = tmp0;
750
0
        n_AR_Q14 = _mm_add_epi32(n_AR_Q14, silk_mm_smulwb_epi32(tmp0, AR_shp_Q13[shapingLPCOrder - 1]));
751
752
0
        n_AR_Q14 = _mm_slli_epi32(n_AR_Q14, 1);                                                  /* Q11 -> Q12 */
753
0
        n_AR_Q14 = _mm_add_epi32(n_AR_Q14, silk_mm_smulwb_epi32(psDelDec->LF_AR_Q14, Tilt_Q14)); /* Q12 */
754
0
        n_AR_Q14 = _mm_slli_epi32(n_AR_Q14, 2);                                                  /* Q12 -> Q14 */
755
756
0
        tmp0 = silk_mm_smulwb_epi32(psDelDec->Samples[*smpl_buf_idx].Shape_Q14, LF_shp_Q14); /* Q12 */
757
0
        tmp1 = silk_mm_smulwb_epi32(psDelDec->LF_AR_Q14, LF_shp_Q14 >> 16);                  /* Q12 */
758
0
        n_LF_Q14 = _mm_add_epi32(tmp0, tmp1);                                                /* Q12 */
759
0
        n_LF_Q14 = _mm_slli_epi32(n_LF_Q14, 2);                                              /* Q12 -> Q14 */
760
761
        /* Input minus prediction plus noise feedback                       */
762
        /* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP  */
763
0
        tmp0 = silk_mm_add_sat_epi32(n_AR_Q14, n_LF_Q14);              /* Q14 */
764
0
        tmp1 = _mm_add_epi32(_mm_set1_epi32(n_LTP_Q14), LPC_pred_Q14); /* Q13 */
765
0
        tmp0 = silk_mm_sub_sat_epi32(tmp1, tmp0);                      /* Q13 */
766
0
        tmp0 = silk_mm_srai_round_epi32(tmp0, 4);                      /* Q10 */
767
768
0
        r_Q10 = _mm_sub_epi32(_mm_set1_epi32(x_Q10[i]), tmp0); /* residual error Q10 */
769
770
        /* Flip sign depending on dither */
771
0
        r_Q10 = silk_mm_sign_epi32(r_Q10, psDelDec->Seed);
772
0
        r_Q10 = silk_mm_limit_epi32(r_Q10, -(31 << 10), 30 << 10);
773
774
        /* Find two quantization level candidates and measure their rate-distortion */
775
0
        q1_Q10 = _mm_sub_epi32(r_Q10, _mm_set1_epi32(offset_Q10));
776
0
        q1_Q0 = _mm_srai_epi32(q1_Q10, 10);
777
0
        if (Lambda_Q10 > 2048)
778
0
        {
779
            /* For aggressive RDO, the bias becomes more than one pulse. */
780
0
            tmp0 = _mm_sub_epi32(_mm_abs_epi32(q1_Q10), _mm_set1_epi32(Lambda_Q10 / 2 - 512)); /* rdo_offset */
781
0
            q1_Q0 = _mm_srai_epi32(q1_Q10, 31);
782
0
            tmp1 = _mm_cmpgt_epi32(tmp0, _mm_setzero_si128());
783
0
            tmp0 = _mm_srai_epi32(silk_mm_sign_epi32(tmp0, q1_Q10), 10);
784
0
            q1_Q0 = _mm_blendv_epi8(q1_Q0, tmp0, tmp1);
785
0
        }
786
787
0
        tmp0 = _mm_sign_epi32(_mm_set1_epi32(QUANT_LEVEL_ADJUST_Q10), q1_Q0);
788
0
        q1_Q10 = _mm_sub_epi32(_mm_slli_epi32(q1_Q0, 10), tmp0);
789
0
        q1_Q10 = _mm_add_epi32(q1_Q10, _mm_set1_epi32(offset_Q10));
790
791
        /* check if q1_Q0 is 0 or -1 */
792
0
        tmp0 = _mm_add_epi32(_mm_srli_epi32(q1_Q0, 31), q1_Q0);
793
0
        tmp1 = _mm_cmpeq_epi32(tmp0, _mm_setzero_si128());
794
0
        tmp0 = _mm_blendv_epi8(_mm_set1_epi32(1024), _mm_set1_epi32(1024 - QUANT_LEVEL_ADJUST_Q10), tmp1);
795
0
        q2_Q10 = _mm_add_epi32(q1_Q10, tmp0);
796
0
        q_Q10 = _mm256_set_m128i(q2_Q10, q1_Q10);
797
798
0
        rr_Q10 = _mm256_sub_epi32(_mm256_broadcastsi128_si256(r_Q10), q_Q10);
799
0
        rd_Q10 = _mm256_abs_epi32(q_Q10);
800
0
        rr_Q10 = silk_mm256_smulbb_epi32(rr_Q10, rr_Q10);
801
0
        rd_Q10 = silk_mm256_smulbb_epi32(rd_Q10, _mm256_set1_epi32(Lambda_Q10));
802
0
        rd_Q10 = _mm256_add_epi32(rd_Q10, rr_Q10);
803
0
        rd_Q10 = _mm256_srai_epi32(rd_Q10, 10);
804
805
0
        mask = _mm256_broadcastsi128_si256(_mm_cmplt_epi32(_mm256_extracti128_si256(rd_Q10, 0), _mm256_extracti128_si256(rd_Q10, 1)));
806
0
        SS_RD_Q10 = _mm256_add_epi32(
807
0
            _mm256_broadcastsi128_si256(psDelDec->RD_Q10),
808
0
            _mm256_blendv_epi8(
809
0
                _mm256_permute2x128_si256(rd_Q10, rd_Q10, 0x1),
810
0
                rd_Q10,
811
0
                mask));
812
0
        SS_Q_Q10 = _mm256_blendv_epi8(
813
0
            _mm256_permute2x128_si256(q_Q10, q_Q10, 0x1),
814
0
            q_Q10,
815
0
            mask);
816
817
        /* Update states for best and second best quantization */
818
819
        /* Quantized excitation */
820
0
        exc_Q14 = silk_mm256_sign_epi32(_mm256_slli_epi32(SS_Q_Q10, 4), _mm256_broadcastsi128_si256(psDelDec->Seed));
821
822
        /* Add predictions */
823
0
        exc_Q14 = _mm256_add_epi32(exc_Q14, _mm256_set1_epi32(LTP_pred_Q14));
824
0
        SS_LPC_exc_Q14 = _mm256_slli_epi32(exc_Q14, 1);
825
0
        SS_xq_Q14 = _mm256_add_epi32(exc_Q14, _mm256_broadcastsi128_si256(LPC_pred_Q14));
826
827
        /* Update states */
828
0
        SS_Diff_Q14 = _mm256_sub_epi32(SS_xq_Q14, _mm256_set1_epi32(silk_LSHIFT(x_Q10[i], 4)));
829
0
        SS_LF_AR_Q14 = _mm256_sub_epi32(SS_Diff_Q14, _mm256_broadcastsi128_si256(n_AR_Q14));
830
0
        SS_sLTP_shp_Q14 = silk_mm256_sub_sat_epi32(SS_LF_AR_Q14, _mm256_broadcastsi128_si256(n_LF_Q14));
831
832
        /* END Updating Delayed Decision States */
833
834
0
        *smpl_buf_idx = (*smpl_buf_idx + DECISION_DELAY - 1) % DECISION_DELAY;
835
0
        last_smple_idx = (*smpl_buf_idx + decisionDelay) % DECISION_DELAY;
836
0
        psLastSample = &psDelDec->Samples[last_smple_idx];
837
838
        /* Find winner */
839
0
        RDmin_Q10 = silk_mm_mask_hmin_epi32(_mm256_castsi256_si128(SS_RD_Q10), MaskDelDec);
840
0
        Winner_selector = silk_index_to_selector(silk_index_of_first_equal_epi32(RDmin_Q10, _mm256_castsi256_si128(SS_RD_Q10)));
841
842
        /* Increase RD values of expired states */
843
0
        Winner_rand_state = _mm_shuffle_epi8(psLastSample->RandState, Winner_selector);
844
845
0
        SS_RD_Q10 = _mm256_blendv_epi8(
846
0
            _mm256_add_epi32(SS_RD_Q10, _mm256_set1_epi32(silk_int32_MAX >> 4)),
847
0
            SS_RD_Q10,
848
0
            _mm256_broadcastsi128_si256(_mm_cmpeq_epi32(psLastSample->RandState, Winner_rand_state)));
849
850
        /* find worst in first set */
851
0
        RDmax_Q10 = silk_mm_mask_hmax_epi32(_mm256_extracti128_si256(SS_RD_Q10, 0), MaskDelDec);
852
        /* find best in second set */
853
0
        RDmin_Q10 = silk_mm_mask_hmin_epi32(_mm256_extracti128_si256(SS_RD_Q10, 1), MaskDelDec);
854
855
        /* Replace a state if best from second set outperforms worst in first set */
856
0
        tmp0 = _mm_cmplt_epi32(RDmin_Q10, RDmax_Q10);
857
0
        if (!_mm_test_all_zeros(tmp0, tmp0))
858
0
        {
859
0
            int t;
860
0
            RDmax_ind = silk_index_of_first_equal_epi32(RDmax_Q10, _mm256_extracti128_si256(SS_RD_Q10, 0));
861
0
            RDmin_ind = silk_index_of_first_equal_epi32(RDmin_Q10, _mm256_extracti128_si256(SS_RD_Q10, 1));
862
0
            tmp1 = _mm_cvtepi8_epi32(_mm_cvtsi32_si128(0xFFU << (unsigned)(RDmax_ind << 3)));
863
0
            tmp0 = _mm_blendv_epi8(
864
0
                _mm_set_epi8(0xF, 0xE, 0xD, 0xC, 0xB, 0xA, 0x9, 0x8, 0x7, 0x6, 0x5, 0x4, 0x3, 0x2, 0x1, 0x0),
865
0
                silk_index_to_selector(RDmin_ind),
866
0
                tmp1);
867
0
            for (t = i; t < MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH; t++)
868
0
            {
869
0
                psDelDec->sLPC_Q14[t] = _mm_shuffle_epi8(psDelDec->sLPC_Q14[t], tmp0);
870
0
            }
871
0
            psDelDec->Seed = _mm_shuffle_epi8(psDelDec->Seed, tmp0);
872
0
            psDelDec->SeedInit = _mm_shuffle_epi8(psDelDec->SeedInit, tmp0);
873
0
            for (t = 0; t < MAX_SHAPE_LPC_ORDER; t++)
874
0
            {
875
0
                psDelDec->sAR2_Q14[t] = _mm_shuffle_epi8(psDelDec->sAR2_Q14[t], tmp0);
876
0
            }
877
0
            for (t = 0; t < DECISION_DELAY; t++)
878
0
            {
879
0
                psDelDec->Samples[t].RandState = _mm_shuffle_epi8(psDelDec->Samples[t].RandState, tmp0);
880
0
                psDelDec->Samples[t].Q_Q10 = _mm_shuffle_epi8(psDelDec->Samples[t].Q_Q10, tmp0);
881
0
                psDelDec->Samples[t].Xq_Q14 = _mm_shuffle_epi8(psDelDec->Samples[t].Xq_Q14, tmp0);
882
0
                psDelDec->Samples[t].Pred_Q15 = _mm_shuffle_epi8(psDelDec->Samples[t].Pred_Q15, tmp0);
883
0
                psDelDec->Samples[t].Shape_Q14 = _mm_shuffle_epi8(psDelDec->Samples[t].Shape_Q14, tmp0);
884
0
            }
885
0
            mask = _mm256_castsi128_si256(_mm_blendv_epi8(_mm_set_epi32(0x3, 0x2, 0x1, 0x0), _mm_set1_epi32(RDmin_ind + 4), tmp1));
886
0
            SS_Q_Q10 = _mm256_permutevar8x32_epi32(SS_Q_Q10, mask);
887
0
            SS_RD_Q10 = _mm256_permutevar8x32_epi32(SS_RD_Q10, mask);
888
0
            SS_xq_Q14 = _mm256_permutevar8x32_epi32(SS_xq_Q14, mask);
889
0
            SS_LF_AR_Q14 = _mm256_permutevar8x32_epi32(SS_LF_AR_Q14, mask);
890
0
            SS_Diff_Q14 = _mm256_permutevar8x32_epi32(SS_Diff_Q14, mask);
891
0
            SS_sLTP_shp_Q14 = _mm256_permutevar8x32_epi32(SS_sLTP_shp_Q14, mask);
892
0
            SS_LPC_exc_Q14 = _mm256_permutevar8x32_epi32(SS_LPC_exc_Q14, mask);
893
0
        }
894
895
        /* Write samples from winner to output and long-term filter states */
896
0
        if (subfr > 0 || i >= decisionDelay)
897
0
        {
898
0
            pulses[i - decisionDelay] =
899
0
                (opus_int8)silk_sar_round_32(silk_select_winner(psLastSample->Q_Q10, Winner_selector), 10);
900
0
            xq[i - decisionDelay] =
901
0
                silk_sat16((opus_int32)silk_sar_round_smulww(silk_select_winner(psLastSample->Xq_Q14, Winner_selector), delayedGain_Q10[last_smple_idx], 8));
902
0
            NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - decisionDelay] =
903
0
                silk_select_winner(psLastSample->Shape_Q14, Winner_selector);
904
0
            sLTP_Q15[NSQ->sLTP_buf_idx - decisionDelay] =
905
0
                silk_select_winner(psLastSample->Pred_Q15, Winner_selector);
906
0
        }
907
0
        NSQ->sLTP_shp_buf_idx++;
908
0
        NSQ->sLTP_buf_idx++;
909
910
        /* Update states */
911
0
        psSample = &psDelDec->Samples[*smpl_buf_idx];
912
0
        psDelDec->Seed = _mm_add_epi32(psDelDec->Seed, silk_mm_srai_round_epi32(_mm256_castsi256_si128(SS_Q_Q10), 10));
913
0
        psDelDec->LF_AR_Q14 = _mm256_castsi256_si128(SS_LF_AR_Q14);
914
0
        psDelDec->Diff_Q14 = _mm256_castsi256_si128(SS_Diff_Q14);
915
0
        psDelDec->sLPC_Q14[i + NSQ_LPC_BUF_LENGTH] = _mm256_castsi256_si128(SS_xq_Q14);
916
0
        psDelDec->RD_Q10 = _mm256_castsi256_si128(SS_RD_Q10);
917
0
        psSample->Xq_Q14 = _mm256_castsi256_si128(SS_xq_Q14);
918
0
        psSample->Q_Q10 = _mm256_castsi256_si128(SS_Q_Q10);
919
0
        psSample->Pred_Q15 = _mm256_castsi256_si128(SS_LPC_exc_Q14);
920
0
        psSample->Shape_Q14 = _mm256_castsi256_si128(SS_sLTP_shp_Q14);
921
0
        psSample->RandState = psDelDec->Seed;
922
0
        delayedGain_Q10[*smpl_buf_idx] = Gain_Q10;
923
0
    }
924
    /* Update LPC states */
925
0
    for (i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
926
0
    {
927
0
        psDelDec->sLPC_Q14[i] = (&psDelDec->sLPC_Q14[length])[i];
928
0
    }
929
0
}
930
931
static OPUS_INLINE void silk_nsq_del_dec_scale_states_avx2(
932
    const silk_encoder_state *psEncC,          /* I    Encoder State                   */
933
    silk_nsq_state *NSQ,                       /* I/O  NSQ state                       */
934
    NSQ_del_dec_struct *psDelDec,              /* I/O  Delayed decision states         */
935
    const opus_int16 x16[],                    /* I    Input                           */
936
    opus_int32 x_sc_Q10[MAX_SUB_FRAME_LENGTH], /* O    Input scaled with 1/Gain in Q10 */
937
    const opus_int16 sLTP[],                   /* I    Re-whitened LTP state in Q0     */
938
    opus_int32 sLTP_Q15[],                     /* O    LTP state matching scaled input */
939
    opus_int subfr,                            /* I    Subframe number                 */
940
    const opus_int LTP_scale_Q14,              /* I    LTP state scaling               */
941
    const opus_int32 Gains_Q16[MAX_NB_SUBFR],  /* I                                    */
942
    const opus_int pitchL[MAX_NB_SUBFR],       /* I    Pitch lag                       */
943
    const opus_int signal_type,                /* I    Signal type                     */
944
    const opus_int decisionDelay               /* I    Decision delay                  */
945
)
946
0
{
947
0
    int i;
948
0
    opus_int lag;
949
0
    opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26;
950
0
    NSQ_del_dec_sample_struct *psSample;
951
952
0
    lag = pitchL[subfr];
953
0
    inv_gain_Q31 = silk_INVERSE32_varQ(silk_max(Gains_Q16[subfr], 1), 47);
954
0
    silk_assert(inv_gain_Q31 != 0);
955
956
    /* Scale input */
957
0
    inv_gain_Q26 = silk_sar_round_32(inv_gain_Q31, 5);
958
0
    for (i = 0; i < psEncC->subfr_length; i+=4)
959
0
    {
960
0
        __m256i x = _mm256_cvtepi16_epi64(_mm_loadu_si64(&x16[i]));
961
0
        x = _mm256_slli_epi64(_mm256_mul_epi32(x, _mm256_set1_epi32(inv_gain_Q26)), 16);
962
0
        _mm_storeu_si128((__m128i*)&x_sc_Q10[i], silk_cvtepi64_epi32_high(x));
963
0
    }
964
965
    /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */
966
0
    if (NSQ->rewhite_flag)
967
0
    {
968
0
        if (subfr == 0)
969
0
        {
970
            /* Do LTP downscaling */
971
0
            inv_gain_Q31 = silk_LSHIFT(silk_SMULWB(inv_gain_Q31, LTP_scale_Q14), 2);
972
0
        }
973
0
        for (i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++)
974
0
        {
975
0
            silk_assert(i < MAX_FRAME_LENGTH);
976
0
            sLTP_Q15[i] = silk_SMULWB(inv_gain_Q31, sLTP[i]);
977
0
        }
978
0
    }
979
980
    /* Adjust for changing gain */
981
0
    if (Gains_Q16[subfr] != NSQ->prev_gain_Q16)
982
0
    {
983
0
        gain_adj_Q16 = silk_DIV32_varQ(NSQ->prev_gain_Q16, Gains_Q16[subfr], 16);
984
985
        /* Scale long-term shaping state */
986
0
        for (i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i+=4)
987
0
        {
988
0
      opus_int32 *p = &NSQ->sLTP_shp_Q14[i];
989
0
            _mm_storeu_si128((__m128i*)p, silk_mm_smulww_epi32(_mm_loadu_si128((__m128i*)p), gain_adj_Q16));
990
0
        }
991
992
        /* Scale long-term prediction state */
993
0
        if (signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0)
994
0
        {
995
0
            for (i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx - decisionDelay; i++)
996
0
            {
997
0
                sLTP_Q15[i] = ((opus_int64)sLTP_Q15[i]) * ((opus_int64)gain_adj_Q16) >> 16;
998
0
            }
999
0
        }
1000
1001
        /* Scale scalar states */
1002
0
        psDelDec->LF_AR_Q14 = silk_mm_smulww_epi32(psDelDec->LF_AR_Q14, gain_adj_Q16);
1003
0
        psDelDec->Diff_Q14 = silk_mm_smulww_epi32(psDelDec->Diff_Q14, gain_adj_Q16);
1004
1005
        /* Scale short-term prediction and shaping states */
1006
0
        for (i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
1007
0
        {
1008
0
            psDelDec->sLPC_Q14[i] = silk_mm_smulww_epi32(psDelDec->sLPC_Q14[i], gain_adj_Q16);
1009
0
        }
1010
0
        for (i = 0; i < DECISION_DELAY; i++)
1011
0
        {
1012
0
            psSample = &psDelDec->Samples[i];
1013
0
            psSample->Pred_Q15 = silk_mm_smulww_epi32(psSample->Pred_Q15, gain_adj_Q16);
1014
0
            psSample->Shape_Q14 = silk_mm_smulww_epi32(psSample->Shape_Q14, gain_adj_Q16);
1015
0
        }
1016
0
        for (i = 0; i < MAX_SHAPE_LPC_ORDER; i++)
1017
0
        {
1018
0
            psDelDec->sAR2_Q14[i] = silk_mm_smulww_epi32(psDelDec->sAR2_Q14[i], gain_adj_Q16);
1019
0
        }
1020
1021
        /* Save inverse gain */
1022
0
        NSQ->prev_gain_Q16 = Gains_Q16[subfr];
1023
0
    }
1024
0
}
1025
1026
static OPUS_INLINE void silk_LPC_analysis_filter_avx2(
1027
    opus_int16                  *out,               /* O    Output signal                           */
1028
    const opus_int16            *in,                /* I    Input signal                            */
1029
    const opus_int16            *B,                 /* I    MA prediction coefficients, Q12 [order] */
1030
    const opus_int32            len,                /* I    Signal length                           */
1031
    const opus_int32            order               /* I    Filter order                            */
1032
)
1033
0
{
1034
0
    int i;
1035
0
    opus_int32       out32_Q12, out32;
1036
0
    silk_assert(order == 10 || order == 16);
1037
1038
0
    for(i = order; i < len; i++ )
1039
0
    {
1040
0
        const opus_int16 *in_ptr = &in[ i ];
1041
        /* Allowing wrap around so that two wraps can cancel each other. The rare
1042
           cases where the result wraps around can only be triggered by invalid streams*/
1043
1044
0
        __m256i in_v = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*)&in_ptr[-8]));
1045
0
        __m256i B_v  = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*)&      B[0]));
1046
0
        __m256i sum = _mm256_mullo_epi32(in_v, silk_mm256_reverse_epi32(B_v));
1047
0
        if (order > 10)
1048
0
        {
1049
0
            in_v = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*)&in_ptr[-16]));
1050
0
            B_v  = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*)&B       [8]));
1051
0
            B_v  = silk_mm256_reverse_epi32(B_v);
1052
0
        }
1053
0
        else
1054
0
        {
1055
0
            in_v = _mm256_cvtepi16_epi32(_mm_loadu_si32(&in_ptr[-10]));
1056
0
            B_v  = _mm256_cvtepi16_epi32(_mm_loadu_si32(&B       [8]));
1057
0
            B_v  = _mm256_shuffle_epi32(B_v, 0x01);
1058
0
        }
1059
0
        sum = _mm256_add_epi32(sum, _mm256_mullo_epi32(in_v, B_v));
1060
1061
0
        out32_Q12 = silk_mm256_hsum_epi32(sum);
1062
1063
        /* Subtract prediction */
1064
0
        out32_Q12 = silk_SUB32_ovflw( silk_LSHIFT( (opus_int32)*in_ptr, 12 ), out32_Q12 );
1065
1066
        /* Scale to Q0 */
1067
0
        out32 = silk_sar_round_32(out32_Q12, 12);
1068
1069
        /* Saturate output */
1070
0
        out[ i ] = silk_sat16(out32);
1071
0
    }
1072
1073
    /* Set first d output samples to zero */
1074
0
    silk_memset( out, 0, order * sizeof( opus_int16 ) );
1075
0
}