Coverage Report

Created: 2025-11-16 07:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fdk-aac/libFDK/include/qmf_pcm.h
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):   Markus Lohwasser, Josef Hoepfl, Manuel Jander
98
99
   Description: QMF filterbank
100
101
*******************************************************************************/
102
103
#ifndef QMF_PCM_H
104
#define QMF_PCM_H
105
106
/*
107
   All Synthesis functions dependent on datatype INT_PCM_QMFOUT
108
   Should only be included by qmf.cpp, but not compiled separately, please
109
   exclude compilation from project, if done otherwise. Is optional included
110
   twice to duplicate all functions with two different pre-definitions, as:
111
        #define INT_PCM_QMFOUT LONG
112
    and ...
113
        #define INT_PCM_QMFOUT SHORT
114
    needed to run QMF synthesis in both 16bit and 32bit sample output format.
115
*/
116
117
#define QSSCALE (0)
118
38.8G
#define FX_DBL2FX_QSS(x) (x)
119
3.90G
#define FX_QSS2FX_DBL(x) (x)
120
121
/*!
122
  \brief Perform Synthesis Prototype Filtering on a single slot of input data.
123
124
  The filter takes 2 * qmf->no_channels of input data and
125
  generates qmf->no_channels time domain output samples.
126
*/
127
/* static */
128
#ifndef FUNCTION_qmfSynPrototypeFirSlot
129
void qmfSynPrototypeFirSlot(
130
#else
131
void qmfSynPrototypeFirSlot_fallback(
132
#endif
133
    HANDLE_QMF_FILTER_BANK qmf,
134
    FIXP_DBL *RESTRICT realSlot,      /*!< Input: Pointer to real Slot */
135
    FIXP_DBL *RESTRICT imagSlot,      /*!< Input: Pointer to imag Slot */
136
    INT_PCM_QMFOUT *RESTRICT timeOut, /*!< Time domain data */
137
64.2M
    int stride) {
138
64.2M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
139
64.2M
  int no_channels = qmf->no_channels;
140
64.2M
  const FIXP_PFT *p_Filter = qmf->p_filter;
141
64.2M
  int p_stride = qmf->p_stride;
142
64.2M
  int j;
143
64.2M
  FIXP_QSS *RESTRICT sta = FilterStates;
144
64.2M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
145
64.2M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
146
64.2M
              qmf->outGain_e;
147
148
64.2M
  p_flt =
149
64.2M
      p_Filter + p_stride * QMF_NO_POLY; /*                     5th of 330 */
150
64.2M
  p_fltm = p_Filter + (qmf->FilterSize / 2) -
151
64.2M
           p_stride * QMF_NO_POLY; /* 5 + (320 - 2*5) = 315th of 330 */
152
153
64.2M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
154
155
64.2M
  FIXP_DBL rnd_val = 0;
156
157
64.2M
  if (scale > 0) {
158
0
    if (scale < (DFRACT_BITS - 1))
159
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
160
0
    else
161
0
      scale = (DFRACT_BITS - 1);
162
64.2M
  } else {
163
64.2M
    scale = fMax(scale, -(DFRACT_BITS - 1));
164
64.2M
  }
165
166
3.96G
  for (j = no_channels - 1; j >= 0; j--) {
167
3.90G
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
168
3.90G
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
169
3.90G
    {
170
3.90G
      INT_PCM_QMFOUT tmp;
171
3.90G
      FIXP_DBL Are = fMultAddDiv2(FX_QSS2FX_DBL(sta[0]), p_fltm[0], real);
172
173
      /* This PCM formatting performs:
174
         - multiplication with 16-bit gain, if not -1.0f
175
         - rounding, if shift right is applied
176
         - apply shift left (or right) with saturation to 32 (or 16) bits
177
         - store output with --stride in 32 (or 16) bit format
178
      */
179
3.90G
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
180
0
      {
181
0
        Are = fMult(Are, gain);
182
0
      }
183
3.90G
      if (scale >= 0) {
184
0
        FDK_ASSERT(
185
0
            Are <=
186
0
            (Are + rnd_val)); /* Round-addition must not overflow, might be
187
                                 equal for rnd_val=0 */
188
0
        tmp = (INT_PCM_QMFOUT)(
189
0
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
190
3.90G
      } else {
191
3.90G
        tmp = (INT_PCM_QMFOUT)(
192
3.90G
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
193
3.90G
      }
194
195
3.90G
      { timeOut[(j)*stride] = tmp; }
196
3.90G
    }
197
198
3.90G
    sta[0] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[1]), p_flt[4], imag));
199
3.90G
    sta[1] =
200
3.90G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[2]), p_fltm[1], real));
201
3.90G
    sta[2] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[3]), p_flt[3], imag));
202
3.90G
    sta[3] =
203
3.90G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[4]), p_fltm[2], real));
204
3.90G
    sta[4] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[5]), p_flt[2], imag));
205
3.90G
    sta[5] =
206
3.90G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[6]), p_fltm[3], real));
207
3.90G
    sta[6] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[7]), p_flt[1], imag));
208
3.90G
    sta[7] =
209
3.90G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[8]), p_fltm[4], real));
210
3.90G
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
211
3.90G
    p_flt += (p_stride * QMF_NO_POLY);
212
3.90G
    p_fltm -= (p_stride * QMF_NO_POLY);
213
3.90G
    sta += 9;  // = (2*QMF_NO_POLY-1);
214
3.90G
  }
215
64.2M
}
Unexecuted instantiation: qmfSynPrototypeFirSlot(QMF_FILTER_BANK*, int*, int*, short*, int)
qmfSynPrototypeFirSlot(QMF_FILTER_BANK*, int*, int*, int*, int)
Line
Count
Source
137
64.2M
    int stride) {
138
64.2M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
139
64.2M
  int no_channels = qmf->no_channels;
140
64.2M
  const FIXP_PFT *p_Filter = qmf->p_filter;
141
64.2M
  int p_stride = qmf->p_stride;
142
64.2M
  int j;
143
64.2M
  FIXP_QSS *RESTRICT sta = FilterStates;
144
64.2M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
145
64.2M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
146
64.2M
              qmf->outGain_e;
147
148
64.2M
  p_flt =
149
64.2M
      p_Filter + p_stride * QMF_NO_POLY; /*                     5th of 330 */
150
64.2M
  p_fltm = p_Filter + (qmf->FilterSize / 2) -
151
64.2M
           p_stride * QMF_NO_POLY; /* 5 + (320 - 2*5) = 315th of 330 */
152
153
64.2M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
154
155
64.2M
  FIXP_DBL rnd_val = 0;
156
157
64.2M
  if (scale > 0) {
158
0
    if (scale < (DFRACT_BITS - 1))
159
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
160
0
    else
161
0
      scale = (DFRACT_BITS - 1);
162
64.2M
  } else {
163
64.2M
    scale = fMax(scale, -(DFRACT_BITS - 1));
164
64.2M
  }
165
166
3.96G
  for (j = no_channels - 1; j >= 0; j--) {
167
3.90G
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
168
3.90G
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
169
3.90G
    {
170
3.90G
      INT_PCM_QMFOUT tmp;
171
3.90G
      FIXP_DBL Are = fMultAddDiv2(FX_QSS2FX_DBL(sta[0]), p_fltm[0], real);
172
173
      /* This PCM formatting performs:
174
         - multiplication with 16-bit gain, if not -1.0f
175
         - rounding, if shift right is applied
176
         - apply shift left (or right) with saturation to 32 (or 16) bits
177
         - store output with --stride in 32 (or 16) bit format
178
      */
179
3.90G
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
180
0
      {
181
0
        Are = fMult(Are, gain);
182
0
      }
183
3.90G
      if (scale >= 0) {
184
0
        FDK_ASSERT(
185
0
            Are <=
186
0
            (Are + rnd_val)); /* Round-addition must not overflow, might be
187
                                 equal for rnd_val=0 */
188
0
        tmp = (INT_PCM_QMFOUT)(
189
0
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
190
3.90G
      } else {
191
3.90G
        tmp = (INT_PCM_QMFOUT)(
192
3.90G
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
193
3.90G
      }
194
195
3.90G
      { timeOut[(j)*stride] = tmp; }
196
3.90G
    }
197
198
3.90G
    sta[0] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[1]), p_flt[4], imag));
199
3.90G
    sta[1] =
200
3.90G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[2]), p_fltm[1], real));
201
3.90G
    sta[2] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[3]), p_flt[3], imag));
202
3.90G
    sta[3] =
203
3.90G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[4]), p_fltm[2], real));
204
3.90G
    sta[4] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[5]), p_flt[2], imag));
205
3.90G
    sta[5] =
206
3.90G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[6]), p_fltm[3], real));
207
3.90G
    sta[6] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[7]), p_flt[1], imag));
208
3.90G
    sta[7] =
209
3.90G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[8]), p_fltm[4], real));
210
3.90G
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
211
3.90G
    p_flt += (p_stride * QMF_NO_POLY);
212
3.90G
    p_fltm -= (p_stride * QMF_NO_POLY);
213
3.90G
    sta += 9;  // = (2*QMF_NO_POLY-1);
214
3.90G
  }
215
64.2M
}
216
217
#ifndef FUNCTION_qmfSynPrototypeFirSlot_NonSymmetric
218
/*!
219
  \brief Perform Synthesis Prototype Filtering on a single slot of input data.
220
221
  The filter takes 2 * qmf->no_channels of input data and
222
  generates qmf->no_channels time domain output samples.
223
*/
224
static void qmfSynPrototypeFirSlot_NonSymmetric(
225
    HANDLE_QMF_FILTER_BANK qmf,
226
    FIXP_DBL *RESTRICT realSlot,      /*!< Input: Pointer to real Slot */
227
    FIXP_DBL *RESTRICT imagSlot,      /*!< Input: Pointer to imag Slot */
228
    INT_PCM_QMFOUT *RESTRICT timeOut, /*!< Time domain data */
229
10.8M
    int stride) {
230
10.8M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
231
10.8M
  int no_channels = qmf->no_channels;
232
10.8M
  const FIXP_PFT *p_Filter = qmf->p_filter;
233
10.8M
  int p_stride = qmf->p_stride;
234
10.8M
  int j;
235
10.8M
  FIXP_QSS *RESTRICT sta = FilterStates;
236
10.8M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
237
10.8M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
238
10.8M
              qmf->outGain_e;
239
240
10.8M
  p_flt = p_Filter; /*!< Pointer to first half of filter coefficients */
241
10.8M
  p_fltm =
242
10.8M
      &p_flt[qmf->FilterSize / 2]; /* at index 320, overall 640 coefficients */
243
244
10.8M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
245
246
10.8M
  FIXP_DBL rnd_val = (FIXP_DBL)0;
247
248
10.8M
  if (scale > 0) {
249
0
    if (scale < (DFRACT_BITS - 1))
250
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
251
0
    else
252
0
      scale = (DFRACT_BITS - 1);
253
10.8M
  } else {
254
10.8M
    scale = fMax(scale, -(DFRACT_BITS - 1));
255
10.8M
  }
256
257
380M
  for (j = no_channels - 1; j >= 0; j--) {
258
369M
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
259
369M
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
260
369M
    {
261
369M
      INT_PCM_QMFOUT tmp;
262
369M
      FIXP_DBL Are = sta[0] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[4], real));
263
264
      /* This PCM formatting performs:
265
         - multiplication with 16-bit gain, if not -1.0f
266
         - rounding, if shift right is applied
267
         - apply shift left (or right) with saturation to 32 (or 16) bits
268
         - store output with --stride in 32 (or 16) bit format
269
      */
270
369M
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
271
0
      {
272
0
        Are = fMult(Are, gain);
273
0
      }
274
369M
      if (scale > 0) {
275
0
        FDK_ASSERT(Are <
276
0
                   (Are + rnd_val)); /* Round-addition must not overflow */
277
0
        tmp = (INT_PCM_QMFOUT)(
278
0
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
279
369M
      } else {
280
369M
        tmp = (INT_PCM_QMFOUT)(
281
369M
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
282
369M
      }
283
369M
      timeOut[j * stride] = tmp;
284
369M
    }
285
286
369M
    sta[0] = sta[1] + FX_DBL2FX_QSS(fMultDiv2(p_flt[4], imag));
287
369M
    sta[1] = sta[2] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[3], real));
288
369M
    sta[2] = sta[3] + FX_DBL2FX_QSS(fMultDiv2(p_flt[3], imag));
289
290
369M
    sta[3] = sta[4] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[2], real));
291
369M
    sta[4] = sta[5] + FX_DBL2FX_QSS(fMultDiv2(p_flt[2], imag));
292
369M
    sta[5] = sta[6] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[1], real));
293
369M
    sta[6] = sta[7] + FX_DBL2FX_QSS(fMultDiv2(p_flt[1], imag));
294
295
369M
    sta[7] = sta[8] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[0], real));
296
369M
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
297
298
369M
    p_flt += (p_stride * QMF_NO_POLY);
299
369M
    p_fltm += (p_stride * QMF_NO_POLY);
300
369M
    sta += 9;  // = (2*QMF_NO_POLY-1);
301
369M
  }
302
10.8M
}
Unexecuted instantiation: qmf.cpp:qmfSynPrototypeFirSlot_NonSymmetric(QMF_FILTER_BANK*, int*, int*, short*, int)
qmf.cpp:qmfSynPrototypeFirSlot_NonSymmetric(QMF_FILTER_BANK*, int*, int*, int*, int)
Line
Count
Source
229
10.8M
    int stride) {
230
10.8M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
231
10.8M
  int no_channels = qmf->no_channels;
232
10.8M
  const FIXP_PFT *p_Filter = qmf->p_filter;
233
10.8M
  int p_stride = qmf->p_stride;
234
10.8M
  int j;
235
10.8M
  FIXP_QSS *RESTRICT sta = FilterStates;
236
10.8M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
237
10.8M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
238
10.8M
              qmf->outGain_e;
239
240
10.8M
  p_flt = p_Filter; /*!< Pointer to first half of filter coefficients */
241
10.8M
  p_fltm =
242
10.8M
      &p_flt[qmf->FilterSize / 2]; /* at index 320, overall 640 coefficients */
243
244
10.8M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
245
246
10.8M
  FIXP_DBL rnd_val = (FIXP_DBL)0;
247
248
10.8M
  if (scale > 0) {
249
0
    if (scale < (DFRACT_BITS - 1))
250
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
251
0
    else
252
0
      scale = (DFRACT_BITS - 1);
253
10.8M
  } else {
254
10.8M
    scale = fMax(scale, -(DFRACT_BITS - 1));
255
10.8M
  }
256
257
380M
  for (j = no_channels - 1; j >= 0; j--) {
258
369M
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
259
369M
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
260
369M
    {
261
369M
      INT_PCM_QMFOUT tmp;
262
369M
      FIXP_DBL Are = sta[0] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[4], real));
263
264
      /* This PCM formatting performs:
265
         - multiplication with 16-bit gain, if not -1.0f
266
         - rounding, if shift right is applied
267
         - apply shift left (or right) with saturation to 32 (or 16) bits
268
         - store output with --stride in 32 (or 16) bit format
269
      */
270
369M
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
271
0
      {
272
0
        Are = fMult(Are, gain);
273
0
      }
274
369M
      if (scale > 0) {
275
0
        FDK_ASSERT(Are <
276
0
                   (Are + rnd_val)); /* Round-addition must not overflow */
277
0
        tmp = (INT_PCM_QMFOUT)(
278
0
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
279
369M
      } else {
280
369M
        tmp = (INT_PCM_QMFOUT)(
281
369M
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
282
369M
      }
283
369M
      timeOut[j * stride] = tmp;
284
369M
    }
285
286
369M
    sta[0] = sta[1] + FX_DBL2FX_QSS(fMultDiv2(p_flt[4], imag));
287
369M
    sta[1] = sta[2] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[3], real));
288
369M
    sta[2] = sta[3] + FX_DBL2FX_QSS(fMultDiv2(p_flt[3], imag));
289
290
369M
    sta[3] = sta[4] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[2], real));
291
369M
    sta[4] = sta[5] + FX_DBL2FX_QSS(fMultDiv2(p_flt[2], imag));
292
369M
    sta[5] = sta[6] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[1], real));
293
369M
    sta[6] = sta[7] + FX_DBL2FX_QSS(fMultDiv2(p_flt[1], imag));
294
295
369M
    sta[7] = sta[8] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[0], real));
296
369M
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
297
298
369M
    p_flt += (p_stride * QMF_NO_POLY);
299
369M
    p_fltm += (p_stride * QMF_NO_POLY);
300
369M
    sta += 9;  // = (2*QMF_NO_POLY-1);
301
369M
  }
302
10.8M
}
303
#endif /* FUNCTION_qmfSynPrototypeFirSlot_NonSymmetric */
304
305
void qmfSynthesisFilteringSlot(HANDLE_QMF_FILTER_BANK synQmf,
306
                               const FIXP_DBL *realSlot,
307
                               const FIXP_DBL *imagSlot,
308
                               const int scaleFactorLowBand,
309
                               const int scaleFactorHighBand,
310
                               INT_PCM_QMFOUT *timeOut, const int stride,
311
75.0M
                               FIXP_DBL *pWorkBuffer) {
312
75.0M
  if (!(synQmf->flags & QMF_FLAG_LP))
313
50.7M
    qmfInverseModulationHQ(synQmf, realSlot, imagSlot, scaleFactorLowBand,
314
50.7M
                           scaleFactorHighBand, pWorkBuffer);
315
24.2M
  else {
316
24.2M
    if (synQmf->flags & QMF_FLAG_CLDFB) {
317
10.0M
      qmfInverseModulationLP_odd(synQmf, realSlot, scaleFactorLowBand,
318
10.0M
                                 scaleFactorHighBand, pWorkBuffer);
319
14.2M
    } else {
320
14.2M
      qmfInverseModulationLP_even(synQmf, realSlot, scaleFactorLowBand,
321
14.2M
                                  scaleFactorHighBand, pWorkBuffer);
322
14.2M
    }
323
24.2M
  }
324
325
75.0M
  if (synQmf->flags & QMF_FLAG_NONSYMMETRIC) {
326
10.8M
    qmfSynPrototypeFirSlot_NonSymmetric(synQmf, pWorkBuffer,
327
10.8M
                                        pWorkBuffer + synQmf->no_channels,
328
10.8M
                                        timeOut, stride);
329
64.2M
  } else {
330
64.2M
    qmfSynPrototypeFirSlot(synQmf, pWorkBuffer,
331
64.2M
                           pWorkBuffer + synQmf->no_channels, timeOut, stride);
332
64.2M
  }
333
75.0M
}
Unexecuted instantiation: qmfSynthesisFilteringSlot(QMF_FILTER_BANK*, int const*, int const*, int, int, short*, int, int*)
qmfSynthesisFilteringSlot(QMF_FILTER_BANK*, int const*, int const*, int, int, int*, int, int*)
Line
Count
Source
311
75.0M
                               FIXP_DBL *pWorkBuffer) {
312
75.0M
  if (!(synQmf->flags & QMF_FLAG_LP))
313
50.7M
    qmfInverseModulationHQ(synQmf, realSlot, imagSlot, scaleFactorLowBand,
314
50.7M
                           scaleFactorHighBand, pWorkBuffer);
315
24.2M
  else {
316
24.2M
    if (synQmf->flags & QMF_FLAG_CLDFB) {
317
10.0M
      qmfInverseModulationLP_odd(synQmf, realSlot, scaleFactorLowBand,
318
10.0M
                                 scaleFactorHighBand, pWorkBuffer);
319
14.2M
    } else {
320
14.2M
      qmfInverseModulationLP_even(synQmf, realSlot, scaleFactorLowBand,
321
14.2M
                                  scaleFactorHighBand, pWorkBuffer);
322
14.2M
    }
323
24.2M
  }
324
325
75.0M
  if (synQmf->flags & QMF_FLAG_NONSYMMETRIC) {
326
10.8M
    qmfSynPrototypeFirSlot_NonSymmetric(synQmf, pWorkBuffer,
327
10.8M
                                        pWorkBuffer + synQmf->no_channels,
328
10.8M
                                        timeOut, stride);
329
64.2M
  } else {
330
64.2M
    qmfSynPrototypeFirSlot(synQmf, pWorkBuffer,
331
64.2M
                           pWorkBuffer + synQmf->no_channels, timeOut, stride);
332
64.2M
  }
333
75.0M
}
334
335
/*!
336
 *
337
 * \brief Perform complex-valued subband synthesis of the
338
 *        low band and the high band and store the
339
 *        time domain data in timeOut
340
 *
341
 * First step: Calculate the proper scaling factor of current
342
 * spectral data in qmfReal/qmfImag, old spectral data in the overlap
343
 * range and filter states.
344
 *
345
 * Second step: Perform Frequency-to-Time mapping with inverse
346
 * Modulation slot-wise.
347
 *
348
 * Third step: Perform FIR-filter slot-wise. To save space for filter
349
 * states, the MAC operations are executed directly on the filter states
350
 * instead of accumulating several products in the accumulator. The
351
 * buffer shift at the end of the function should be replaced by a
352
 * modulo operation, which is available on some DSPs.
353
 *
354
 * Last step: Copy the upper part of the spectral data to the overlap buffer.
355
 *
356
 * The qmf coefficient table is symmetric. The symmetry is exploited by
357
 * shrinking the coefficient table to half the size. The addressing mode
358
 * takes care of the symmetries.  If the #define #QMFTABLE_FULL is set,
359
 * coefficient addressing works on the full table size. The code will be
360
 * slightly faster and slightly more compact.
361
 *
362
 * Workbuffer requirement: 2 x sizeof(**QmfBufferReal) * synQmf->no_channels
363
 * The workbuffer must be aligned
364
 */
365
void qmfSynthesisFiltering(
366
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank  */
367
    FIXP_DBL **QmfBufferReal,      /*!< Low and High band, real */
368
    FIXP_DBL **QmfBufferImag,      /*!< Low and High band, imag */
369
    const QMF_SCALE_FACTOR *scaleFactor,
370
    const INT ov_len,        /*!< split Slot of overlap and actual slots */
371
    INT_PCM_QMFOUT *timeOut, /*!< Pointer to output */
372
    const INT stride,        /*!< stride factor of output */
373
    FIXP_DBL *pWorkBuffer    /*!< pointer to temporal working buffer */
374
2.37M
) {
375
2.37M
  int i;
376
2.37M
  int L = synQmf->no_channels;
377
2.37M
  int scaleFactorHighBand;
378
2.37M
  int scaleFactorLowBand_ov, scaleFactorLowBand_no_ov;
379
380
2.37M
  FDK_ASSERT(synQmf->no_channels >= synQmf->lsb);
381
2.37M
  FDK_ASSERT(synQmf->no_channels >= synQmf->usb);
382
383
  /* adapt scaling */
384
2.37M
  scaleFactorHighBand = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
385
2.37M
                        scaleFactor->hb_scale - synQmf->filterScale;
386
2.37M
  scaleFactorLowBand_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
387
2.37M
                          scaleFactor->ov_lb_scale - synQmf->filterScale;
388
2.37M
  scaleFactorLowBand_no_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
389
2.37M
                             scaleFactor->lb_scale - synQmf->filterScale;
390
391
68.2M
  for (i = 0; i < synQmf->no_col; i++) /* ----- no_col loop ----- */
392
65.8M
  {
393
65.8M
    const FIXP_DBL *QmfBufferImagSlot = NULL;
394
395
65.8M
    int scaleFactorLowBand =
396
65.8M
        (i < ov_len) ? scaleFactorLowBand_ov : scaleFactorLowBand_no_ov;
397
398
65.8M
    if (!(synQmf->flags & QMF_FLAG_LP)) QmfBufferImagSlot = QmfBufferImag[i];
399
400
65.8M
    qmfSynthesisFilteringSlot(synQmf, QmfBufferReal[i], QmfBufferImagSlot,
401
65.8M
                              scaleFactorLowBand, scaleFactorHighBand,
402
65.8M
                              timeOut + (i * L * stride), stride, pWorkBuffer);
403
65.8M
  } /* no_col loop  i  */
404
2.37M
}
Unexecuted instantiation: qmfSynthesisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR const*, int, short*, int, int*)
qmfSynthesisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR const*, int, int*, int, int*)
Line
Count
Source
374
2.37M
) {
375
2.37M
  int i;
376
2.37M
  int L = synQmf->no_channels;
377
2.37M
  int scaleFactorHighBand;
378
2.37M
  int scaleFactorLowBand_ov, scaleFactorLowBand_no_ov;
379
380
2.37M
  FDK_ASSERT(synQmf->no_channels >= synQmf->lsb);
381
2.37M
  FDK_ASSERT(synQmf->no_channels >= synQmf->usb);
382
383
  /* adapt scaling */
384
2.37M
  scaleFactorHighBand = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
385
2.37M
                        scaleFactor->hb_scale - synQmf->filterScale;
386
2.37M
  scaleFactorLowBand_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
387
2.37M
                          scaleFactor->ov_lb_scale - synQmf->filterScale;
388
2.37M
  scaleFactorLowBand_no_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
389
2.37M
                             scaleFactor->lb_scale - synQmf->filterScale;
390
391
68.2M
  for (i = 0; i < synQmf->no_col; i++) /* ----- no_col loop ----- */
392
65.8M
  {
393
65.8M
    const FIXP_DBL *QmfBufferImagSlot = NULL;
394
395
65.8M
    int scaleFactorLowBand =
396
65.8M
        (i < ov_len) ? scaleFactorLowBand_ov : scaleFactorLowBand_no_ov;
397
398
65.8M
    if (!(synQmf->flags & QMF_FLAG_LP)) QmfBufferImagSlot = QmfBufferImag[i];
399
400
65.8M
    qmfSynthesisFilteringSlot(synQmf, QmfBufferReal[i], QmfBufferImagSlot,
401
65.8M
                              scaleFactorLowBand, scaleFactorHighBand,
402
65.8M
                              timeOut + (i * L * stride), stride, pWorkBuffer);
403
65.8M
  } /* no_col loop  i  */
404
2.37M
}
405
406
/*!
407
 *
408
 * \brief Create QMF filter bank instance
409
 *
410
 *
411
 * \return 0 if successful
412
 *
413
 */
414
int qmfInitAnalysisFilterBank(
415
    HANDLE_QMF_FILTER_BANK h_Qmf, /*!< Returns handle */
416
    FIXP_QAS *pFilterStates,      /*!< Handle to filter states */
417
    int noCols,                   /*!< Number of timeslots per frame */
418
    int lsb,                      /*!< lower end of QMF */
419
    int usb,                      /*!< upper end of QMF */
420
    int no_channels,              /*!< Number of channels (bands) */
421
    int flags)                    /*!< Low Power flag */
422
190k
{
423
190k
  int err = qmfInitFilterBank(h_Qmf, pFilterStates, noCols, lsb, usb,
424
190k
                              no_channels, flags, 0);
425
190k
  if (!(flags & QMF_FLAG_KEEP_STATES) && (h_Qmf->FilterStates != NULL)) {
426
111k
    FDKmemclear(h_Qmf->FilterStates,
427
111k
                (2 * QMF_NO_POLY - 1) * h_Qmf->no_channels * sizeof(FIXP_QAS));
428
111k
  }
429
430
190k
  FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->lsb);
431
432
190k
  return err;
433
190k
}
Unexecuted instantiation: qmfInitAnalysisFilterBank(QMF_FILTER_BANK*, short*, int, int, int, int, int)
qmfInitAnalysisFilterBank(QMF_FILTER_BANK*, int*, int, int, int, int, int)
Line
Count
Source
422
190k
{
423
190k
  int err = qmfInitFilterBank(h_Qmf, pFilterStates, noCols, lsb, usb,
424
190k
                              no_channels, flags, 0);
425
190k
  if (!(flags & QMF_FLAG_KEEP_STATES) && (h_Qmf->FilterStates != NULL)) {
426
111k
    FDKmemclear(h_Qmf->FilterStates,
427
111k
                (2 * QMF_NO_POLY - 1) * h_Qmf->no_channels * sizeof(FIXP_QAS));
428
111k
  }
429
430
190k
  FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->lsb);
431
432
190k
  return err;
433
190k
}
434
435
#ifndef FUNCTION_qmfAnaPrototypeFirSlot
436
/*!
437
  \brief Perform Analysis Prototype Filtering on a single slot of input data.
438
*/
439
static void qmfAnaPrototypeFirSlot(
440
    FIXP_DBL *analysisBuffer,
441
    INT no_channels, /*!< Number channels of analysis filter */
442
    const FIXP_PFT *p_filter, INT p_stride, /*!< Stride of analysis filter    */
443
59.8M
    FIXP_QAS *RESTRICT pFilterStates) {
444
59.8M
  INT k;
445
446
59.8M
  FIXP_DBL accu;
447
59.8M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
448
59.8M
  FIXP_DBL *RESTRICT pData_0 = analysisBuffer + 2 * no_channels - 1;
449
59.8M
  FIXP_DBL *RESTRICT pData_1 = analysisBuffer;
450
451
59.8M
  FIXP_QAS *RESTRICT sta_0 = (FIXP_QAS *)pFilterStates;
452
59.8M
  FIXP_QAS *RESTRICT sta_1 =
453
59.8M
      (FIXP_QAS *)pFilterStates + (2 * QMF_NO_POLY * no_channels) - 1;
454
59.8M
  INT pfltStep = QMF_NO_POLY * (p_stride);
455
59.8M
  INT staStep1 = no_channels << 1;
456
59.8M
  INT staStep2 = (no_channels << 3) - 1; /* Rewind one less */
457
458
  /* FIR filters 127..64 0..63 */
459
1.63G
  for (k = 0; k < no_channels; k++) {
460
1.57G
    accu = fMultDiv2(p_flt[0], *sta_1);
461
1.57G
    sta_1 -= staStep1;
462
1.57G
    accu += fMultDiv2(p_flt[1], *sta_1);
463
1.57G
    sta_1 -= staStep1;
464
1.57G
    accu += fMultDiv2(p_flt[2], *sta_1);
465
1.57G
    sta_1 -= staStep1;
466
1.57G
    accu += fMultDiv2(p_flt[3], *sta_1);
467
1.57G
    sta_1 -= staStep1;
468
1.57G
    accu += fMultDiv2(p_flt[4], *sta_1);
469
1.57G
    *pData_1++ = (accu << 1);
470
1.57G
    sta_1 += staStep2;
471
472
1.57G
    p_flt += pfltStep;
473
1.57G
    accu = fMultDiv2(p_flt[0], *sta_0);
474
1.57G
    sta_0 += staStep1;
475
1.57G
    accu += fMultDiv2(p_flt[1], *sta_0);
476
1.57G
    sta_0 += staStep1;
477
1.57G
    accu += fMultDiv2(p_flt[2], *sta_0);
478
1.57G
    sta_0 += staStep1;
479
1.57G
    accu += fMultDiv2(p_flt[3], *sta_0);
480
1.57G
    sta_0 += staStep1;
481
1.57G
    accu += fMultDiv2(p_flt[4], *sta_0);
482
1.57G
    *pData_0-- = (accu << 1);
483
1.57G
    sta_0 -= staStep2;
484
1.57G
  }
485
59.8M
}
Unexecuted instantiation: qmf.cpp:qmfAnaPrototypeFirSlot(int*, int, short const*, int, short*)
qmf.cpp:qmfAnaPrototypeFirSlot(int*, int, short const*, int, int*)
Line
Count
Source
443
59.8M
    FIXP_QAS *RESTRICT pFilterStates) {
444
59.8M
  INT k;
445
446
59.8M
  FIXP_DBL accu;
447
59.8M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
448
59.8M
  FIXP_DBL *RESTRICT pData_0 = analysisBuffer + 2 * no_channels - 1;
449
59.8M
  FIXP_DBL *RESTRICT pData_1 = analysisBuffer;
450
451
59.8M
  FIXP_QAS *RESTRICT sta_0 = (FIXP_QAS *)pFilterStates;
452
59.8M
  FIXP_QAS *RESTRICT sta_1 =
453
59.8M
      (FIXP_QAS *)pFilterStates + (2 * QMF_NO_POLY * no_channels) - 1;
454
59.8M
  INT pfltStep = QMF_NO_POLY * (p_stride);
455
59.8M
  INT staStep1 = no_channels << 1;
456
59.8M
  INT staStep2 = (no_channels << 3) - 1; /* Rewind one less */
457
458
  /* FIR filters 127..64 0..63 */
459
1.63G
  for (k = 0; k < no_channels; k++) {
460
1.57G
    accu = fMultDiv2(p_flt[0], *sta_1);
461
1.57G
    sta_1 -= staStep1;
462
1.57G
    accu += fMultDiv2(p_flt[1], *sta_1);
463
1.57G
    sta_1 -= staStep1;
464
1.57G
    accu += fMultDiv2(p_flt[2], *sta_1);
465
1.57G
    sta_1 -= staStep1;
466
1.57G
    accu += fMultDiv2(p_flt[3], *sta_1);
467
1.57G
    sta_1 -= staStep1;
468
1.57G
    accu += fMultDiv2(p_flt[4], *sta_1);
469
1.57G
    *pData_1++ = (accu << 1);
470
1.57G
    sta_1 += staStep2;
471
472
1.57G
    p_flt += pfltStep;
473
1.57G
    accu = fMultDiv2(p_flt[0], *sta_0);
474
1.57G
    sta_0 += staStep1;
475
1.57G
    accu += fMultDiv2(p_flt[1], *sta_0);
476
1.57G
    sta_0 += staStep1;
477
1.57G
    accu += fMultDiv2(p_flt[2], *sta_0);
478
1.57G
    sta_0 += staStep1;
479
1.57G
    accu += fMultDiv2(p_flt[3], *sta_0);
480
1.57G
    sta_0 += staStep1;
481
1.57G
    accu += fMultDiv2(p_flt[4], *sta_0);
482
1.57G
    *pData_0-- = (accu << 1);
483
1.57G
    sta_0 -= staStep2;
484
1.57G
  }
485
59.8M
}
486
#endif /* !defined(FUNCTION_qmfAnaPrototypeFirSlot) */
487
488
#ifndef FUNCTION_qmfAnaPrototypeFirSlot_NonSymmetric
489
/*!
490
  \brief Perform Analysis Prototype Filtering on a single slot of input data.
491
*/
492
static void qmfAnaPrototypeFirSlot_NonSymmetric(
493
    FIXP_DBL *analysisBuffer,
494
    int no_channels, /*!< Number channels of analysis filter */
495
    const FIXP_PFT *p_filter, int p_stride, /*!< Stride of analysis filter    */
496
10.8M
    FIXP_QAS *RESTRICT pFilterStates) {
497
10.8M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
498
10.8M
  int p, k;
499
500
696M
  for (k = 0; k < 2 * no_channels; k++) {
501
686M
    FIXP_DBL accu = (FIXP_DBL)0;
502
503
686M
    p_flt += QMF_NO_POLY * (p_stride - 1);
504
505
    /*
506
      Perform FIR-Filter
507
    */
508
4.11G
    for (p = 0; p < QMF_NO_POLY; p++) {
509
3.43G
      accu += fMultDiv2(*p_flt++, pFilterStates[2 * no_channels * p]);
510
3.43G
    }
511
686M
    analysisBuffer[2 * no_channels - 1 - k] = (accu << 1);
512
686M
    pFilterStates++;
513
686M
  }
514
10.8M
}
Unexecuted instantiation: qmf.cpp:qmfAnaPrototypeFirSlot_NonSymmetric(int*, int, short const*, int, short*)
qmf.cpp:qmfAnaPrototypeFirSlot_NonSymmetric(int*, int, short const*, int, int*)
Line
Count
Source
496
10.8M
    FIXP_QAS *RESTRICT pFilterStates) {
497
10.8M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
498
10.8M
  int p, k;
499
500
696M
  for (k = 0; k < 2 * no_channels; k++) {
501
686M
    FIXP_DBL accu = (FIXP_DBL)0;
502
503
686M
    p_flt += QMF_NO_POLY * (p_stride - 1);
504
505
    /*
506
      Perform FIR-Filter
507
    */
508
4.11G
    for (p = 0; p < QMF_NO_POLY; p++) {
509
3.43G
      accu += fMultDiv2(*p_flt++, pFilterStates[2 * no_channels * p]);
510
3.43G
    }
511
686M
    analysisBuffer[2 * no_channels - 1 - k] = (accu << 1);
512
686M
    pFilterStates++;
513
686M
  }
514
10.8M
}
515
#endif /* FUNCTION_qmfAnaPrototypeFirSlot_NonSymmetric */
516
517
/*
518
 * \brief Perform one QMF slot analysis of the time domain data of timeIn
519
 *        with specified stride and stores the real part of the subband
520
 *        samples in rSubband, and the imaginary part in iSubband
521
 *
522
 *        Note: anaQmf->lsb can be greater than anaQmf->no_channels in case
523
 *        of implicit resampling (USAC with reduced 3/4 core frame length).
524
 */
525
void qmfAnalysisFilteringSlot(
526
    HANDLE_QMF_FILTER_BANK anaQmf,        /*!< Handle of Qmf Synthesis Bank  */
527
    FIXP_DBL *qmfReal,                    /*!< Low and High band, real */
528
    FIXP_DBL *qmfImag,                    /*!< Low and High band, imag */
529
    const INT_PCM_QMFIN *RESTRICT timeIn, /*!< Pointer to input */
530
    const int stride,                     /*!< stride factor of input */
531
    FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */
532
70.6M
) {
533
70.6M
  int offset = anaQmf->no_channels * (QMF_NO_POLY * 2 - 1);
534
  /*
535
    Feed time signal into oldest anaQmf->no_channels states
536
  */
537
70.6M
  {
538
70.6M
    FIXP_QAS *FilterStatesAnaTmp = ((FIXP_QAS *)anaQmf->FilterStates) + offset;
539
540
    /* Feed and scale actual time in slot */
541
1.02G
    for (int i = anaQmf->no_channels >> 1; i != 0; i--) {
542
      /* Place INT_PCM value left aligned in scaledTimeIn */
543
958M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
544
958M
      timeIn += stride;
545
958M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
546
958M
      timeIn += stride;
547
958M
    }
548
70.6M
  }
549
550
70.6M
  if (anaQmf->flags & QMF_FLAG_NONSYMMETRIC) {
551
10.8M
    qmfAnaPrototypeFirSlot_NonSymmetric(pWorkBuffer, anaQmf->no_channels,
552
10.8M
                                        anaQmf->p_filter, anaQmf->p_stride,
553
10.8M
                                        (FIXP_QAS *)anaQmf->FilterStates);
554
59.8M
  } else {
555
59.8M
    qmfAnaPrototypeFirSlot(pWorkBuffer, anaQmf->no_channels, anaQmf->p_filter,
556
59.8M
                           anaQmf->p_stride, (FIXP_QAS *)anaQmf->FilterStates);
557
59.8M
  }
558
559
70.6M
  if (anaQmf->flags & QMF_FLAG_LP) {
560
20.2M
    if (anaQmf->flags & QMF_FLAG_CLDFB)
561
10.0M
      qmfForwardModulationLP_odd(anaQmf, pWorkBuffer, qmfReal);
562
10.1M
    else
563
10.1M
      qmfForwardModulationLP_even(anaQmf, pWorkBuffer, qmfReal);
564
565
50.4M
  } else {
566
50.4M
    qmfForwardModulationHQ(anaQmf, pWorkBuffer, qmfReal, qmfImag);
567
50.4M
  }
568
  /*
569
    Shift filter states
570
571
    Should be realized with modulo addressing on a DSP instead of a true buffer
572
    shift
573
  */
574
70.6M
  FDKmemmove(anaQmf->FilterStates,
575
70.6M
             (FIXP_QAS *)anaQmf->FilterStates + anaQmf->no_channels,
576
70.6M
             offset * sizeof(FIXP_QAS));
577
70.6M
}
Unexecuted instantiation: qmfAnalysisFilteringSlot(QMF_FILTER_BANK*, int*, int*, short const*, int, int*)
qmfAnalysisFilteringSlot(QMF_FILTER_BANK*, int*, int*, int const*, int, int*)
Line
Count
Source
532
70.6M
) {
533
70.6M
  int offset = anaQmf->no_channels * (QMF_NO_POLY * 2 - 1);
534
  /*
535
    Feed time signal into oldest anaQmf->no_channels states
536
  */
537
70.6M
  {
538
70.6M
    FIXP_QAS *FilterStatesAnaTmp = ((FIXP_QAS *)anaQmf->FilterStates) + offset;
539
540
    /* Feed and scale actual time in slot */
541
1.02G
    for (int i = anaQmf->no_channels >> 1; i != 0; i--) {
542
      /* Place INT_PCM value left aligned in scaledTimeIn */
543
958M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
544
958M
      timeIn += stride;
545
958M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
546
958M
      timeIn += stride;
547
958M
    }
548
70.6M
  }
549
550
70.6M
  if (anaQmf->flags & QMF_FLAG_NONSYMMETRIC) {
551
10.8M
    qmfAnaPrototypeFirSlot_NonSymmetric(pWorkBuffer, anaQmf->no_channels,
552
10.8M
                                        anaQmf->p_filter, anaQmf->p_stride,
553
10.8M
                                        (FIXP_QAS *)anaQmf->FilterStates);
554
59.8M
  } else {
555
59.8M
    qmfAnaPrototypeFirSlot(pWorkBuffer, anaQmf->no_channels, anaQmf->p_filter,
556
59.8M
                           anaQmf->p_stride, (FIXP_QAS *)anaQmf->FilterStates);
557
59.8M
  }
558
559
70.6M
  if (anaQmf->flags & QMF_FLAG_LP) {
560
20.2M
    if (anaQmf->flags & QMF_FLAG_CLDFB)
561
10.0M
      qmfForwardModulationLP_odd(anaQmf, pWorkBuffer, qmfReal);
562
10.1M
    else
563
10.1M
      qmfForwardModulationLP_even(anaQmf, pWorkBuffer, qmfReal);
564
565
50.4M
  } else {
566
50.4M
    qmfForwardModulationHQ(anaQmf, pWorkBuffer, qmfReal, qmfImag);
567
50.4M
  }
568
  /*
569
    Shift filter states
570
571
    Should be realized with modulo addressing on a DSP instead of a true buffer
572
    shift
573
  */
574
70.6M
  FDKmemmove(anaQmf->FilterStates,
575
70.6M
             (FIXP_QAS *)anaQmf->FilterStates + anaQmf->no_channels,
576
70.6M
             offset * sizeof(FIXP_QAS));
577
70.6M
}
578
579
/*!
580
 *
581
 * \brief Perform complex-valued subband filtering of the time domain
582
 *        data of timeIn and stores the real part of the subband
583
 *        samples in rAnalysis, and the imaginary part in iAnalysis
584
 * The qmf coefficient table is symmetric. The symmetry is expoited by
585
 * shrinking the coefficient table to half the size. The addressing mode
586
 * takes care of the symmetries.
587
 *
588
 *
589
 * \sa PolyphaseFiltering
590
 */
591
void qmfAnalysisFiltering(
592
    HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank */
593
    FIXP_DBL **qmfReal,            /*!< Pointer to real subband slots */
594
    FIXP_DBL **qmfImag,            /*!< Pointer to imag subband slots */
595
    QMF_SCALE_FACTOR *scaleFactor,
596
    const INT_PCM_QMFIN *timeIn, /*!< Time signal */
597
    const int timeIn_e, const int stride,
598
    FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */
599
2.39M
) {
600
2.39M
  int i;
601
2.39M
  int no_channels = anaQmf->no_channels;
602
603
2.39M
  scaleFactor->lb_scale =
604
2.39M
      -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK - timeIn_e;
605
2.39M
  scaleFactor->lb_scale -= anaQmf->filterScale;
606
607
68.8M
  for (i = 0; i < anaQmf->no_col; i++) {
608
66.4M
    FIXP_DBL *qmfImagSlot = NULL;
609
610
66.4M
    if (!(anaQmf->flags & QMF_FLAG_LP)) {
611
46.2M
      qmfImagSlot = qmfImag[i];
612
46.2M
    }
613
614
66.4M
    qmfAnalysisFilteringSlot(anaQmf, qmfReal[i], qmfImagSlot, timeIn, stride,
615
66.4M
                             pWorkBuffer);
616
617
66.4M
    timeIn += no_channels * stride;
618
619
66.4M
  } /* no_col loop  i  */
620
2.39M
}
Unexecuted instantiation: qmfAnalysisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR*, short const*, int, int, int*)
qmfAnalysisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR*, int const*, int, int, int*)
Line
Count
Source
599
2.39M
) {
600
2.39M
  int i;
601
2.39M
  int no_channels = anaQmf->no_channels;
602
603
2.39M
  scaleFactor->lb_scale =
604
2.39M
      -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK - timeIn_e;
605
2.39M
  scaleFactor->lb_scale -= anaQmf->filterScale;
606
607
68.8M
  for (i = 0; i < anaQmf->no_col; i++) {
608
66.4M
    FIXP_DBL *qmfImagSlot = NULL;
609
610
66.4M
    if (!(anaQmf->flags & QMF_FLAG_LP)) {
611
46.2M
      qmfImagSlot = qmfImag[i];
612
46.2M
    }
613
614
66.4M
    qmfAnalysisFilteringSlot(anaQmf, qmfReal[i], qmfImagSlot, timeIn, stride,
615
66.4M
                             pWorkBuffer);
616
617
66.4M
    timeIn += no_channels * stride;
618
619
66.4M
  } /* no_col loop  i  */
620
2.39M
}
621
#endif /* QMF_PCM_H */