Coverage Report

Created: 2025-11-16 07:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ffmpeg/libavcodec/alsdec.c
Line
Count
Source
1
/*
2
 * MPEG-4 ALS decoder
3
 * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * MPEG-4 ALS decoder
25
 * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26
 */
27
28
#include <inttypes.h>
29
30
#include "avcodec.h"
31
#include "get_bits.h"
32
#include "unary.h"
33
#include "mpeg4audio.h"
34
#include "bgmc.h"
35
#include "bswapdsp.h"
36
#include "codec_internal.h"
37
#include "decode.h"
38
#include "internal.h"
39
#include "mlz.h"
40
#include "libavutil/mem.h"
41
#include "libavutil/opt.h"
42
#include "libavutil/samplefmt.h"
43
#include "libavutil/crc.h"
44
#include "libavutil/softfloat_ieee754.h"
45
#include "libavutil/intreadwrite.h"
46
47
#include <stdint.h>
48
49
/** Rice parameters and corresponding index offsets for decoding the
50
 *  indices of scaled PARCOR values. The table chosen is set globally
51
 *  by the encoder and stored in ALSSpecificConfig.
52
 */
53
static const int8_t parcor_rice_table[3][20][2] = {
54
    { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
55
      { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
56
      { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
57
      {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
58
    { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
59
      { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
60
      {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
61
      {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
62
    { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
63
      { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
64
      {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
65
      {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
66
};
67
68
69
/** Scaled PARCOR values used for the first two PARCOR coefficients.
70
 *  To be indexed by the Rice coded indices.
71
 *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
72
 *  Actual values are divided by 32 in order to be stored in 16 bits.
73
 */
74
static const int16_t parcor_scaled_values[] = {
75
    -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
76
    -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
77
    -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
78
    -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
79
    -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
80
     -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
81
     -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
82
     -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
83
     -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
84
     -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
85
     -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
86
     -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
87
     -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
88
     -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
89
     -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
90
     -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
91
     -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
92
     -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
93
     -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
94
     -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
95
     -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
96
     -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
97
      -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
98
       46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
99
      143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
100
      244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
101
      349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
102
      458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
103
      571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
104
      688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
105
      810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
106
      935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
107
};
108
109
110
/** Gain values of p(0) for long-term prediction.
111
 *  To be indexed by the Rice coded indices.
112
 */
113
static const uint8_t ltp_gain_values [4][4] = {
114
    { 0,  8, 16,  24},
115
    {32, 40, 48,  56},
116
    {64, 70, 76,  82},
117
    {88, 92, 96, 100}
118
};
119
120
121
/** Inter-channel weighting factors for multi-channel correlation.
122
 *  To be indexed by the Rice coded indices.
123
 */
124
static const int16_t mcc_weightings[] = {
125
    204,  192,  179,  166,  153,  140,  128,  115,
126
    102,   89,   76,   64,   51,   38,   25,   12,
127
      0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
128
   -102, -115, -128, -140, -153, -166, -179, -192
129
};
130
131
132
/** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
133
 */
134
static const uint8_t tail_code[16][6] = {
135
    { 74, 44, 25, 13,  7, 3},
136
    { 68, 42, 24, 13,  7, 3},
137
    { 58, 39, 23, 13,  7, 3},
138
    {126, 70, 37, 19, 10, 5},
139
    {132, 70, 37, 20, 10, 5},
140
    {124, 70, 38, 20, 10, 5},
141
    {120, 69, 37, 20, 11, 5},
142
    {116, 67, 37, 20, 11, 5},
143
    {108, 66, 36, 20, 10, 5},
144
    {102, 62, 36, 20, 10, 5},
145
    { 88, 58, 34, 19, 10, 5},
146
    {162, 89, 49, 25, 13, 7},
147
    {156, 87, 49, 26, 14, 7},
148
    {150, 86, 47, 26, 14, 7},
149
    {142, 84, 47, 26, 14, 7},
150
    {131, 79, 46, 26, 14, 7}
151
};
152
153
154
enum RA_Flag {
155
    RA_FLAG_NONE,
156
    RA_FLAG_FRAMES,
157
    RA_FLAG_HEADER
158
};
159
160
161
typedef struct ALSSpecificConfig {
162
    uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
163
    int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
164
    int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
165
    int msb_first;            ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
166
    int frame_length;         ///< frame length for each frame (last frame may differ)
167
    int ra_distance;          ///< distance between RA frames (in frames, 0...255)
168
    enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
169
    int adapt_order;          ///< adaptive order: 1 = on, 0 = off
170
    int coef_table;           ///< table index of Rice code parameters
171
    int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
172
    int max_order;            ///< maximum prediction order (0..1023)
173
    int block_switching;      ///< number of block switching levels
174
    int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
175
    int sb_part;              ///< sub-block partition
176
    int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
177
    int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
178
    int chan_config;          ///< indicates that a chan_config_info field is present
179
    int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
180
    int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
181
    int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
182
    int *chan_pos;            ///< original channel positions
183
    int crc_enabled;          ///< enable Cyclic Redundancy Checksum
184
} ALSSpecificConfig;
185
186
187
typedef struct ALSChannelData {
188
    int stop_flag;
189
    int master_channel;
190
    int time_diff_flag;
191
    int time_diff_sign;
192
    int time_diff_index;
193
    int weighting[6];
194
} ALSChannelData;
195
196
197
typedef struct ALSDecContext {
198
    AVClass        *av_class;
199
    AVCodecContext *avctx;
200
    ALSSpecificConfig sconf;
201
    GetBitContext gb;
202
    BswapDSPContext bdsp;
203
    const AVCRC *crc_table;
204
    uint32_t crc_org;               ///< CRC value of the original input data
205
    uint32_t crc;                   ///< CRC value calculated from decoded data
206
    unsigned int cur_frame_length;  ///< length of the current frame to decode
207
    unsigned int frame_id;          ///< the frame ID / number of the current frame
208
    unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
209
    unsigned int cs_switch;         ///< if true, channel rearrangement is done
210
    unsigned int num_blocks;        ///< number of blocks used in the current frame
211
    unsigned int s_max;             ///< maximum Rice parameter allowed in entropy coding
212
    uint8_t *bgmc_lut;              ///< pointer at lookup tables used for BGMC
213
    int *bgmc_lut_status;           ///< pointer at lookup table status flags used for BGMC
214
    int ltp_lag_length;             ///< number of bits used for ltp lag value
215
    int *const_block;               ///< contains const_block flags for all channels
216
    unsigned int *shift_lsbs;       ///< contains shift_lsbs flags for all channels
217
    unsigned int *opt_order;        ///< contains opt_order flags for all channels
218
    int *store_prev_samples;        ///< contains store_prev_samples flags for all channels
219
    int *use_ltp;                   ///< contains use_ltp flags for all channels
220
    int *ltp_lag;                   ///< contains ltp lag values for all channels
221
    int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
222
    int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
223
    int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
224
    int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
225
    int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
226
    int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
227
    int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed version of lpc_cof_buffer
228
    ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
229
    ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
230
    int *reverted_channels;         ///< stores a flag for each reverted channel
231
    int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
232
    int32_t **raw_samples;          ///< decoded raw samples for each channel
233
    int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
234
    uint8_t *crc_buffer;            ///< buffer of byte order corrected samples used for CRC check
235
    MLZ* mlz;                       ///< masked lz decompression structure
236
    SoftFloat_IEEE754 *acf;         ///< contains common multiplier for all channels
237
    int *last_acf_mantissa;         ///< contains the last acf mantissa data of common multiplier for all channels
238
    int *shift_value;               ///< value by which the binary point is to be shifted for all channels
239
    int *last_shift_value;          ///< contains last shift value for all channels
240
    int **raw_mantissa;             ///< decoded mantissa bits of the difference signal
241
    unsigned char *larray;          ///< buffer to store the output of masked lz decompression
242
    int *nbits;                     ///< contains the number of bits to read for masked lz decompression for all samples
243
    int highest_decoded_channel;
244
    int user_max_order;             ///< user specified maximum prediction order
245
} ALSDecContext;
246
247
248
typedef struct ALSBlockData {
249
    unsigned int block_length;      ///< number of samples within the block
250
    unsigned int ra_block;          ///< if true, this is a random access block
251
    int          *const_block;      ///< if true, this is a constant value block
252
    int          js_blocks;         ///< true if this block contains a difference signal
253
    unsigned int *shift_lsbs;       ///< shift of values for this block
254
    unsigned int *opt_order;        ///< prediction order of this block
255
    int          *store_prev_samples;///< if true, carryover samples have to be stored
256
    int          *use_ltp;          ///< if true, long-term prediction is used
257
    int          *ltp_lag;          ///< lag value for long-term prediction
258
    int          *ltp_gain;         ///< gain values for ltp 5-tap filter
259
    int32_t      *quant_cof;        ///< quantized parcor coefficients
260
    int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
261
    int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
262
    int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
263
    int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
264
} ALSBlockData;
265
266
267
static av_cold void dprint_specific_config(ALSDecContext *ctx)
268
1.56k
{
269
#ifdef DEBUG
270
    AVCodecContext *avctx    = ctx->avctx;
271
    ALSSpecificConfig *sconf = &ctx->sconf;
272
273
    ff_dlog(avctx, "resolution = %i\n",           sconf->resolution);
274
    ff_dlog(avctx, "floating = %i\n",             sconf->floating);
275
    ff_dlog(avctx, "frame_length = %i\n",         sconf->frame_length);
276
    ff_dlog(avctx, "ra_distance = %i\n",          sconf->ra_distance);
277
    ff_dlog(avctx, "ra_flag = %i\n",              sconf->ra_flag);
278
    ff_dlog(avctx, "adapt_order = %i\n",          sconf->adapt_order);
279
    ff_dlog(avctx, "coef_table = %i\n",           sconf->coef_table);
280
    ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
281
    ff_dlog(avctx, "max_order = %i\n",            sconf->max_order);
282
    ff_dlog(avctx, "block_switching = %i\n",      sconf->block_switching);
283
    ff_dlog(avctx, "bgmc = %i\n",                 sconf->bgmc);
284
    ff_dlog(avctx, "sb_part = %i\n",              sconf->sb_part);
285
    ff_dlog(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
286
    ff_dlog(avctx, "mc_coding = %i\n",            sconf->mc_coding);
287
    ff_dlog(avctx, "chan_config = %i\n",          sconf->chan_config);
288
    ff_dlog(avctx, "chan_sort = %i\n",            sconf->chan_sort);
289
    ff_dlog(avctx, "RLSLMS = %i\n",               sconf->rlslms);
290
    ff_dlog(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
291
#endif
292
1.56k
}
293
294
295
/** Read an ALSSpecificConfig from a buffer into the output struct.
296
 */
297
static av_cold int read_specific_config(ALSDecContext *ctx)
298
2.20k
{
299
2.20k
    GetBitContext gb;
300
2.20k
    uint64_t ht_size;
301
2.20k
    int i, config_offset;
302
2.20k
    MPEG4AudioConfig m4ac = {0};
303
2.20k
    ALSSpecificConfig *sconf = &ctx->sconf;
304
2.20k
    AVCodecContext *avctx    = ctx->avctx;
305
2.20k
    uint32_t als_id, header_size, trailer_size;
306
2.20k
    int ret;
307
308
2.20k
    if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
309
0
        return ret;
310
311
2.20k
    config_offset = avpriv_mpeg4audio_get_config2(&m4ac, avctx->extradata,
312
2.20k
                                                  avctx->extradata_size, 1, avctx);
313
314
2.20k
    if (config_offset < 0)
315
97
        return AVERROR_INVALIDDATA;
316
317
2.11k
    skip_bits_long(&gb, config_offset);
318
319
2.11k
    if (get_bits_left(&gb) < (30 << 3))
320
107
        return AVERROR_INVALIDDATA;
321
322
    // read the fixed items
323
2.00k
    als_id                      = get_bits_long(&gb, 32);
324
2.00k
    avctx->sample_rate          = m4ac.sample_rate;
325
2.00k
    skip_bits_long(&gb, 32); // sample rate already known
326
2.00k
    sconf->samples              = get_bits_long(&gb, 32);
327
328
2.00k
    if (avctx->ch_layout.nb_channels != m4ac.channels) {
329
1.88k
        av_channel_layout_uninit(&avctx->ch_layout);
330
1.88k
        avctx->ch_layout.order = AV_CHANNEL_ORDER_UNSPEC;
331
1.88k
        avctx->ch_layout.nb_channels = m4ac.channels;
332
1.88k
    }
333
334
2.00k
    skip_bits(&gb, 16);      // number of channels already known
335
2.00k
    skip_bits(&gb, 3);       // skip file_type
336
2.00k
    sconf->resolution           = get_bits(&gb, 3);
337
2.00k
    sconf->floating             = get_bits1(&gb);
338
2.00k
    sconf->msb_first            = get_bits1(&gb);
339
2.00k
    sconf->frame_length         = get_bits(&gb, 16) + 1;
340
2.00k
    sconf->ra_distance          = get_bits(&gb, 8);
341
2.00k
    sconf->ra_flag              = get_bits(&gb, 2);
342
2.00k
    sconf->adapt_order          = get_bits1(&gb);
343
2.00k
    sconf->coef_table           = get_bits(&gb, 2);
344
2.00k
    sconf->long_term_prediction = get_bits1(&gb);
345
2.00k
    sconf->max_order            = get_bits(&gb, 10);
346
2.00k
    sconf->block_switching      = get_bits(&gb, 2);
347
2.00k
    sconf->bgmc                 = get_bits1(&gb);
348
2.00k
    sconf->sb_part              = get_bits1(&gb);
349
2.00k
    sconf->joint_stereo         = get_bits1(&gb);
350
2.00k
    sconf->mc_coding            = get_bits1(&gb);
351
2.00k
    sconf->chan_config          = get_bits1(&gb);
352
2.00k
    sconf->chan_sort            = get_bits1(&gb);
353
2.00k
    sconf->crc_enabled          = get_bits1(&gb);
354
2.00k
    sconf->rlslms               = get_bits1(&gb);
355
2.00k
    skip_bits(&gb, 5);       // skip 5 reserved bits
356
2.00k
    skip_bits1(&gb);         // skip aux_data_enabled
357
358
2.00k
    if (sconf->max_order > ctx->user_max_order) {
359
278
        av_log(avctx, AV_LOG_ERROR, "order %d exceeds specified max %d\n", sconf->max_order, ctx->user_max_order);
360
278
        return AVERROR_INVALIDDATA;
361
278
    }
362
363
364
    // check for ALSSpecificConfig struct
365
1.72k
    if (als_id != MKBETAG('A','L','S','\0'))
366
85
        return AVERROR_INVALIDDATA;
367
368
1.64k
    if (avctx->ch_layout.nb_channels > FF_SANE_NB_CHANNELS) {
369
1
        avpriv_request_sample(avctx, "Huge number of channels");
370
1
        return AVERROR_PATCHWELCOME;
371
1
    }
372
373
1.64k
    if (avctx->ch_layout.nb_channels == 0)
374
2
        return AVERROR_INVALIDDATA;
375
376
1.63k
    ctx->cur_frame_length = sconf->frame_length;
377
378
    // read channel config
379
1.63k
    if (sconf->chan_config)
380
481
        sconf->chan_config_info = get_bits(&gb, 16);
381
    // TODO: use this to set avctx->channel_layout
382
383
384
    // read channel sorting
385
1.63k
    if (sconf->chan_sort && avctx->ch_layout.nb_channels > 1) {
386
60
        int chan_pos_bits = av_ceil_log2(avctx->ch_layout.nb_channels);
387
60
        int bits_needed  = avctx->ch_layout.nb_channels * chan_pos_bits + 7;
388
60
        if (get_bits_left(&gb) < bits_needed)
389
3
            return AVERROR_INVALIDDATA;
390
391
57
        if (!(sconf->chan_pos = av_malloc_array(avctx->ch_layout.nb_channels, sizeof(*sconf->chan_pos))))
392
0
            return AVERROR(ENOMEM);
393
394
57
        ctx->cs_switch = 1;
395
396
2.64k
        for (i = 0; i < avctx->ch_layout.nb_channels; i++) {
397
2.58k
            sconf->chan_pos[i] = -1;
398
2.58k
        }
399
400
311
        for (i = 0; i < avctx->ch_layout.nb_channels; i++) {
401
275
            int idx;
402
403
275
            idx = get_bits(&gb, chan_pos_bits);
404
275
            if (idx >= avctx->ch_layout.nb_channels || sconf->chan_pos[idx] != -1) {
405
21
                av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
406
21
                ctx->cs_switch = 0;
407
21
                break;
408
21
            }
409
254
            sconf->chan_pos[idx] = i;
410
254
        }
411
412
57
        align_get_bits(&gb);
413
57
    }
414
415
416
    // read fixed header and trailer sizes,
417
    // if size = 0xFFFFFFFF then there is no data field!
418
1.63k
    if (get_bits_left(&gb) < 64)
419
5
        return AVERROR_INVALIDDATA;
420
421
1.63k
    header_size  = get_bits_long(&gb, 32);
422
1.63k
    trailer_size = get_bits_long(&gb, 32);
423
1.63k
    if (header_size  == 0xFFFFFFFF)
424
23
        header_size  = 0;
425
1.63k
    if (trailer_size == 0xFFFFFFFF)
426
23
        trailer_size = 0;
427
428
1.63k
    ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
429
430
431
    // skip the header and trailer data
432
1.63k
    if (get_bits_left(&gb) < ht_size)
433
64
        return AVERROR_INVALIDDATA;
434
435
1.56k
    if (ht_size > INT32_MAX)
436
0
        return AVERROR_PATCHWELCOME;
437
438
1.56k
    skip_bits_long(&gb, ht_size);
439
440
441
    // initialize CRC calculation
442
1.56k
    if (sconf->crc_enabled) {
443
301
        if (get_bits_left(&gb) < 32)
444
4
            return AVERROR_INVALIDDATA;
445
446
297
        if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
447
249
            ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
448
249
            ctx->crc       = 0xFFFFFFFF;
449
249
            ctx->crc_org   = ~get_bits_long(&gb, 32);
450
249
        } else
451
48
            skip_bits_long(&gb, 32);
452
297
    }
453
454
455
    // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
456
457
1.56k
    dprint_specific_config(ctx);
458
459
1.56k
    return 0;
460
1.56k
}
461
462
463
/** Check the ALSSpecificConfig for unsupported features.
464
 */
465
static int check_specific_config(ALSDecContext *ctx)
466
1.56k
{
467
1.56k
    ALSSpecificConfig *sconf = &ctx->sconf;
468
1.56k
    int error = 0;
469
470
    // report unsupported feature and set error value
471
1.56k
    #define MISSING_ERR(cond, str, errval)              \
472
1.56k
    {                                                   \
473
1.56k
        if (cond) {                                     \
474
3
            avpriv_report_missing_feature(ctx->avctx,   \
475
3
                                          str);         \
476
3
            error = errval;                             \
477
3
        }                                               \
478
1.56k
    }
479
480
1.56k
    MISSING_ERR(sconf->rlslms,    "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
481
482
1.56k
    return error;
483
1.56k
}
484
485
486
/** Parse the bs_info field to extract the block partitioning used in
487
 *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
488
 */
489
static void parse_bs_info(const uint32_t bs_info, unsigned int n,
490
                          unsigned int div, unsigned int **div_blocks,
491
                          unsigned int *num_blocks)
492
1.01M
{
493
1.01M
    if (n < 31 && ((bs_info << n) & 0x40000000)) {
494
        // if the level is valid and the investigated bit n is set
495
        // then recursively check both children at bits (2n+1) and (2n+2)
496
55.4k
        n   *= 2;
497
55.4k
        div += 1;
498
55.4k
        parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
499
55.4k
        parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
500
963k
    } else {
501
        // else the bit is not set or the last level has been reached
502
        // (bit implicitly not set)
503
963k
        **div_blocks = div;
504
963k
        (*div_blocks)++;
505
963k
        (*num_blocks)++;
506
963k
    }
507
1.01M
}
508
509
510
/** Read and decode a Rice codeword.
511
 */
512
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
513
46.5M
{
514
46.5M
    int max = get_bits_left(gb) - k;
515
46.5M
    unsigned q = get_unary(gb, 0, max);
516
46.5M
    int r   = k ? get_bits1(gb) : !(q & 1);
517
518
46.5M
    if (k > 1) {
519
41.7M
        q <<= (k - 1);
520
41.7M
        q  += get_bits_long(gb, k - 1);
521
41.7M
    } else if (!k) {
522
589k
        q >>= 1;
523
589k
    }
524
46.5M
    return r ? q : ~q;
525
46.5M
}
526
527
528
/** Convert PARCOR coefficient k to direct filter coefficient.
529
 */
530
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
531
192k
{
532
192k
    int i, j;
533
534
351k
    for (i = 0, j = k - 1; i < j; i++, j--) {
535
158k
        unsigned tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
536
158k
        cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
537
158k
        cof[i]  += tmp1;
538
158k
    }
539
192k
    if (i == j)
540
76.8k
        cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
541
542
192k
    cof[k] = par[k];
543
192k
}
544
545
546
/** Read block switching field if necessary and set actual block sizes.
547
 *  Also assure that the block sizes of the last frame correspond to the
548
 *  actual number of samples.
549
 */
550
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
551
                            uint32_t *bs_info)
552
908k
{
553
908k
    ALSSpecificConfig *sconf     = &ctx->sconf;
554
908k
    GetBitContext *gb            = &ctx->gb;
555
908k
    unsigned int *ptr_div_blocks = div_blocks;
556
908k
    unsigned int b;
557
558
908k
    if (sconf->block_switching) {
559
19.1k
        unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
560
19.1k
        *bs_info = get_bits_long(gb, bs_info_len);
561
19.1k
        *bs_info <<= (32 - bs_info_len);
562
19.1k
    }
563
564
908k
    ctx->num_blocks = 0;
565
908k
    parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
566
567
    // The last frame may have an overdetermined block structure given in
568
    // the bitstream. In that case the defined block structure would need
569
    // more samples than available to be consistent.
570
    // The block structure is actually used but the block sizes are adapted
571
    // to fit the actual number of available samples.
572
    // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
573
    // This results in the actual block sizes:    2 2 1 0.
574
    // This is not specified in 14496-3 but actually done by the reference
575
    // codec RM22 revision 2.
576
    // This appears to happen in case of an odd number of samples in the last
577
    // frame which is actually not allowed by the block length switching part
578
    // of 14496-3.
579
    // The ALS conformance files feature an odd number of samples in the last
580
    // frame.
581
582
1.87M
    for (b = 0; b < ctx->num_blocks; b++)
583
963k
        div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
584
585
908k
    if (ctx->cur_frame_length != ctx->sconf.frame_length) {
586
58.2k
        unsigned int remaining = ctx->cur_frame_length;
587
588
68.8k
        for (b = 0; b < ctx->num_blocks; b++) {
589
68.1k
            if (remaining <= div_blocks[b]) {
590
57.5k
                div_blocks[b] = remaining;
591
57.5k
                ctx->num_blocks = b + 1;
592
57.5k
                break;
593
57.5k
            }
594
595
10.6k
            remaining -= div_blocks[b];
596
10.6k
        }
597
58.2k
    }
598
908k
}
599
600
601
/** Read the block data for a constant block
602
 */
603
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
604
829k
{
605
829k
    ALSSpecificConfig *sconf = &ctx->sconf;
606
829k
    AVCodecContext *avctx    = ctx->avctx;
607
829k
    GetBitContext *gb        = &ctx->gb;
608
609
829k
    if (bd->block_length <= 0)
610
984
        return AVERROR_INVALIDDATA;
611
612
828k
    *bd->raw_samples = 0;
613
828k
    *bd->const_block = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
614
828k
    bd->js_blocks    = get_bits1(gb);
615
616
    // skip 5 reserved bits
617
828k
    skip_bits(gb, 5);
618
619
828k
    if (*bd->const_block) {
620
111k
        unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
621
111k
        *bd->raw_samples = get_sbits_long(gb, const_val_bits);
622
111k
    }
623
624
    // ensure constant block decoding by reusing this field
625
828k
    *bd->const_block = 1;
626
627
828k
    return 0;
628
829k
}
629
630
631
/** Decode the block data for a constant block
632
 */
633
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
634
760k
{
635
760k
    int      smp = bd->block_length - 1;
636
760k
    int32_t  val = *bd->raw_samples;
637
760k
    int32_t *dst = bd->raw_samples + 1;
638
639
    // write raw samples into buffer
640
735M
    for (; smp; smp--)
641
734M
        *dst++ = val;
642
760k
}
643
644
645
/** Read the block data for a non-constant block
646
 */
647
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
648
290k
{
649
290k
    ALSSpecificConfig *sconf = &ctx->sconf;
650
290k
    AVCodecContext *avctx    = ctx->avctx;
651
290k
    GetBitContext *gb        = &ctx->gb;
652
290k
    unsigned int k;
653
290k
    unsigned int s[8];
654
290k
    unsigned int sx[8];
655
290k
    unsigned int sub_blocks, log2_sub_blocks, sb_length;
656
290k
    unsigned int start      = 0;
657
290k
    unsigned int opt_order;
658
290k
    int          sb;
659
290k
    int32_t      *quant_cof = bd->quant_cof;
660
290k
    int32_t      *current_res;
661
662
663
    // ensure variable block decoding by reusing this field
664
290k
    *bd->const_block = 0;
665
666
290k
    *bd->opt_order  = 1;
667
290k
    bd->js_blocks   = get_bits1(gb);
668
669
290k
    opt_order       = *bd->opt_order;
670
671
    // determine the number of subblocks for entropy decoding
672
290k
    if (!sconf->bgmc && !sconf->sb_part) {
673
261k
        log2_sub_blocks = 0;
674
261k
    } else {
675
29.2k
        if (sconf->bgmc && sconf->sb_part)
676
1.49k
            log2_sub_blocks = get_bits(gb, 2);
677
27.7k
        else
678
27.7k
            log2_sub_blocks = 2 * get_bits1(gb);
679
29.2k
    }
680
681
290k
    sub_blocks = 1 << log2_sub_blocks;
682
683
    // do not continue in case of a damaged stream since
684
    // block_length must be evenly divisible by sub_blocks
685
290k
    if (bd->block_length & (sub_blocks - 1) || bd->block_length <= 0) {
686
2.74k
        av_log(avctx, AV_LOG_WARNING,
687
2.74k
               "Block length is not evenly divisible by the number of subblocks.\n");
688
2.74k
        return AVERROR_INVALIDDATA;
689
2.74k
    }
690
691
288k
    sb_length = bd->block_length >> log2_sub_blocks;
692
693
288k
    if (sconf->bgmc) {
694
21.2k
        s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
695
63.8k
        for (k = 1; k < sub_blocks; k++)
696
42.6k
            s[k] = s[k - 1] + decode_rice(gb, 2);
697
698
85.1k
        for (k = 0; k < sub_blocks; k++) {
699
63.8k
            sx[k]   = s[k] & 0x0F;
700
63.8k
            s [k] >>= 4;
701
63.8k
        }
702
266k
    } else {
703
266k
        s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
704
279k
        for (k = 1; k < sub_blocks; k++)
705
12.3k
            s[k] = s[k - 1] + decode_rice(gb, 0);
706
266k
    }
707
341k
    for (k = 1; k < sub_blocks; k++)
708
54.1k
        if (s[k] > 32) {
709
520
            av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
710
520
            return AVERROR_INVALIDDATA;
711
520
        }
712
713
287k
    if (get_bits1(gb))
714
175k
        *bd->shift_lsbs = get_bits(gb, 4) + 1;
715
716
287k
    *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
717
718
719
287k
    if (!sconf->rlslms) {
720
287k
        if (sconf->adapt_order && sconf->max_order) {
721
4.67k
            int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
722
4.67k
                                                2, sconf->max_order + 1));
723
4.67k
            *bd->opt_order       = get_bits(gb, opt_order_length);
724
4.67k
            if (*bd->opt_order > sconf->max_order) {
725
428
                *bd->opt_order = sconf->max_order;
726
428
                av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
727
428
                return AVERROR_INVALIDDATA;
728
428
            }
729
282k
        } else {
730
282k
            *bd->opt_order = sconf->max_order;
731
282k
        }
732
287k
        opt_order = *bd->opt_order;
733
734
287k
        if (opt_order) {
735
44.8k
            int add_base;
736
737
44.8k
            if (sconf->coef_table == 3) {
738
39.3k
                add_base = 0x7F;
739
740
                // read coefficient 0
741
39.3k
                quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
742
743
                // read coefficient 1
744
39.3k
                if (opt_order > 1)
745
37.3k
                    quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
746
747
                // read coefficients 2 to opt_order
748
404k
                for (k = 2; k < opt_order; k++)
749
365k
                    quant_cof[k] = get_bits(gb, 7);
750
39.3k
            } else {
751
5.49k
                int k_max;
752
5.49k
                add_base = 1;
753
754
                // read coefficient 0 to 19
755
5.49k
                k_max = FFMIN(opt_order, 20);
756
19.3k
                for (k = 0; k < k_max; k++) {
757
15.4k
                    int rice_param = parcor_rice_table[sconf->coef_table][k][1];
758
15.4k
                    int offset     = parcor_rice_table[sconf->coef_table][k][0];
759
15.4k
                    quant_cof[k] = decode_rice(gb, rice_param) + offset;
760
15.4k
                    if (quant_cof[k] < -64 || quant_cof[k] > 63) {
761
1.68k
                        av_log(avctx, AV_LOG_ERROR,
762
1.68k
                               "quant_cof %"PRId32" is out of range.\n",
763
1.68k
                               quant_cof[k]);
764
1.68k
                        return AVERROR_INVALIDDATA;
765
1.68k
                    }
766
15.4k
                }
767
768
                // read coefficients 20 to 126
769
3.81k
                k_max = FFMIN(opt_order, 127);
770
3.81k
                for (; k < k_max; k++)
771
0
                    quant_cof[k] = decode_rice(gb, 2) + (k & 1);
772
773
                // read coefficients 127 to opt_order
774
3.81k
                for (; k < opt_order; k++)
775
0
                    quant_cof[k] = decode_rice(gb, 1);
776
777
3.81k
                quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
778
779
3.81k
                if (opt_order > 1)
780
2.84k
                    quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
781
3.81k
            }
782
783
414k
            for (k = 2; k < opt_order; k++)
784
371k
                quant_cof[k] = (quant_cof[k] * (1U << 14)) + (add_base << 13);
785
43.1k
        }
786
287k
    }
787
788
    // read LTP gain and lag values
789
285k
    if (sconf->long_term_prediction) {
790
14.0k
        *bd->use_ltp = get_bits1(gb);
791
792
14.0k
        if (*bd->use_ltp) {
793
8.96k
            int r, c;
794
795
8.96k
            bd->ltp_gain[0]   = decode_rice(gb, 1) * 8;
796
8.96k
            bd->ltp_gain[1]   = decode_rice(gb, 2) * 8;
797
798
8.96k
            r                 = get_unary(gb, 0, 4);
799
8.96k
            c                 = get_bits(gb, 2);
800
8.96k
            if (r >= 4) {
801
1.36k
                av_log(avctx, AV_LOG_ERROR, "r overflow\n");
802
1.36k
                return AVERROR_INVALIDDATA;
803
1.36k
            }
804
805
7.59k
            bd->ltp_gain[2]   = ltp_gain_values[r][c];
806
807
7.59k
            bd->ltp_gain[3]   = decode_rice(gb, 2) * 8;
808
7.59k
            bd->ltp_gain[4]   = decode_rice(gb, 1) * 8;
809
810
7.59k
            *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
811
7.59k
            *bd->ltp_lag     += FFMAX(4, opt_order + 1);
812
7.59k
        }
813
14.0k
    }
814
815
    // read first value and residuals in case of a random access block
816
284k
    if (bd->ra_block) {
817
82.8k
        start = FFMIN(opt_order, 3);
818
82.8k
        av_assert0(sb_length <= sconf->frame_length);
819
82.8k
        if (sb_length <= start) {
820
            // opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification
821
218
            av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n");
822
218
            return AVERROR_PATCHWELCOME;
823
218
        }
824
825
82.6k
        if (opt_order)
826
38.0k
            bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
827
82.6k
        if (opt_order > 1)
828
37.8k
            bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
829
82.6k
        if (opt_order > 2)
830
37.4k
            bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
831
82.6k
    }
832
833
    // read all residuals
834
283k
    if (sconf->bgmc) {
835
20.8k
        int          delta[8];
836
20.8k
        unsigned int k    [8];
837
20.8k
        unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
838
839
        // read most significant bits
840
20.8k
        unsigned int high;
841
20.8k
        unsigned int low;
842
20.8k
        unsigned int value;
843
844
20.8k
        int ret = ff_bgmc_decode_init(gb, &high, &low, &value);
845
20.8k
        if (ret < 0)
846
1.31k
            return ret;
847
848
19.5k
        current_res = bd->raw_samples + start;
849
850
74.2k
        for (sb = 0; sb < sub_blocks; sb++) {
851
54.9k
            unsigned int sb_len  = sb_length - (sb ? 0 : start);
852
853
54.9k
            k    [sb] = s[sb] > b ? s[sb] - b : 0;
854
54.9k
            delta[sb] = 5 - s[sb] + k[sb];
855
856
54.9k
            if (k[sb] >= 32)
857
217
                return AVERROR_INVALIDDATA;
858
859
54.7k
            ff_bgmc_decode(gb, sb_len, current_res,
860
54.7k
                        delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
861
862
54.7k
            current_res += sb_len;
863
54.7k
        }
864
865
19.3k
        ff_bgmc_decode_end(gb);
866
867
868
        // read least significant bits and tails
869
19.3k
        current_res = bd->raw_samples + start;
870
871
73.6k
        for (sb = 0; sb < sub_blocks; sb++, start = 0) {
872
54.3k
            unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
873
54.3k
            unsigned int cur_k         = k[sb];
874
54.3k
            unsigned int cur_s         = s[sb];
875
876
20.8M
            for (; start < sb_length; start++) {
877
20.8M
                int32_t res = *current_res;
878
879
20.8M
                if (res == cur_tail_code) {
880
591k
                    unsigned int max_msb =   (2 + (sx[sb] > 2) + (sx[sb] > 10))
881
591k
                                          << (5 - delta[sb]);
882
883
591k
                    res = decode_rice(gb, cur_s);
884
885
591k
                    if (res >= 0) {
886
210k
                        res += (max_msb    ) << cur_k;
887
381k
                    } else {
888
381k
                        res -= (max_msb - 1) << cur_k;
889
381k
                    }
890
20.2M
                } else {
891
20.2M
                    if (res > cur_tail_code)
892
15.3M
                        res--;
893
894
20.2M
                    if (res & 1)
895
2.28M
                        res = -res;
896
897
20.2M
                    res >>= 1;
898
899
20.2M
                    if (cur_k) {
900
16.4M
                        res  *= 1U << cur_k;
901
16.4M
                        res  |= get_bits_long(gb, cur_k);
902
16.4M
                    }
903
20.2M
                }
904
905
20.8M
                *current_res++ = res;
906
20.8M
            }
907
54.3k
        }
908
263k
    } else {
909
263k
        current_res = bd->raw_samples + start;
910
911
536k
        for (sb = 0; sb < sub_blocks; sb++, start = 0)
912
40.7M
            for (; start < sb_length; start++)
913
40.5M
                *current_res++ = decode_rice(gb, s[sb]);
914
263k
     }
915
916
282k
    return 0;
917
283k
}
918
919
920
/** Decode the block data for a non-constant block
921
 */
922
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
923
223k
{
924
223k
    ALSSpecificConfig *sconf = &ctx->sconf;
925
223k
    unsigned int block_length = bd->block_length;
926
223k
    unsigned int smp = 0;
927
223k
    unsigned int k;
928
223k
    int opt_order             = *bd->opt_order;
929
223k
    int sb;
930
223k
    int64_t y;
931
223k
    int32_t *quant_cof        = bd->quant_cof;
932
223k
    int32_t *lpc_cof          = bd->lpc_cof;
933
223k
    int32_t *raw_samples      = bd->raw_samples;
934
223k
    int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
935
223k
    int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
936
937
    // reverse long-term prediction
938
223k
    if (*bd->use_ltp) {
939
3.28k
        int ltp_smp;
940
941
3.94M
        for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
942
3.94M
            int center = ltp_smp - *bd->ltp_lag;
943
3.94M
            int begin  = FFMAX(0, center - 2);
944
3.94M
            int end    = center + 3;
945
3.94M
            int tab    = 5 - (end - begin);
946
3.94M
            int base;
947
948
3.94M
            y = 1 << 6;
949
950
23.6M
            for (base = begin; base < end; base++, tab++)
951
19.7M
                y += (uint64_t)MUL64(bd->ltp_gain[tab], raw_samples[base]);
952
953
3.94M
            raw_samples[ltp_smp] += y >> 7;
954
3.94M
        }
955
3.28k
    }
956
957
    // reconstruct all samples from residuals
958
223k
    if (bd->ra_block) {
959
223k
        for (smp = 0; smp < FFMIN(opt_order, block_length); smp++) {
960
181k
            y = 1 << 19;
961
962
544k
            for (sb = 0; sb < smp; sb++)
963
362k
                y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
964
965
181k
            *raw_samples++ -= y >> 20;
966
181k
            parcor_to_lpc(smp, quant_cof, lpc_cof);
967
181k
        }
968
182k
    } else {
969
193k
        for (k = 0; k < opt_order; k++)
970
10.7k
            parcor_to_lpc(k, quant_cof, lpc_cof);
971
972
        // store previous samples in case that they have to be altered
973
182k
        if (*bd->store_prev_samples)
974
110k
            memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
975
110k
                   sizeof(*bd->prev_raw_samples) * sconf->max_order);
976
977
        // reconstruct difference signal for prediction (joint-stereo)
978
182k
        if (bd->js_blocks && bd->raw_other) {
979
6.69k
            uint32_t *left, *right;
980
981
6.69k
            if (bd->raw_other > raw_samples) {  // D = R - L
982
3.91k
                left  = raw_samples;
983
3.91k
                right = bd->raw_other;
984
3.91k
            } else {                                // D = R - L
985
2.78k
                left  = bd->raw_other;
986
2.78k
                right = raw_samples;
987
2.78k
            }
988
989
11.3k
            for (sb = -1; sb >= -sconf->max_order; sb--)
990
4.68k
                raw_samples[sb] = right[sb] - left[sb];
991
6.69k
        }
992
993
        // reconstruct shifted signal
994
182k
        if (*bd->shift_lsbs)
995
115k
            for (sb = -1; sb >= -sconf->max_order; sb--)
996
7.67k
                raw_samples[sb] >>= *bd->shift_lsbs;
997
182k
    }
998
999
    // reverse linear prediction coefficients for efficiency
1000
223k
    lpc_cof = lpc_cof + opt_order;
1001
1002
667k
    for (sb = 0; sb < opt_order; sb++)
1003
444k
        lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
1004
1005
    // reconstruct raw samples
1006
223k
    raw_samples = bd->raw_samples + smp;
1007
223k
    lpc_cof     = lpc_cof_reversed + opt_order;
1008
1009
32.4M
    for (; raw_samples < raw_samples_end; raw_samples++) {
1010
32.2M
        y = 1 << 19;
1011
1012
79.4M
        for (sb = -opt_order; sb < 0; sb++)
1013
47.2M
            y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[sb]);
1014
1015
32.2M
        *raw_samples -= y >> 20;
1016
32.2M
    }
1017
1018
223k
    raw_samples = bd->raw_samples;
1019
1020
    // restore previous samples in case that they have been altered
1021
223k
    if (*bd->store_prev_samples)
1022
149k
        memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
1023
149k
               sizeof(*raw_samples) * sconf->max_order);
1024
1025
223k
    return 0;
1026
223k
}
1027
1028
1029
/** Read the block data.
1030
 */
1031
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
1032
1.14M
{
1033
1.14M
    int ret;
1034
1.14M
    GetBitContext *gb        = &ctx->gb;
1035
1.14M
    ALSSpecificConfig *sconf = &ctx->sconf;
1036
1037
1.14M
    *bd->shift_lsbs = 0;
1038
1039
1.14M
    if (get_bits_left(gb) < 7)
1040
21.2k
        return AVERROR_INVALIDDATA;
1041
1042
    // read block type flag and read the samples accordingly
1043
1.12M
    if (get_bits1(gb)) {
1044
290k
        ret = read_var_block_data(ctx, bd);
1045
829k
    } else {
1046
829k
        ret = read_const_block_data(ctx, bd);
1047
829k
    }
1048
1049
1.12M
    if (!sconf->mc_coding || ctx->js_switch)
1050
979k
        align_get_bits(gb);
1051
1052
1.12M
    return ret;
1053
1.14M
}
1054
1055
1056
/** Decode the block data.
1057
 */
1058
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
1059
984k
{
1060
984k
    unsigned int smp;
1061
984k
    int ret = 0;
1062
1063
    // read block type flag and read the samples accordingly
1064
984k
    if (*bd->const_block)
1065
760k
        decode_const_block_data(ctx, bd);
1066
223k
    else
1067
223k
        ret = decode_var_block_data(ctx, bd); // always return 0
1068
1069
984k
    if (ret < 0)
1070
0
        return ret;
1071
1072
    // TODO: read RLSLMS extension data
1073
1074
984k
    if (*bd->shift_lsbs)
1075
21.1M
        for (smp = 0; smp < bd->block_length; smp++)
1076
20.9M
            bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs;
1077
1078
984k
    return 0;
1079
984k
}
1080
1081
1082
/** Read and decode block data successively.
1083
 */
1084
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
1085
982k
{
1086
982k
    int ret;
1087
1088
982k
    if ((ret = read_block(ctx, bd)) < 0)
1089
9.16k
        return ret;
1090
1091
973k
    return decode_block(ctx, bd);
1092
982k
}
1093
1094
1095
/** Compute the number of samples left to decode for the current frame and
1096
 *  sets these samples to zero.
1097
 */
1098
static void zero_remaining(unsigned int b, unsigned int b_max,
1099
                           const unsigned int *div_blocks, int32_t *buf)
1100
13.7k
{
1101
13.7k
    unsigned int count = 0;
1102
1103
31.4k
    while (b < b_max)
1104
17.6k
        count += div_blocks[b++];
1105
1106
13.7k
    if (count)
1107
11.8k
        memset(buf, 0, sizeof(*buf) * count);
1108
13.7k
}
1109
1110
1111
/** Decode blocks independently.
1112
 */
1113
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1114
                             unsigned int c, const unsigned int *div_blocks,
1115
                             unsigned int *js_blocks)
1116
753k
{
1117
753k
    int ret;
1118
753k
    unsigned int b;
1119
753k
    ALSBlockData bd = { 0 };
1120
1121
753k
    bd.ra_block         = ra_frame;
1122
753k
    bd.const_block      = ctx->const_block;
1123
753k
    bd.shift_lsbs       = ctx->shift_lsbs;
1124
753k
    bd.opt_order        = ctx->opt_order;
1125
753k
    bd.store_prev_samples = ctx->store_prev_samples;
1126
753k
    bd.use_ltp          = ctx->use_ltp;
1127
753k
    bd.ltp_lag          = ctx->ltp_lag;
1128
753k
    bd.ltp_gain         = ctx->ltp_gain[0];
1129
753k
    bd.quant_cof        = ctx->quant_cof[0];
1130
753k
    bd.lpc_cof          = ctx->lpc_cof[0];
1131
753k
    bd.prev_raw_samples = ctx->prev_raw_samples;
1132
753k
    bd.raw_samples      = ctx->raw_samples[c];
1133
1134
1135
1.50M
    for (b = 0; b < ctx->num_blocks; b++) {
1136
754k
        bd.block_length     = div_blocks[b];
1137
1138
754k
        if ((ret = read_decode_block(ctx, &bd)) < 0) {
1139
            // damaged block, write zero for the rest of the frame
1140
4.56k
            zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1141
4.56k
            return ret;
1142
4.56k
        }
1143
749k
        bd.raw_samples += div_blocks[b];
1144
749k
        bd.ra_block     = 0;
1145
749k
    }
1146
1147
748k
    return 0;
1148
753k
}
1149
1150
1151
/** Decode blocks dependently.
1152
 */
1153
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1154
                         unsigned int c, const unsigned int *div_blocks,
1155
                         unsigned int *js_blocks)
1156
113k
{
1157
113k
    ALSSpecificConfig *sconf = &ctx->sconf;
1158
113k
    unsigned int offset = 0;
1159
113k
    unsigned int b;
1160
113k
    int ret;
1161
113k
    ALSBlockData bd[2] = { { 0 } };
1162
1163
113k
    bd[0].ra_block         = ra_frame;
1164
113k
    bd[0].const_block      = ctx->const_block;
1165
113k
    bd[0].shift_lsbs       = ctx->shift_lsbs;
1166
113k
    bd[0].opt_order        = ctx->opt_order;
1167
113k
    bd[0].store_prev_samples = ctx->store_prev_samples;
1168
113k
    bd[0].use_ltp          = ctx->use_ltp;
1169
113k
    bd[0].ltp_lag          = ctx->ltp_lag;
1170
113k
    bd[0].ltp_gain         = ctx->ltp_gain[0];
1171
113k
    bd[0].quant_cof        = ctx->quant_cof[0];
1172
113k
    bd[0].lpc_cof          = ctx->lpc_cof[0];
1173
113k
    bd[0].prev_raw_samples = ctx->prev_raw_samples;
1174
113k
    bd[0].js_blocks        = *js_blocks;
1175
1176
113k
    bd[1].ra_block         = ra_frame;
1177
113k
    bd[1].const_block      = ctx->const_block;
1178
113k
    bd[1].shift_lsbs       = ctx->shift_lsbs;
1179
113k
    bd[1].opt_order        = ctx->opt_order;
1180
113k
    bd[1].store_prev_samples = ctx->store_prev_samples;
1181
113k
    bd[1].use_ltp          = ctx->use_ltp;
1182
113k
    bd[1].ltp_lag          = ctx->ltp_lag;
1183
113k
    bd[1].ltp_gain         = ctx->ltp_gain[0];
1184
113k
    bd[1].quant_cof        = ctx->quant_cof[0];
1185
113k
    bd[1].lpc_cof          = ctx->lpc_cof[0];
1186
113k
    bd[1].prev_raw_samples = ctx->prev_raw_samples;
1187
113k
    bd[1].js_blocks        = *(js_blocks + 1);
1188
1189
    // decode all blocks
1190
224k
    for (b = 0; b < ctx->num_blocks; b++) {
1191
115k
        unsigned int s;
1192
1193
115k
        bd[0].block_length = div_blocks[b];
1194
115k
        bd[1].block_length = div_blocks[b];
1195
1196
115k
        bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
1197
115k
        bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;
1198
1199
115k
        bd[0].raw_other    = bd[1].raw_samples;
1200
115k
        bd[1].raw_other    = bd[0].raw_samples;
1201
1202
115k
        if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1203
112k
            (ret = read_decode_block(ctx, &bd[1])) < 0)
1204
4.59k
            goto fail;
1205
1206
        // reconstruct joint-stereo blocks
1207
111k
        if (bd[0].js_blocks) {
1208
29.3k
            if (bd[1].js_blocks)
1209
23.1k
                av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1210
1211
9.75M
            for (s = 0; s < div_blocks[b]; s++)
1212
9.72M
                bd[0].raw_samples[s] = bd[1].raw_samples[s] - (unsigned)bd[0].raw_samples[s];
1213
81.7k
        } else if (bd[1].js_blocks) {
1214
157M
            for (s = 0; s < div_blocks[b]; s++)
1215
157M
                bd[1].raw_samples[s] = bd[1].raw_samples[s] + (unsigned)bd[0].raw_samples[s];
1216
8.70k
        }
1217
1218
111k
        offset  += div_blocks[b];
1219
111k
        bd[0].ra_block = 0;
1220
111k
        bd[1].ra_block = 0;
1221
111k
    }
1222
1223
    // store carryover raw samples,
1224
    // the others channel raw samples are stored by the calling function.
1225
108k
    memmove(ctx->raw_samples[c] - sconf->max_order,
1226
108k
            ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1227
108k
            sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1228
1229
108k
    return 0;
1230
4.59k
fail:
1231
    // damaged block, write zero for the rest of the frame
1232
4.59k
    zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1233
4.59k
    zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1234
4.59k
    return ret;
1235
113k
}
1236
1237
static inline int als_weighting(GetBitContext *gb, int k, int off)
1238
5.18M
{
1239
5.18M
    int idx = av_clip(decode_rice(gb, k) + off,
1240
5.18M
                      0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1241
5.18M
    return mcc_weightings[idx];
1242
5.18M
}
1243
1244
/** Read the channel data.
1245
  */
1246
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
1247
137k
{
1248
137k
    GetBitContext *gb       = &ctx->gb;
1249
137k
    ALSChannelData *current = cd;
1250
137k
    unsigned int channels   = ctx->avctx->ch_layout.nb_channels;
1251
137k
    int entries             = 0;
1252
1253
3.93M
    while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1254
3.79M
        current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1255
1256
3.79M
        if (current->master_channel >= channels) {
1257
668
            av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1258
668
            return AVERROR_INVALIDDATA;
1259
668
        }
1260
1261
3.79M
        if (current->master_channel != c) {
1262
1.64M
            current->time_diff_flag = get_bits1(gb);
1263
1.64M
            current->weighting[0]   = als_weighting(gb, 1, 16);
1264
1.64M
            current->weighting[1]   = als_weighting(gb, 2, 14);
1265
1.64M
            current->weighting[2]   = als_weighting(gb, 1, 16);
1266
1267
1.64M
            if (current->time_diff_flag) {
1268
82.1k
                current->weighting[3] = als_weighting(gb, 1, 16);
1269
82.1k
                current->weighting[4] = als_weighting(gb, 1, 16);
1270
82.1k
                current->weighting[5] = als_weighting(gb, 1, 16);
1271
1272
82.1k
                current->time_diff_sign  = get_bits1(gb);
1273
82.1k
                current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1274
82.1k
            }
1275
1.64M
        }
1276
1277
3.79M
        current++;
1278
3.79M
        entries++;
1279
3.79M
    }
1280
1281
136k
    if (entries == channels) {
1282
17.5k
        av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1283
17.5k
        return AVERROR_INVALIDDATA;
1284
17.5k
    }
1285
1286
119k
    align_get_bits(gb);
1287
119k
    return 0;
1288
136k
}
1289
1290
1291
/** Recursively reverts the inter-channel correlation for a block.
1292
 */
1293
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
1294
                                       ALSChannelData **cd, int *reverted,
1295
                                       unsigned int offset, int c)
1296
48.2k
{
1297
48.2k
    ALSChannelData *ch = cd[c];
1298
48.2k
    unsigned int   dep = 0;
1299
48.2k
    unsigned int channels = ctx->avctx->ch_layout.nb_channels;
1300
48.2k
    unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1301
1302
48.2k
    if (reverted[c])
1303
29.8k
        return 0;
1304
1305
18.3k
    reverted[c] = 1;
1306
1307
53.9k
    while (dep < channels && !ch[dep].stop_flag) {
1308
35.6k
        revert_channel_correlation(ctx, bd, cd, reverted, offset,
1309
35.6k
                                   ch[dep].master_channel);
1310
1311
35.6k
        dep++;
1312
35.6k
    }
1313
1314
18.3k
    if (dep == channels) {
1315
0
        av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1316
0
        return AVERROR_INVALIDDATA;
1317
0
    }
1318
1319
18.3k
    bd->const_block = ctx->const_block + c;
1320
18.3k
    bd->shift_lsbs  = ctx->shift_lsbs + c;
1321
18.3k
    bd->opt_order   = ctx->opt_order + c;
1322
18.3k
    bd->store_prev_samples = ctx->store_prev_samples + c;
1323
18.3k
    bd->use_ltp     = ctx->use_ltp + c;
1324
18.3k
    bd->ltp_lag     = ctx->ltp_lag + c;
1325
18.3k
    bd->ltp_gain    = ctx->ltp_gain[c];
1326
18.3k
    bd->lpc_cof     = ctx->lpc_cof[c];
1327
18.3k
    bd->quant_cof   = ctx->quant_cof[c];
1328
18.3k
    bd->raw_samples = ctx->raw_samples[c] + offset;
1329
1330
47.3k
    for (dep = 0; !ch[dep].stop_flag; dep++) {
1331
30.9k
        ptrdiff_t smp;
1332
30.9k
        ptrdiff_t begin = 1;
1333
30.9k
        ptrdiff_t end   = bd->block_length - 1;
1334
30.9k
        int64_t y;
1335
30.9k
        int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1336
1337
30.9k
        if (ch[dep].master_channel == c)
1338
1.57k
            continue;
1339
1340
29.4k
        if (ch[dep].time_diff_flag) {
1341
10.4k
            int t = ch[dep].time_diff_index;
1342
1343
10.4k
            if (ch[dep].time_diff_sign) {
1344
7.25k
                t      = -t;
1345
7.25k
                if (begin < t) {
1346
0
                    av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
1347
0
                    return AVERROR_INVALIDDATA;
1348
0
                }
1349
7.25k
                begin -= t;
1350
7.25k
            } else {
1351
3.23k
                if (end < t) {
1352
1.98k
                    av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
1353
1.98k
                    return AVERROR_INVALIDDATA;
1354
1.98k
                }
1355
1.24k
                end   -= t;
1356
1.24k
            }
1357
1358
8.50k
            if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1359
8.50k
                FFMAX(end   + 1,   end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1360
0
                av_log(ctx->avctx, AV_LOG_ERROR,
1361
0
                       "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1362
0
                       master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1,   end + 1 + t),
1363
0
                       ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1364
0
                return AVERROR_INVALIDDATA;
1365
0
            }
1366
1367
33.0M
            for (smp = begin; smp < end; smp++) {
1368
33.0M
                y  = (1 << 6) +
1369
33.0M
                     MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
1370
33.0M
                     MUL64(ch[dep].weighting[1], master[smp        ]) +
1371
33.0M
                     MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
1372
33.0M
                     MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1373
33.0M
                     MUL64(ch[dep].weighting[4], master[smp     + t]) +
1374
33.0M
                     MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1375
1376
33.0M
                bd->raw_samples[smp] += y >> 7;
1377
33.0M
            }
1378
18.9k
        } else {
1379
1380
18.9k
            if (begin - 1 < ctx->raw_buffer - master ||
1381
18.9k
                end   + 1 > ctx->raw_buffer + channels * channel_size - master) {
1382
0
                av_log(ctx->avctx, AV_LOG_ERROR,
1383
0
                       "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1384
0
                       master + begin - 1, master + end + 1,
1385
0
                       ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1386
0
                return AVERROR_INVALIDDATA;
1387
0
            }
1388
1389
119M
            for (smp = begin; smp < end; smp++) {
1390
119M
                y  = (1 << 6) +
1391
119M
                     MUL64(ch[dep].weighting[0], master[smp - 1]) +
1392
119M
                     MUL64(ch[dep].weighting[1], master[smp    ]) +
1393
119M
                     MUL64(ch[dep].weighting[2], master[smp + 1]);
1394
1395
119M
                bd->raw_samples[smp] += y >> 7;
1396
119M
            }
1397
18.9k
        }
1398
29.4k
    }
1399
1400
16.3k
    return 0;
1401
18.3k
}
1402
1403
1404
/** multiply two softfloats and handle the rounding off
1405
 */
1406
2.73M
static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b) {
1407
2.73M
    uint64_t mantissa_temp;
1408
2.73M
    uint64_t mask_64;
1409
2.73M
    int cutoff_bit_count;
1410
2.73M
    unsigned char last_2_bits;
1411
2.73M
    unsigned int mantissa;
1412
2.73M
    int32_t sign;
1413
2.73M
    uint32_t return_val = 0;
1414
2.73M
    int bit_count       = 48;
1415
1416
2.73M
    sign = a.sign ^ b.sign;
1417
1418
    // Multiply mantissa bits in a 64-bit register
1419
2.73M
    mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
1420
2.73M
    mask_64       = (uint64_t)0x1 << 47;
1421
1422
2.73M
    if (!mantissa_temp)
1423
32.3k
        return FLOAT_0;
1424
1425
    // Count the valid bit count
1426
16.5M
    while (!(mantissa_temp & mask_64) && mask_64) {
1427
13.8M
        bit_count--;
1428
13.8M
        mask_64 >>= 1;
1429
13.8M
    }
1430
1431
    // Round off
1432
2.70M
    cutoff_bit_count = bit_count - 24;
1433
2.70M
    if (cutoff_bit_count > 0) {
1434
2.70M
        last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
1435
2.70M
        if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
1436
            // Need to round up
1437
379k
            mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
1438
379k
        }
1439
2.70M
    }
1440
1441
2.70M
    if (cutoff_bit_count >= 0) {
1442
2.70M
        mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
1443
2.70M
    } else {
1444
470
        mantissa = (unsigned int)(mantissa_temp <<-cutoff_bit_count);
1445
470
    }
1446
1447
    // Need one more shift?
1448
2.70M
    if (mantissa & 0x01000000ul) {
1449
99
        bit_count++;
1450
99
        mantissa >>= 1;
1451
99
    }
1452
1453
2.70M
    if (!sign) {
1454
2.55M
        return_val = 0x80000000U;
1455
2.55M
    }
1456
1457
2.70M
    return_val |= ((unsigned)av_clip(a.exp + b.exp + bit_count - 47, -126, 127) << 23) & 0x7F800000;
1458
2.70M
    return_val |= mantissa;
1459
2.70M
    return av_bits2sf_ieee754(return_val);
1460
2.73M
}
1461
1462
1463
/** Read and decode the floating point sample data
1464
 */
1465
707k
static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
1466
707k
    AVCodecContext *avctx   = ctx->avctx;
1467
707k
    GetBitContext *gb       = &ctx->gb;
1468
707k
    SoftFloat_IEEE754 *acf  = ctx->acf;
1469
707k
    int *shift_value        = ctx->shift_value;
1470
707k
    int *last_shift_value   = ctx->last_shift_value;
1471
707k
    int *last_acf_mantissa  = ctx->last_acf_mantissa;
1472
707k
    int **raw_mantissa      = ctx->raw_mantissa;
1473
707k
    int *nbits              = ctx->nbits;
1474
707k
    unsigned char *larray   = ctx->larray;
1475
707k
    int frame_length        = ctx->cur_frame_length;
1476
707k
    SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
1477
707k
    unsigned int partA_flag;
1478
707k
    unsigned int highest_byte;
1479
707k
    unsigned int shift_amp;
1480
707k
    uint32_t tmp_32;
1481
707k
    int use_acf;
1482
707k
    int nchars;
1483
707k
    int i;
1484
707k
    int c;
1485
707k
    long k;
1486
707k
    long nbits_aligned;
1487
707k
    unsigned long acc;
1488
707k
    unsigned long j;
1489
707k
    uint32_t sign;
1490
707k
    uint32_t e;
1491
707k
    uint32_t mantissa;
1492
1493
707k
    skip_bits_long(gb, 32); //num_bytes_diff_float
1494
707k
    use_acf = get_bits1(gb);
1495
1496
707k
    if (ra_frame) {
1497
8.58k
        memset(last_acf_mantissa, 0, avctx->ch_layout.nb_channels * sizeof(*last_acf_mantissa));
1498
8.58k
        memset(last_shift_value,  0, avctx->ch_layout.nb_channels * sizeof(*last_shift_value) );
1499
8.58k
        ff_mlz_flush_dict(ctx->mlz);
1500
8.58k
    }
1501
1502
707k
    if (avctx->ch_layout.nb_channels * 8 > get_bits_left(gb))
1503
20.2k
        return AVERROR_INVALIDDATA;
1504
1505
1.42M
    for (c = 0; c < avctx->ch_layout.nb_channels; ++c) {
1506
745k
        if (use_acf) {
1507
            //acf_flag
1508
218k
            if (get_bits1(gb)) {
1509
147k
                tmp_32 = get_bits(gb, 23);
1510
147k
                last_acf_mantissa[c] = tmp_32;
1511
147k
            } else {
1512
70.5k
                tmp_32 = last_acf_mantissa[c];
1513
70.5k
            }
1514
218k
            acf[c] = av_bits2sf_ieee754(tmp_32);
1515
527k
        } else {
1516
527k
            acf[c] = FLOAT_1;
1517
527k
        }
1518
1519
745k
        highest_byte = get_bits(gb, 2);
1520
745k
        partA_flag   = get_bits1(gb);
1521
745k
        shift_amp    = get_bits1(gb);
1522
1523
745k
        if (shift_amp) {
1524
244k
            shift_value[c] = get_bits(gb, 8);
1525
244k
            last_shift_value[c] = shift_value[c];
1526
501k
        } else {
1527
501k
            shift_value[c] = last_shift_value[c];
1528
501k
        }
1529
1530
745k
        if (partA_flag) {
1531
263k
            if (!get_bits1(gb)) { //uncompressed
1532
17.0M
                for (i = 0; i < frame_length; ++i) {
1533
16.9M
                    if (ctx->raw_samples[c][i] == 0) {
1534
1.61M
                        ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
1535
1.61M
                    }
1536
16.9M
                }
1537
187k
            } else { //compressed
1538
187k
                nchars = 0;
1539
12.1M
                for (i = 0; i < frame_length; ++i) {
1540
11.9M
                    if (ctx->raw_samples[c][i] == 0) {
1541
5.74M
                        nchars += 4;
1542
5.74M
                    }
1543
11.9M
                }
1544
1545
187k
                tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1546
187k
                if(tmp_32 != nchars) {
1547
964
                    av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1548
964
                    return AVERROR_INVALIDDATA;
1549
964
                }
1550
1551
9.09M
                for (i = 0; i < frame_length; ++i) {
1552
8.90M
                    ctx->raw_mantissa[c][i] = AV_RB32(larray);
1553
8.90M
                }
1554
186k
            }
1555
263k
        }
1556
1557
        //decode part B
1558
744k
        if (highest_byte) {
1559
191M
            for (i = 0; i < frame_length; ++i) {
1560
191M
                if (ctx->raw_samples[c][i] != 0) {
1561
                    //The following logic is taken from Table 14.45 and 14.46 from the ISO spec
1562
178M
                    if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1563
172M
                        nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
1564
172M
                    } else {
1565
5.18M
                        nbits[i] = 23;
1566
5.18M
                    }
1567
178M
                    nbits[i] = FFMIN(nbits[i], highest_byte*8);
1568
178M
                }
1569
191M
            }
1570
1571
247k
            if (!get_bits1(gb)) { //uncompressed
1572
8.97M
                for (i = 0; i < frame_length; ++i) {
1573
8.82M
                    if (ctx->raw_samples[c][i] != 0) {
1574
5.35M
                        raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
1575
5.35M
                    }
1576
8.82M
                }
1577
152k
            } else { //compressed
1578
94.2k
                nchars = 0;
1579
182M
                for (i = 0; i < frame_length; ++i) {
1580
182M
                    if (ctx->raw_samples[c][i]) {
1581
172M
                        nchars += (int) nbits[i] / 8;
1582
172M
                        if (nbits[i] & 7) {
1583
171M
                            ++nchars;
1584
171M
                        }
1585
172M
                    }
1586
182M
                }
1587
1588
94.2k
                tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1589
94.2k
                if(tmp_32 != nchars) {
1590
2.54k
                    av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1591
2.54k
                    return AVERROR_INVALIDDATA;
1592
2.54k
                }
1593
1594
91.6k
                j = 0;
1595
19.2M
                for (i = 0; i < frame_length; ++i) {
1596
19.1M
                    if (ctx->raw_samples[c][i]) {
1597
9.66M
                        if (nbits[i] & 7) {
1598
9.61M
                            nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
1599
9.61M
                        } else {
1600
45.6k
                            nbits_aligned = nbits[i];
1601
45.6k
                        }
1602
9.66M
                        acc = 0;
1603
19.4M
                        for (k = 0; k < nbits_aligned/8; ++k) {
1604
9.79M
                            acc = (acc << 8) + larray[j++];
1605
9.79M
                        }
1606
9.66M
                        acc >>= (nbits_aligned - nbits[i]);
1607
9.66M
                        raw_mantissa[c][i] = acc;
1608
9.66M
                    }
1609
19.1M
                }
1610
91.6k
            }
1611
247k
        }
1612
1613
70.3M
        for (i = 0; i < frame_length; ++i) {
1614
69.6M
            SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
1615
69.6M
            pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
1616
1617
69.6M
            if (ctx->raw_samples[c][i] != 0) {
1618
44.0M
                if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1619
2.73M
                    pcm_sf = multiply(acf[c], pcm_sf);
1620
2.73M
                }
1621
1622
44.0M
                sign = pcm_sf.sign;
1623
44.0M
                e = pcm_sf.exp;
1624
44.0M
                mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
1625
1626
70.8M
                while(mantissa >= 0x1000000) {
1627
26.8M
                    e++;
1628
26.8M
                    mantissa >>= 1;
1629
26.8M
                }
1630
1631
44.0M
                if (mantissa) e += (shift_value[c] - 127);
1632
44.0M
                mantissa &= 0x007fffffUL;
1633
1634
44.0M
                tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
1635
44.0M
                ctx->raw_samples[c][i] = tmp_32;
1636
44.0M
            } else {
1637
25.6M
                ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
1638
25.6M
            }
1639
69.6M
        }
1640
741k
        align_get_bits(gb);
1641
741k
    }
1642
683k
    return 0;
1643
686k
}
1644
1645
1646
/** Read the frame data.
1647
 */
1648
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1649
809k
{
1650
809k
    ALSSpecificConfig *sconf = &ctx->sconf;
1651
809k
    AVCodecContext *avctx    = ctx->avctx;
1652
809k
    GetBitContext *gb = &ctx->gb;
1653
809k
    unsigned int div_blocks[32];                ///< block sizes.
1654
809k
    int c;
1655
809k
    unsigned int js_blocks[2];
1656
809k
    int channels = avctx->ch_layout.nb_channels;
1657
809k
    uint32_t bs_info = 0;
1658
809k
    int ret;
1659
1660
    // skip the size of the ra unit if present in the frame
1661
809k
    if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1662
2.82k
        skip_bits_long(gb, 32);
1663
1664
809k
    if (sconf->mc_coding && sconf->joint_stereo) {
1665
56.2k
        ctx->js_switch = get_bits1(gb);
1666
56.2k
        align_get_bits(gb);
1667
56.2k
    }
1668
1669
809k
    if (!sconf->mc_coding || ctx->js_switch) {
1670
768k
        int independent_bs = !sconf->joint_stereo;
1671
768k
        if (get_bits_left(gb) < 7*channels*ctx->num_blocks)
1672
17.2k
            return AVERROR_INVALIDDATA;
1673
1.60M
        for (c = 0; c < channels; c++) {
1674
866k
            js_blocks[0] = 0;
1675
866k
            js_blocks[1] = 0;
1676
1677
866k
            get_block_sizes(ctx, div_blocks, &bs_info);
1678
1679
            // if joint_stereo and block_switching is set, independent decoding
1680
            // is signaled via the first bit of bs_info
1681
866k
            if (sconf->joint_stereo && sconf->block_switching)
1682
3.74k
                if (bs_info >> 31)
1683
1.02k
                    independent_bs = 2;
1684
1685
            // if this is the last channel, it has to be decoded independently
1686
866k
            if (c == channels - 1 || (c & 1))
1687
746k
                independent_bs = 1;
1688
1689
866k
            if (independent_bs) {
1690
753k
                ret = decode_blocks_ind(ctx, ra_frame, c,
1691
753k
                                        div_blocks, js_blocks);
1692
753k
                if (ret < 0)
1693
4.56k
                    return ret;
1694
748k
                independent_bs--;
1695
748k
            } else {
1696
113k
                ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1697
113k
                if (ret < 0)
1698
4.59k
                    return ret;
1699
1700
108k
                c++;
1701
108k
            }
1702
1703
            // store carryover raw samples
1704
857k
            memmove(ctx->raw_samples[c] - sconf->max_order,
1705
857k
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1706
857k
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1707
857k
            ctx->highest_decoded_channel = c;
1708
857k
        }
1709
750k
    } else { // multi-channel coding
1710
41.6k
        ALSBlockData   bd = { 0 };
1711
41.6k
        int            b, ret;
1712
41.6k
        int            *reverted_channels = ctx->reverted_channels;
1713
41.6k
        unsigned int   offset             = 0;
1714
1715
9.02M
        for (c = 0; c < channels; c++)
1716
8.98M
            if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1717
0
                av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1718
0
                return AVERROR_INVALIDDATA;
1719
0
            }
1720
1721
41.6k
        memset(reverted_channels, 0, sizeof(*reverted_channels) * channels);
1722
1723
41.6k
        bd.ra_block         = ra_frame;
1724
41.6k
        bd.prev_raw_samples = ctx->prev_raw_samples;
1725
1726
41.6k
        get_block_sizes(ctx, div_blocks, &bs_info);
1727
1728
47.0k
        for (b = 0; b < ctx->num_blocks; b++) {
1729
45.8k
            bd.block_length = div_blocks[b];
1730
45.8k
            if (bd.block_length <= 0) {
1731
4.78k
                av_log(ctx->avctx, AV_LOG_WARNING,
1732
4.78k
                       "Invalid block length %u in channel data!\n",
1733
4.78k
                       bd.block_length);
1734
4.78k
                continue;
1735
4.78k
            }
1736
1737
160k
            for (c = 0; c < channels; c++) {
1738
159k
                bd.const_block = ctx->const_block + c;
1739
159k
                bd.shift_lsbs  = ctx->shift_lsbs + c;
1740
159k
                bd.opt_order   = ctx->opt_order + c;
1741
159k
                bd.store_prev_samples = ctx->store_prev_samples + c;
1742
159k
                bd.use_ltp     = ctx->use_ltp + c;
1743
159k
                bd.ltp_lag     = ctx->ltp_lag + c;
1744
159k
                bd.ltp_gain    = ctx->ltp_gain[c];
1745
159k
                bd.lpc_cof     = ctx->lpc_cof[c];
1746
159k
                bd.quant_cof   = ctx->quant_cof[c];
1747
159k
                bd.raw_samples = ctx->raw_samples[c] + offset;
1748
159k
                bd.raw_other   = NULL;
1749
1750
159k
                if ((ret = read_block(ctx, &bd)) < 0)
1751
21.6k
                    return ret;
1752
137k
                if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1753
18.2k
                    return ret;
1754
137k
            }
1755
1756
13.2k
            for (c = 0; c < channels; c++) {
1757
12.5k
                ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1758
12.5k
                                                 reverted_channels, offset, c);
1759
12.5k
                if (ret < 0)
1760
597
                    return ret;
1761
12.5k
            }
1762
11.4k
            for (c = 0; c < channels; c++) {
1763
10.8k
                bd.const_block = ctx->const_block + c;
1764
10.8k
                bd.shift_lsbs  = ctx->shift_lsbs + c;
1765
10.8k
                bd.opt_order   = ctx->opt_order + c;
1766
10.8k
                bd.store_prev_samples = ctx->store_prev_samples + c;
1767
10.8k
                bd.use_ltp     = ctx->use_ltp + c;
1768
10.8k
                bd.ltp_lag     = ctx->ltp_lag + c;
1769
10.8k
                bd.ltp_gain    = ctx->ltp_gain[c];
1770
10.8k
                bd.lpc_cof     = ctx->lpc_cof[c];
1771
10.8k
                bd.quant_cof   = ctx->quant_cof[c];
1772
10.8k
                bd.raw_samples = ctx->raw_samples[c] + offset;
1773
1774
10.8k
                if ((ret = decode_block(ctx, &bd)) < 0)
1775
0
                    return ret;
1776
1777
10.8k
                ctx->highest_decoded_channel = FFMAX(ctx->highest_decoded_channel, c);
1778
10.8k
            }
1779
1780
668
            memset(reverted_channels, 0, channels * sizeof(*reverted_channels));
1781
668
            offset      += div_blocks[b];
1782
668
            bd.ra_block  = 0;
1783
668
        }
1784
1785
        // store carryover raw samples
1786
57.1k
        for (c = 0; c < channels; c++)
1787
55.9k
            memmove(ctx->raw_samples[c] - sconf->max_order,
1788
55.9k
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1789
55.9k
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1790
1.20k
    }
1791
1792
742k
    if (sconf->floating) {
1793
707k
        read_diff_float_data(ctx, ra_frame);
1794
707k
    }
1795
1796
742k
    if (get_bits_left(gb) < 0) {
1797
30.4k
        av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1798
30.4k
        return AVERROR_INVALIDDATA;
1799
30.4k
    }
1800
1801
712k
    return 0;
1802
742k
}
1803
1804
1805
/** Decode an ALS frame.
1806
 */
1807
static int decode_frame(AVCodecContext *avctx, AVFrame *frame,
1808
                        int *got_frame_ptr, AVPacket *avpkt)
1809
809k
{
1810
809k
    ALSDecContext *ctx       = avctx->priv_data;
1811
809k
    ALSSpecificConfig *sconf = &ctx->sconf;
1812
809k
    const uint8_t *buffer    = avpkt->data;
1813
809k
    int buffer_size          = avpkt->size;
1814
809k
    int invalid_frame, ret;
1815
809k
    int channels = avctx->ch_layout.nb_channels;
1816
809k
    unsigned int c, sample, ra_frame, bytes_read, shift;
1817
1818
809k
    if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1819
0
        return ret;
1820
1821
    // In the case that the distance between random access frames is set to zero
1822
    // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1823
    // For the first frame, if prediction is used, all samples used from the
1824
    // previous frame are assumed to be zero.
1825
809k
    ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1826
1827
    // the last frame to decode might have a different length
1828
809k
    if (sconf->samples != 0xFFFFFFFF)
1829
809k
        ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1830
809k
                                      sconf->frame_length);
1831
293
    else
1832
293
        ctx->cur_frame_length = sconf->frame_length;
1833
1834
809k
    ctx->highest_decoded_channel = -1;
1835
    // decode the frame data
1836
809k
    if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1837
97.3k
        av_log(ctx->avctx, AV_LOG_WARNING,
1838
97.3k
               "Reading frame data failed. Skipping RA unit.\n");
1839
1840
809k
    if (ctx->highest_decoded_channel == -1) {
1841
63.3k
        av_log(ctx->avctx, AV_LOG_WARNING,
1842
63.3k
               "No channel data decoded.\n");
1843
63.3k
        return AVERROR_INVALIDDATA;
1844
63.3k
    }
1845
1846
746k
    ctx->frame_id++;
1847
1848
    /* get output buffer */
1849
746k
    frame->nb_samples = ctx->cur_frame_length;
1850
746k
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1851
706
        return ret;
1852
1853
    // transform decoded frame into output format
1854
745k
    #define INTERLEAVE_OUTPUT(bps)                                                   \
1855
745k
    {                                                                                \
1856
745k
        int##bps##_t *dest = (int##bps##_t*)frame->data[0];                          \
1857
745k
        int32_t *raw_samples = ctx->raw_samples[0];                                  \
1858
745k
        int raw_step = channels > 1 ? ctx->raw_samples[1] - raw_samples : 1;         \
1859
745k
        shift = bps - ctx->avctx->bits_per_raw_sample;                               \
1860
745k
        if (!ctx->cs_switch) {                                                       \
1861
263M
            for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
1862
793M
                for (c = 0; c < channels; c++)                                       \
1863
530M
                    *dest++ = raw_samples[c*raw_step + sample] * (1U << shift);      \
1864
745k
        } else {                                                                     \
1865
346k
            for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
1866
1.41M
                for (c = 0; c < channels; c++)                                       \
1867
1.07M
                    *dest++ = raw_samples[sconf->chan_pos[c]*raw_step + sample] * (1U << shift);\
1868
538
        }                                                                            \
1869
745k
    }
1870
1871
745k
    if (ctx->avctx->bits_per_raw_sample <= 16) {
1872
34.4k
        INTERLEAVE_OUTPUT(16)
1873
711k
    } else {
1874
711k
        INTERLEAVE_OUTPUT(32)
1875
711k
    }
1876
1877
    // update CRC
1878
745k
    if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1879
584k
        int swap = HAVE_BIGENDIAN != sconf->msb_first;
1880
1881
584k
        if (ctx->avctx->bits_per_raw_sample == 24) {
1882
705
            int32_t *src = (int32_t *)frame->data[0];
1883
1884
705
            for (sample = 0;
1885
1.75M
                 sample < ctx->cur_frame_length * channels;
1886
1.75M
                 sample++) {
1887
1.75M
                int32_t v;
1888
1889
1.75M
                if (swap)
1890
824k
                    v = av_bswap32(src[sample]);
1891
932k
                else
1892
932k
                    v = src[sample];
1893
1.75M
                if (!HAVE_BIGENDIAN)
1894
1.75M
                    v >>= 8;
1895
1896
1.75M
                ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1897
1.75M
            }
1898
584k
        } else {
1899
584k
            uint8_t *crc_source;
1900
1901
584k
            if (swap) {
1902
574k
                if (ctx->avctx->bits_per_raw_sample <= 16) {
1903
1.24k
                    int16_t *src  = (int16_t*) frame->data[0];
1904
1.24k
                    int16_t *dest = (int16_t*) ctx->crc_buffer;
1905
1.24k
                    for (sample = 0;
1906
7.03M
                         sample < ctx->cur_frame_length * channels;
1907
7.03M
                         sample++)
1908
7.03M
                        *dest++ = av_bswap16(src[sample]);
1909
573k
                } else {
1910
573k
                    ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1911
573k
                                        (uint32_t *) frame->data[0],
1912
573k
                                        ctx->cur_frame_length * channels);
1913
573k
                }
1914
574k
                crc_source = ctx->crc_buffer;
1915
574k
            } else {
1916
9.44k
                crc_source = frame->data[0];
1917
9.44k
            }
1918
1919
584k
            ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1920
584k
                              ctx->cur_frame_length * channels *
1921
584k
                              av_get_bytes_per_sample(avctx->sample_fmt));
1922
584k
        }
1923
1924
1925
        // check CRC sums if this is the last frame
1926
584k
        if (ctx->cur_frame_length != sconf->frame_length &&
1927
26.7k
            ctx->crc_org != ctx->crc) {
1928
26.7k
            av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1929
26.7k
            if (avctx->err_recognition & AV_EF_EXPLODE)
1930
19.3k
                return AVERROR_INVALIDDATA;
1931
26.7k
        }
1932
584k
    }
1933
1934
726k
    *got_frame_ptr = 1;
1935
1936
726k
    bytes_read = invalid_frame ? buffer_size :
1937
726k
                                 (get_bits_count(&ctx->gb) + 7) >> 3;
1938
1939
726k
    return bytes_read;
1940
745k
}
1941
1942
1943
/** Uninitialize the ALS decoder.
1944
 */
1945
static av_cold int decode_end(AVCodecContext *avctx)
1946
2.36k
{
1947
2.36k
    ALSDecContext *ctx = avctx->priv_data;
1948
2.36k
    int i;
1949
1950
2.36k
    av_freep(&ctx->sconf.chan_pos);
1951
1952
2.36k
    ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1953
1954
2.36k
    av_freep(&ctx->const_block);
1955
2.36k
    av_freep(&ctx->shift_lsbs);
1956
2.36k
    av_freep(&ctx->opt_order);
1957
2.36k
    av_freep(&ctx->store_prev_samples);
1958
2.36k
    av_freep(&ctx->use_ltp);
1959
2.36k
    av_freep(&ctx->ltp_lag);
1960
2.36k
    av_freep(&ctx->ltp_gain);
1961
2.36k
    av_freep(&ctx->ltp_gain_buffer);
1962
2.36k
    av_freep(&ctx->quant_cof);
1963
2.36k
    av_freep(&ctx->lpc_cof);
1964
2.36k
    av_freep(&ctx->quant_cof_buffer);
1965
2.36k
    av_freep(&ctx->lpc_cof_buffer);
1966
2.36k
    av_freep(&ctx->lpc_cof_reversed_buffer);
1967
2.36k
    av_freep(&ctx->prev_raw_samples);
1968
2.36k
    av_freep(&ctx->raw_samples);
1969
2.36k
    av_freep(&ctx->raw_buffer);
1970
2.36k
    av_freep(&ctx->chan_data);
1971
2.36k
    av_freep(&ctx->chan_data_buffer);
1972
2.36k
    av_freep(&ctx->reverted_channels);
1973
2.36k
    av_freep(&ctx->crc_buffer);
1974
2.36k
    if (ctx->mlz) {
1975
1.02k
        av_freep(&ctx->mlz->dict);
1976
1.02k
        av_freep(&ctx->mlz);
1977
1.02k
    }
1978
2.36k
    av_freep(&ctx->acf);
1979
2.36k
    av_freep(&ctx->last_acf_mantissa);
1980
2.36k
    av_freep(&ctx->shift_value);
1981
2.36k
    av_freep(&ctx->last_shift_value);
1982
2.36k
    if (ctx->raw_mantissa) {
1983
189k
        for (i = 0; i < avctx->ch_layout.nb_channels; i++) {
1984
188k
            av_freep(&ctx->raw_mantissa[i]);
1985
188k
        }
1986
1.02k
        av_freep(&ctx->raw_mantissa);
1987
1.02k
    }
1988
2.36k
    av_freep(&ctx->larray);
1989
2.36k
    av_freep(&ctx->nbits);
1990
1991
2.36k
    return 0;
1992
2.36k
}
1993
1994
1995
/** Initialize the ALS decoder.
1996
 */
1997
static av_cold int decode_init(AVCodecContext *avctx)
1998
2.36k
{
1999
2.36k
    unsigned int c;
2000
2.36k
    unsigned int channel_size;
2001
2.36k
    int num_buffers, ret;
2002
2.36k
    int channels;
2003
2.36k
    ALSDecContext *ctx = avctx->priv_data;
2004
2.36k
    ALSSpecificConfig *sconf = &ctx->sconf;
2005
2.36k
    ctx->avctx = avctx;
2006
2007
2.36k
    if (!avctx->extradata) {
2008
158
        av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
2009
158
        return AVERROR_INVALIDDATA;
2010
158
    }
2011
2012
2.20k
    if ((ret = read_specific_config(ctx)) < 0) {
2013
646
        av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
2014
646
        return ret;
2015
646
    }
2016
1.56k
    channels = avctx->ch_layout.nb_channels;
2017
2018
1.56k
    if ((ret = check_specific_config(ctx)) < 0) {
2019
3
        return ret;
2020
3
    }
2021
2022
1.55k
    if (sconf->bgmc) {
2023
458
        ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
2024
458
        if (ret < 0)
2025
0
            return ret;
2026
458
    }
2027
1.55k
    if (sconf->floating) {
2028
1.02k
        avctx->sample_fmt          = AV_SAMPLE_FMT_FLT;
2029
1.02k
        avctx->bits_per_raw_sample = 32;
2030
1.02k
    } else {
2031
534
        avctx->sample_fmt          = sconf->resolution > 1
2032
534
                                     ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
2033
534
        avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
2034
534
        if (avctx->bits_per_raw_sample > 32) {
2035
2
            av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
2036
2
                   avctx->bits_per_raw_sample);
2037
2
            return AVERROR_INVALIDDATA;
2038
2
        }
2039
534
    }
2040
2041
    // set maximum Rice parameter for progressive decoding based on resolution
2042
    // This is not specified in 14496-3 but actually done by the reference
2043
    // codec RM22 revision 2.
2044
1.55k
    ctx->s_max = sconf->resolution > 1 ? 31 : 15;
2045
2046
    // set lag value for long-term prediction
2047
1.55k
    ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
2048
1.55k
                              (avctx->sample_rate >= 192000);
2049
2050
    // allocate quantized parcor coefficient buffer
2051
1.55k
    num_buffers = sconf->mc_coding ? channels : 1;
2052
1.55k
    if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation
2053
0
        return AVERROR_INVALIDDATA;
2054
2055
1.55k
    ctx->quant_cof        = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
2056
1.55k
    ctx->lpc_cof          = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
2057
1.55k
    ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
2058
1.55k
                                            sizeof(*ctx->quant_cof_buffer));
2059
1.55k
    ctx->lpc_cof_buffer   = av_malloc_array(num_buffers * sconf->max_order,
2060
1.55k
                                            sizeof(*ctx->lpc_cof_buffer));
2061
1.55k
    ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
2062
1.55k
                                                   sizeof(*ctx->lpc_cof_buffer));
2063
2064
1.55k
    if (!ctx->quant_cof              || !ctx->lpc_cof        ||
2065
1.55k
        !ctx->quant_cof_buffer       || !ctx->lpc_cof_buffer ||
2066
1.55k
        !ctx->lpc_cof_reversed_buffer) {
2067
0
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2068
0
        return AVERROR(ENOMEM);
2069
0
    }
2070
2071
    // assign quantized parcor coefficient buffers
2072
190k
    for (c = 0; c < num_buffers; c++) {
2073
189k
        ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
2074
189k
        ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
2075
189k
    }
2076
2077
    // allocate and assign lag and gain data buffer for ltp mode
2078
1.55k
    ctx->const_block     = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
2079
1.55k
    ctx->shift_lsbs      = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
2080
1.55k
    ctx->opt_order       = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
2081
1.55k
    ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
2082
1.55k
    ctx->use_ltp         = av_calloc(num_buffers, sizeof(*ctx->use_ltp));
2083
1.55k
    ctx->ltp_lag         = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
2084
1.55k
    ctx->ltp_gain        = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
2085
1.55k
    ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
2086
2087
1.55k
    if (!ctx->const_block || !ctx->shift_lsbs ||
2088
1.55k
        !ctx->opt_order || !ctx->store_prev_samples ||
2089
1.55k
        !ctx->use_ltp  || !ctx->ltp_lag ||
2090
1.55k
        !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
2091
0
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2092
0
        return AVERROR(ENOMEM);
2093
0
    }
2094
2095
190k
    for (c = 0; c < num_buffers; c++)
2096
189k
        ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
2097
2098
    // allocate and assign channel data buffer for mcc mode
2099
1.55k
    if (sconf->mc_coding) {
2100
851
        ctx->chan_data_buffer  = av_calloc(num_buffers * num_buffers,
2101
851
                                           sizeof(*ctx->chan_data_buffer));
2102
851
        ctx->chan_data         = av_calloc(num_buffers, sizeof(*ctx->chan_data));
2103
851
        ctx->reverted_channels = av_malloc_array(num_buffers,
2104
851
                                                 sizeof(*ctx->reverted_channels));
2105
2106
851
        if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
2107
0
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2108
0
            return AVERROR(ENOMEM);
2109
0
        }
2110
2111
189k
        for (c = 0; c < num_buffers; c++)
2112
188k
            ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
2113
851
    } else {
2114
706
        ctx->chan_data         = NULL;
2115
706
        ctx->chan_data_buffer  = NULL;
2116
706
        ctx->reverted_channels = NULL;
2117
706
    }
2118
2119
1.55k
    if (sconf->floating) {
2120
1.02k
        ctx->acf               = av_malloc_array(channels, sizeof(*ctx->acf));
2121
1.02k
        ctx->shift_value       = av_calloc(channels, sizeof(*ctx->shift_value));
2122
1.02k
        ctx->last_shift_value  = av_calloc(channels, sizeof(*ctx->last_shift_value));
2123
1.02k
        ctx->last_acf_mantissa = av_calloc(channels, sizeof(*ctx->last_acf_mantissa));
2124
1.02k
        ctx->raw_mantissa      = av_calloc(channels, sizeof(*ctx->raw_mantissa));
2125
2126
1.02k
        ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
2127
1.02k
        ctx->nbits  = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
2128
1.02k
        ctx->mlz    = av_mallocz(sizeof(*ctx->mlz));
2129
2130
1.02k
        if (!ctx->larray || !ctx->nbits || !ctx->mlz || !ctx->acf || !ctx->shift_value
2131
1.02k
            || !ctx->last_shift_value || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
2132
0
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2133
0
            return AVERROR(ENOMEM);
2134
0
        }
2135
2136
1.02k
        ret = ff_mlz_init_dict(avctx, ctx->mlz);
2137
1.02k
        if (ret < 0)
2138
0
            return ret;
2139
1.02k
        ff_mlz_flush_dict(ctx->mlz);
2140
2141
189k
        for (c = 0; c < channels; ++c) {
2142
188k
            ctx->raw_mantissa[c] = av_calloc(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
2143
188k
            if (!ctx->raw_mantissa[c]) {
2144
0
                av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2145
0
                return AVERROR(ENOMEM);
2146
0
            }
2147
188k
        }
2148
1.02k
    }
2149
2150
1.55k
    channel_size      = sconf->frame_length + sconf->max_order;
2151
2152
    // allocate previous raw sample buffer
2153
1.55k
    ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
2154
1.55k
    ctx->raw_buffer       = av_calloc(channels * channel_size, sizeof(*ctx->raw_buffer));
2155
1.55k
    ctx->raw_samples      = av_malloc_array(channels, sizeof(*ctx->raw_samples));
2156
1.55k
    if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
2157
0
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2158
0
        return AVERROR(ENOMEM);
2159
0
    }
2160
2161
    // assign raw samples buffers
2162
1.55k
    ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
2163
230k
    for (c = 1; c < channels; c++)
2164
229k
        ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
2165
2166
    // allocate crc buffer
2167
1.55k
    if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
2168
157
        (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
2169
150
        ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
2170
150
                                          channels *
2171
150
                                          av_get_bytes_per_sample(avctx->sample_fmt),
2172
150
                                          sizeof(*ctx->crc_buffer));
2173
150
        if (!ctx->crc_buffer) {
2174
0
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2175
0
            return AVERROR(ENOMEM);
2176
0
        }
2177
150
    }
2178
2179
1.55k
    ff_bswapdsp_init(&ctx->bdsp);
2180
2181
1.55k
    return 0;
2182
1.55k
}
2183
2184
2185
/** Flush (reset) the frame ID after seeking.
2186
 */
2187
static av_cold void flush(AVCodecContext *avctx)
2188
64.4k
{
2189
64.4k
    ALSDecContext *ctx = avctx->priv_data;
2190
2191
64.4k
    ctx->frame_id = 0;
2192
64.4k
}
2193
2194
static const AVOption options[] = {
2195
    { "max_order", "Sets the maximum order (ALS simple profile allows max 15)", offsetof(ALSDecContext, user_max_order), AV_OPT_TYPE_INT, { .i64 = 1023 }, 0, 1023, AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM },
2196
    { NULL }
2197
};
2198
2199
static const AVClass als_class = {
2200
    .class_name = "als",
2201
    .item_name  = av_default_item_name,
2202
    .option     = options,
2203
    .version    = LIBAVUTIL_VERSION_INT,
2204
};
2205
2206
const FFCodec ff_als_decoder = {
2207
    .p.name         = "als",
2208
    CODEC_LONG_NAME("MPEG-4 Audio Lossless Coding (ALS)"),
2209
    .p.type         = AVMEDIA_TYPE_AUDIO,
2210
    .p.id           = AV_CODEC_ID_MP4ALS,
2211
    .priv_data_size = sizeof(ALSDecContext),
2212
    .init           = decode_init,
2213
    .close          = decode_end,
2214
    FF_CODEC_DECODE_CB(decode_frame),
2215
    .p.priv_class   = &als_class,
2216
    .flush          = flush,
2217
    .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
2218
    .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
2219
};