Coverage Report

Created: 2025-11-16 07:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ffmpeg/libavcodec/ilbcdec.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2013, The WebRTC project authors. All rights reserved.
3
 *
4
 * Redistribution and use in source and binary forms, with or without
5
 * modification, are permitted provided that the following conditions are
6
 * met:
7
 *
8
 *   * Redistributions of source code must retain the above copyright
9
 *     notice, this list of conditions and the following disclaimer.
10
 *
11
 *   * Redistributions in binary form must reproduce the above copyright
12
 *     notice, this list of conditions and the following disclaimer in
13
 *     the documentation and/or other materials provided with the
14
 *     distribution.
15
 *
16
 *   * Neither the name of Google nor the names of its contributors may
17
 *     be used to endorse or promote products derived from this software
18
 *     without specific prior written permission.
19
 *
20
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
 */
32
33
#include "libavutil/channel_layout.h"
34
#include "avcodec.h"
35
#include "codec_internal.h"
36
#include "decode.h"
37
#include "get_bits.h"
38
#include "ilbcdata.h"
39
40
1.72k
#define LPC_N_20MS            1
41
626
#define LPC_N_30MS            2
42
#define LPC_N_MAX             2
43
162k
#define LSF_NSPLIT            3
44
#define NASUB_MAX             4
45
3.72M
#define LPC_FILTERORDER       10
46
#define NSUB_MAX              6
47
3.15M
#define SUBL                  40
48
49
37.9k
#define ST_MEM_L_TBL          85
50
50.2k
#define MEM_LF_TBL            147
51
#define STATE_SHORT_LEN_20MS  57
52
#define STATE_SHORT_LEN_30MS  58
53
54
#define BLOCKL_MAX            240
55
226k
#define CB_MEML               147
56
100k
#define CB_NSTAGES            3
57
79.4k
#define CB_HALFFILTERLEN      4
58
31.6k
#define CB_FILTERLEN          8
59
60
#define ENH_NBLOCKS_TOT 8
61
70.0k
#define ENH_BLOCKL     80
62
#define ENH_BUFL     (ENH_NBLOCKS_TOT)*ENH_BLOCKL
63
#define ENH_BUFL_FILTEROVERHEAD  3
64
#define BLOCKL_MAX      240
65
1.72k
#define NSUB_20MS         4
66
626
#define NSUB_30MS         6
67
#define NSUB_MAX          6
68
1.72k
#define NASUB_20MS        2
69
626
#define NASUB_30MS        4
70
#define NASUB_MAX         4
71
60.2k
#define STATE_LEN        80
72
626
#define STATE_SHORT_LEN_30MS  58
73
1.72k
#define STATE_SHORT_LEN_20MS  57
74
75
247M
#define SPL_MUL_16_16(a, b) ((int32_t) (((int16_t)(a)) * ((int16_t)(b))))
76
5.76M
#define SPL_MUL_16_16_RSFT(a, b, c) (SPL_MUL_16_16(a, b) >> (c))
77
78
typedef struct ILBCFrame {
79
    int16_t  lsf[LSF_NSPLIT*LPC_N_MAX];
80
    int16_t  cb_index[CB_NSTAGES*(NASUB_MAX + 1)];
81
    int16_t  gain_index[CB_NSTAGES*(NASUB_MAX + 1)];
82
    int16_t  ifm;
83
    int16_t  state_first;
84
    int16_t  idx[STATE_SHORT_LEN_30MS];
85
    int16_t  firstbits;
86
    int16_t  start;
87
} ILBCFrame;
88
89
typedef struct ILBCContext {
90
    AVClass         *class;
91
    int              enhancer;
92
93
    int              mode;
94
    ILBCFrame        frame;
95
96
    int              prev_enh_pl;
97
    int              consPLICount;
98
    int              last_lag;
99
    int              state_short_len;
100
    int              lpc_n;
101
    int16_t          nasub;
102
    int16_t          nsub;
103
    int              block_samples;
104
    int16_t          no_of_words;
105
    int16_t          no_of_bytes;
106
    int16_t          lsfdeq[LPC_FILTERORDER*LPC_N_MAX];
107
    int16_t          lsfold[LPC_FILTERORDER];
108
    int16_t          syntMem[LPC_FILTERORDER];
109
    int16_t          lsfdeqold[LPC_FILTERORDER];
110
    int16_t          weightdenum[(LPC_FILTERORDER + 1) * NSUB_MAX];
111
    int16_t          syntdenum[NSUB_MAX * (LPC_FILTERORDER + 1)];
112
    int16_t          old_syntdenum[NSUB_MAX * (LPC_FILTERORDER + 1)];
113
    int16_t          enh_buf[ENH_BUFL+ENH_BUFL_FILTEROVERHEAD];
114
    int16_t          enh_period[ENH_NBLOCKS_TOT];
115
    int16_t          prevResidual[NSUB_MAX*SUBL];
116
    int16_t          decresidual[BLOCKL_MAX];
117
    int16_t          plc_residual[BLOCKL_MAX + LPC_FILTERORDER];
118
    int16_t          seed;
119
    int16_t          prevPLI;
120
    int16_t          prevScale;
121
    int16_t          prevLag;
122
    int16_t          per_square;
123
    int16_t          prev_lpc[LPC_FILTERORDER + 1];
124
    int16_t          plc_lpc[LPC_FILTERORDER + 1];
125
    int16_t          hpimemx[2];
126
    int16_t          hpimemy[4];
127
} ILBCContext;
128
129
static int unpack_frame(ILBCContext *s, const uint8_t *buf, int size)
130
196k
{
131
196k
    ILBCFrame *frame = &s->frame;
132
196k
    GetBitContext gb0, *const gb = &gb0;
133
196k
    int j, ret;
134
135
196k
    if ((ret = init_get_bits8(gb, buf, size)) < 0)
136
0
        return ret;
137
138
196k
    frame->lsf[0] = get_bits(gb, 6);
139
196k
    frame->lsf[1] = get_bits(gb, 7);
140
196k
    frame->lsf[2] = get_bits(gb, 7);
141
142
196k
    if (s->mode == 20) {
143
173k
        frame->start          = get_bits(gb, 2);
144
173k
        frame->state_first    = get_bits1(gb);
145
173k
        frame->ifm            = get_bits(gb, 6);
146
173k
        frame->cb_index[0]    = get_bits(gb, 6) << 1;
147
173k
        frame->gain_index[0]  = get_bits(gb, 2) << 3;
148
173k
        frame->gain_index[1]  = get_bits1(gb) << 3;
149
173k
        frame->cb_index[3]    = get_bits(gb, 7) << 1;
150
173k
        frame->gain_index[3]  = get_bits1(gb) << 4;
151
173k
        frame->gain_index[4]  = get_bits1(gb) << 3;
152
173k
        frame->gain_index[6]  = get_bits1(gb) << 4;
153
173k
    } else {
154
23.3k
        frame->lsf[3]         = get_bits(gb, 6);
155
23.3k
        frame->lsf[4]         = get_bits(gb, 7);
156
23.3k
        frame->lsf[5]         = get_bits(gb, 7);
157
23.3k
        frame->start          = get_bits(gb, 3);
158
23.3k
        frame->state_first    = get_bits1(gb);
159
23.3k
        frame->ifm            = get_bits(gb, 6);
160
23.3k
        frame->cb_index[0]    = get_bits(gb, 4) << 3;
161
23.3k
        frame->gain_index[0]  = get_bits1(gb) << 4;
162
23.3k
        frame->gain_index[1]  = get_bits1(gb) << 3;
163
23.3k
        frame->cb_index[3]    = get_bits(gb, 6) << 2;
164
23.3k
        frame->gain_index[3]  = get_bits1(gb) << 4;
165
23.3k
        frame->gain_index[4]  = get_bits1(gb) << 3;
166
23.3k
    }
167
168
9.64M
    for (j = 0; j < 48; j++)
169
9.45M
        frame->idx[j] = get_bits1(gb) << 2;
170
171
196k
    if (s->mode == 20) {
172
1.73M
        for (; j < 57; j++)
173
1.56M
            frame->idx[j] = get_bits1(gb) << 2;
174
175
173k
        frame->gain_index[1] |= get_bits1(gb) << 2;
176
173k
        frame->gain_index[3] |= get_bits(gb, 2) << 2;
177
173k
        frame->gain_index[4] |= get_bits1(gb) << 2;
178
173k
        frame->gain_index[6] |= get_bits1(gb) << 3;
179
173k
        frame->gain_index[7]  = get_bits(gb, 2) << 2;
180
173k
    } else {
181
256k
        for (; j < 58; j++)
182
233k
            frame->idx[j] = get_bits1(gb) << 2;
183
184
23.3k
        frame->cb_index[0]    |= get_bits(gb, 2) << 1;
185
23.3k
        frame->gain_index[0]  |= get_bits1(gb) << 3;
186
23.3k
        frame->gain_index[1]  |= get_bits1(gb) << 2;
187
23.3k
        frame->cb_index[3]    |= get_bits1(gb) << 1;
188
23.3k
        frame->cb_index[6]     = get_bits1(gb) << 7;
189
23.3k
        frame->cb_index[6]    |= get_bits(gb, 6) << 1;
190
23.3k
        frame->cb_index[9]     = get_bits(gb, 7) << 1;
191
23.3k
        frame->cb_index[12]    = get_bits(gb, 3) << 5;
192
23.3k
        frame->cb_index[12]   |= get_bits(gb, 4) << 1;
193
23.3k
        frame->gain_index[3]  |= get_bits(gb, 2) << 2;
194
23.3k
        frame->gain_index[4]  |= get_bits(gb, 2) << 1;
195
23.3k
        frame->gain_index[6]   = get_bits(gb, 2) << 3;
196
23.3k
        frame->gain_index[7]   = get_bits(gb, 2) << 2;
197
23.3k
        frame->gain_index[9]   = get_bits1(gb) << 4;
198
23.3k
        frame->gain_index[10]  = get_bits1(gb) << 3;
199
23.3k
        frame->gain_index[12]  = get_bits1(gb) << 4;
200
23.3k
        frame->gain_index[13]  = get_bits1(gb) << 3;
201
23.3k
    }
202
203
11.2M
    for (j = 0; j < 56; j++)
204
11.0M
        frame->idx[j] |= get_bits(gb, 2);
205
206
196k
    if (s->mode == 20) {
207
173k
        frame->idx[56]        |= get_bits(gb, 2);
208
173k
        frame->cb_index[0]    |= get_bits1(gb);
209
173k
        frame->cb_index[1]     = get_bits(gb, 7);
210
173k
        frame->cb_index[2]     = get_bits(gb, 6) << 1;
211
173k
        frame->cb_index[2]    |= get_bits1(gb);
212
173k
        frame->gain_index[0]  |= get_bits(gb, 3);
213
173k
        frame->gain_index[1]  |= get_bits(gb, 2);
214
173k
        frame->gain_index[2]   = get_bits(gb, 3);
215
173k
        frame->cb_index[3]    |= get_bits1(gb);
216
173k
        frame->cb_index[4]     = get_bits(gb, 6) << 1;
217
173k
        frame->cb_index[4]    |= get_bits1(gb);
218
173k
        frame->cb_index[5]     = get_bits(gb, 7);
219
173k
        frame->cb_index[6]     = get_bits(gb, 8);
220
173k
        frame->cb_index[7]     = get_bits(gb, 8);
221
173k
        frame->cb_index[8]     = get_bits(gb, 8);
222
173k
        frame->gain_index[3]  |= get_bits(gb, 2);
223
173k
        frame->gain_index[4]  |= get_bits(gb, 2);
224
173k
        frame->gain_index[5]   = get_bits(gb, 3);
225
173k
        frame->gain_index[6]  |= get_bits(gb, 3);
226
173k
        frame->gain_index[7]  |= get_bits(gb, 2);
227
173k
        frame->gain_index[8]   = get_bits(gb, 3);
228
173k
    } else {
229
23.3k
        frame->idx[56]        |= get_bits(gb, 2);
230
23.3k
        frame->idx[57]        |= get_bits(gb, 2);
231
23.3k
        frame->cb_index[0]    |= get_bits1(gb);
232
23.3k
        frame->cb_index[1]     = get_bits(gb, 7);
233
23.3k
        frame->cb_index[2]     = get_bits(gb, 4) << 3;
234
23.3k
        frame->cb_index[2]    |= get_bits(gb, 3);
235
23.3k
        frame->gain_index[0]  |= get_bits(gb, 3);
236
23.3k
        frame->gain_index[1]  |= get_bits(gb, 2);
237
23.3k
        frame->gain_index[2]   = get_bits(gb, 3);
238
23.3k
        frame->cb_index[3]    |= get_bits1(gb);
239
23.3k
        frame->cb_index[4]     = get_bits(gb, 4) << 3;
240
23.3k
        frame->cb_index[4]    |= get_bits(gb, 3);
241
23.3k
        frame->cb_index[5]     = get_bits(gb, 7);
242
23.3k
        frame->cb_index[6]    |= get_bits1(gb);
243
23.3k
        frame->cb_index[7]     = get_bits(gb, 5) << 3;
244
23.3k
        frame->cb_index[7]    |= get_bits(gb, 3);
245
23.3k
        frame->cb_index[8]     = get_bits(gb, 8);
246
23.3k
        frame->cb_index[9]    |= get_bits1(gb);
247
23.3k
        frame->cb_index[10]    = get_bits(gb, 4) << 4;
248
23.3k
        frame->cb_index[10]   |= get_bits(gb, 4);
249
23.3k
        frame->cb_index[11]    = get_bits(gb, 8);
250
23.3k
        frame->cb_index[12]   |= get_bits1(gb);
251
23.3k
        frame->cb_index[13]    = get_bits(gb, 3) << 5;
252
23.3k
        frame->cb_index[13]   |= get_bits(gb, 5);
253
23.3k
        frame->cb_index[14]    = get_bits(gb, 8);
254
23.3k
        frame->gain_index[3]  |= get_bits(gb, 2);
255
23.3k
        frame->gain_index[4]  |= get_bits1(gb);
256
23.3k
        frame->gain_index[5]   = get_bits(gb, 3);
257
23.3k
        frame->gain_index[6]  |= get_bits(gb, 3);
258
23.3k
        frame->gain_index[7]  |= get_bits(gb, 2);
259
23.3k
        frame->gain_index[8]   = get_bits(gb, 3);
260
23.3k
        frame->gain_index[9]  |= get_bits(gb, 4);
261
23.3k
        frame->gain_index[10] |= get_bits1(gb) << 2;
262
23.3k
        frame->gain_index[10] |= get_bits(gb, 2);
263
23.3k
        frame->gain_index[11]  = get_bits(gb, 3);
264
23.3k
        frame->gain_index[12] |= get_bits(gb, 4);
265
23.3k
        frame->gain_index[13] |= get_bits(gb, 3);
266
23.3k
        frame->gain_index[14]  = get_bits(gb, 3);
267
23.3k
    }
268
269
196k
    return get_bits1(gb);
270
196k
}
271
272
static void index_conv(int16_t *index)
273
18.9k
{
274
18.9k
    int k;
275
276
56.8k
    for (k = 4; k < 6; k++) {
277
37.9k
        if (index[k] >= 44 && index[k] < 108) {
278
2.85k
            index[k] += 64;
279
35.0k
        } else if (index[k] >= 108 && index[k] < 128) {
280
1.76k
            index[k] += 128;
281
1.76k
        }
282
37.9k
    }
283
18.9k
}
284
285
static void lsf_dequantization(int16_t *lsfdeq, int16_t *index, int16_t lpc_n)
286
18.9k
{
287
18.9k
    int i, j, pos = 0, cb_pos = 0;
288
289
75.8k
    for (i = 0; i < LSF_NSPLIT; i++) {
290
246k
        for (j = 0; j < lsf_dim_codebook[i]; j++) {
291
189k
            lsfdeq[pos + j] = lsf_codebook[cb_pos + index[i] * lsf_dim_codebook[i] + j];
292
189k
        }
293
294
56.8k
        pos    += lsf_dim_codebook[i];
295
56.8k
        cb_pos += lsf_size_codebook[i] * lsf_dim_codebook[i];
296
56.8k
    }
297
298
18.9k
    if (lpc_n > 1) {
299
6.19k
        pos = 0;
300
6.19k
        cb_pos = 0;
301
24.7k
        for (i = 0; i < LSF_NSPLIT; i++) {
302
80.5k
            for (j = 0; j < lsf_dim_codebook[i]; j++) {
303
61.9k
                lsfdeq[LPC_FILTERORDER + pos + j] = lsf_codebook[cb_pos +
304
61.9k
                    index[LSF_NSPLIT + i] * lsf_dim_codebook[i] + j];
305
61.9k
            }
306
307
18.5k
            pos    += lsf_dim_codebook[i];
308
18.5k
            cb_pos += lsf_size_codebook[i] * lsf_dim_codebook[i];
309
18.5k
        }
310
6.19k
    }
311
18.9k
}
312
313
static void lsf_check_stability(int16_t *lsf, int dim, int nb_vectors)
314
18.9k
{
315
56.8k
    for (int n = 0; n < 2; n++) {
316
88.1k
        for (int m = 0; m < nb_vectors; m++) {
317
502k
            for (int k = 0; k < dim - 1; k++) {
318
452k
                int i = m * dim + k;
319
320
452k
                if ((lsf[i + 1] - lsf[i]) < 319) {
321
20.7k
                    if (lsf[i + 1] < lsf[i]) {
322
9.72k
                        lsf[i + 1] = lsf[i] + 160;
323
9.72k
                        lsf[i]     = lsf[i + 1] - 160;
324
11.0k
                    } else {
325
11.0k
                        lsf[i]     -= 160;
326
11.0k
                        lsf[i + 1] += 160;
327
11.0k
                    }
328
20.7k
                }
329
330
452k
                lsf[i] = av_clip(lsf[i], 82, 25723);
331
452k
            }
332
50.2k
        }
333
37.9k
    }
334
18.9k
}
335
336
static void lsf_interpolate(int16_t *out, const int16_t *in1,
337
                            const int16_t *in2, int16_t coef,
338
                            int size)
339
88.1k
{
340
88.1k
    int invcoef = 16384 - coef, i;
341
342
970k
    for (i = 0; i < size; i++)
343
881k
        out[i] = (coef * in1[i] + invcoef * in2[i] + 8192) >> 14;
344
88.1k
}
345
346
static void lsf2lsp(const int16_t *lsf, int16_t *lsp, int order)
347
88.1k
{
348
88.1k
    int16_t diff, freq;
349
88.1k
    int32_t tmp;
350
88.1k
    int i, k;
351
352
970k
    for (i = 0; i < order; i++) {
353
881k
        freq = (lsf[i] * 20861) >> 15;
354
        /* 20861: 1.0/(2.0*PI) in Q17 */
355
        /*
356
           Upper 8 bits give the index k and
357
           Lower 8 bits give the difference, which needs
358
           to be approximated linearly
359
         */
360
881k
        k = FFMIN(freq >> 8, 63);
361
881k
        diff = freq & 0xFF;
362
363
        /* Calculate linear approximation */
364
881k
        tmp = cos_derivative_tbl[k] * diff;
365
881k
        lsp[i] = cos_tbl[k] + (tmp >> 12);
366
881k
    }
367
88.1k
}
368
369
static void get_lsp_poly(const int16_t *lsp, int32_t *f)
370
176k
{
371
176k
    int16_t high, low;
372
176k
    int i, j, k, l;
373
176k
    int32_t tmp;
374
375
176k
    f[0] = 16777216;
376
176k
    f[1] = lsp[0] * -1024;
377
378
881k
    for (i = 2, k = 2, l = 2; i <= 5; i++, k += 2) {
379
705k
        f[l] = f[l - 2];
380
381
2.46M
        for (j = i; j > 1; j--, l--) {
382
1.76M
            high = f[l - 1] >> 16;
383
1.76M
            low = (f[l - 1] - (high * (1 << 16))) >> 1;
384
385
1.76M
            tmp = ((high * lsp[k]) * 4) + (((low * lsp[k]) >> 15) * 4);
386
387
1.76M
            f[l] += f[l - 2];
388
1.76M
            f[l] -= (unsigned)tmp;
389
1.76M
        }
390
391
705k
        f[l] -= lsp[k] * (1 << 10);
392
705k
        l += i;
393
705k
    }
394
176k
}
395
396
static void lsf2poly(int16_t *a, const int16_t *lsf)
397
88.1k
{
398
88.1k
    int32_t f[2][6];
399
88.1k
    int16_t lsp[10];
400
88.1k
    int32_t tmp;
401
88.1k
    int i;
402
403
88.1k
    lsf2lsp(lsf, lsp, LPC_FILTERORDER);
404
405
88.1k
    get_lsp_poly(&lsp[0], f[0]);
406
88.1k
    get_lsp_poly(&lsp[1], f[1]);
407
408
529k
    for (i = 5; i > 0; i--) {
409
440k
        f[0][i] += (unsigned)f[0][i - 1];
410
440k
        f[1][i] -= (unsigned)f[1][i - 1];
411
440k
    }
412
413
88.1k
    a[0] = 4096;
414
529k
    for (i = 5; i > 0; i--) {
415
440k
        tmp = f[0][6 - i] + (unsigned)f[1][6 - i] + 4096;
416
440k
        a[6 - i] = tmp >> 13;
417
418
440k
        tmp = f[0][6 - i] - (unsigned)f[1][6 - i] + 4096;
419
440k
        a[5 + i] = tmp >> 13;
420
440k
    }
421
88.1k
}
422
423
static void lsp_interpolate2polydec(int16_t *a, const int16_t *lsf1,
424
                                    const int16_t *lsf2, int coef, int length)
425
88.1k
{
426
88.1k
    int16_t lsftmp[LPC_FILTERORDER];
427
428
88.1k
    lsf_interpolate(lsftmp, lsf1, lsf2, coef, length);
429
88.1k
    lsf2poly(a, lsftmp);
430
88.1k
}
431
432
static void bw_expand(int16_t *out, const int16_t *in, const int16_t *coef, int length)
433
88.1k
{
434
88.1k
    int i;
435
436
88.1k
    out[0] = in[0];
437
970k
    for (i = 1; i < length; i++)
438
881k
        out[i] = (coef[i] * in[i] + 16384) >> 15;
439
88.1k
}
440
441
static void lsp_interpolate(int16_t *syntdenum, int16_t *weightdenum,
442
                            const int16_t *lsfdeq, int16_t length,
443
                            ILBCContext *s)
444
18.9k
{
445
18.9k
    int16_t lp[LPC_FILTERORDER + 1];
446
18.9k
    const int16_t *const lsfdeq2 = lsfdeq + length;
447
18.9k
    int i, pos, lp_length;
448
449
18.9k
    lp_length = length + 1;
450
451
18.9k
    if (s->mode == 30) {
452
6.19k
        lsp_interpolate2polydec(lp, (*s).lsfdeqold, lsfdeq, lsf_weight_30ms[0], length);
453
6.19k
        memcpy(syntdenum, lp, lp_length * 2);
454
6.19k
        bw_expand(weightdenum, lp, kLpcChirpSyntDenum, lp_length);
455
456
6.19k
        pos = lp_length;
457
37.1k
        for (i = 1; i < 6; i++) {
458
30.9k
            lsp_interpolate2polydec(lp, lsfdeq, lsfdeq2,
459
30.9k
                                                 lsf_weight_30ms[i],
460
30.9k
                                                 length);
461
30.9k
            memcpy(syntdenum + pos, lp, lp_length * 2);
462
30.9k
            bw_expand(weightdenum + pos, lp, kLpcChirpSyntDenum, lp_length);
463
30.9k
            pos += lp_length;
464
30.9k
        }
465
12.7k
    } else {
466
12.7k
        pos = 0;
467
63.7k
        for (i = 0; i < s->nsub; i++) {
468
51.0k
            lsp_interpolate2polydec(lp, s->lsfdeqold, lsfdeq,
469
51.0k
                                    lsf_weight_20ms[i], length);
470
51.0k
            memcpy(syntdenum + pos, lp, lp_length * 2);
471
51.0k
            bw_expand(weightdenum + pos, lp, kLpcChirpSyntDenum, lp_length);
472
51.0k
            pos += lp_length;
473
51.0k
        }
474
12.7k
    }
475
476
18.9k
    if (s->mode == 30) {
477
6.19k
        memcpy(s->lsfdeqold, lsfdeq2, length * 2);
478
12.7k
    } else {
479
12.7k
        memcpy(s->lsfdeqold, lsfdeq, length * 2);
480
12.7k
    }
481
18.9k
}
482
483
static void filter_mafq12(const int16_t *in_ptr, int16_t *out_ptr,
484
                          const int16_t *B, int16_t B_length,
485
                          int16_t length)
486
43.7k
{
487
43.7k
    int o, i, j;
488
489
2.16M
    for (i = 0; i < length; i++) {
490
2.12M
        const int16_t *b_ptr = &B[0];
491
2.12M
        const int16_t *x_ptr = &in_ptr[i];
492
493
2.12M
        o = 0;
494
22.9M
        for (j = 0; j < B_length; j++)
495
20.8M
            o += b_ptr[j] * *x_ptr--;
496
497
2.12M
        o = av_clip(o, -134217728, 134215679);
498
499
2.12M
        out_ptr[i] = ((o + 2048) >> 12);
500
2.12M
    }
501
43.7k
}
502
503
static void filter_arfq12(const int16_t *data_in,
504
                          int16_t *data_out,
505
                          const int16_t *coefficients,
506
                          int coefficients_length,
507
                          int data_length)
508
853k
{
509
853k
    int i, j;
510
511
36.3M
    for (i = 0; i < data_length; i++) {
512
35.5M
        int output = 0, sum = 0;
513
514
390M
        for (j = coefficients_length - 1; j > 0; j--) {
515
355M
            sum += (unsigned)(coefficients[j] * data_out[i - j]);
516
355M
        }
517
518
35.5M
        output = coefficients[0] * data_in[i] - (unsigned)sum;
519
35.5M
        output = av_clip(output, -134217728, 134215679);
520
521
35.5M
        data_out[i] = (output + 2048) >> 12;
522
35.5M
    }
523
853k
}
524
525
static void state_construct(int16_t ifm, const int16_t *idx,
526
                            const int16_t *synt_denum, int16_t *Out_fix,
527
                           int16_t len)
528
18.9k
{
529
18.9k
    int k;
530
18.9k
    int16_t maxVal;
531
18.9k
    int16_t *tmp1, *tmp3;
532
18.9k
    const int16_t *tmp2;
533
    /* Stack based */
534
18.9k
    int16_t numerator[1 + LPC_FILTERORDER];
535
18.9k
    int16_t sampleValVec[2 * STATE_SHORT_LEN_30MS + LPC_FILTERORDER];
536
18.9k
    int16_t sampleMaVec[2 * STATE_SHORT_LEN_30MS + LPC_FILTERORDER];
537
18.9k
    int16_t *sampleVal = &sampleValVec[LPC_FILTERORDER];
538
18.9k
    int16_t *sampleMa = &sampleMaVec[LPC_FILTERORDER];
539
18.9k
    int16_t *sampleAr = &sampleValVec[LPC_FILTERORDER];
540
541
    /* initialization of coefficients */
542
543
227k
    for (k = 0; k < LPC_FILTERORDER + 1; k++) {
544
208k
        numerator[k] = synt_denum[LPC_FILTERORDER - k];
545
208k
    }
546
547
    /* decoding of the maximum value */
548
549
18.9k
    maxVal = frg_quant_mod[ifm];
550
551
    /* decoding of the sample values */
552
18.9k
    tmp1 = sampleVal;
553
18.9k
    tmp2 = &idx[len - 1];
554
555
18.9k
    if (ifm < 37) {
556
530k
        for (k = 0; k < len; k++) {
557
            /*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 2097152 (= 0.5 << 22)
558
               maxVal is in Q8 and result is in Q(-1) */
559
521k
            (*tmp1) = (int16_t) ((SPL_MUL_16_16(maxVal, ilbc_state[(*tmp2)]) + 2097152) >> 22);
560
521k
            tmp1++;
561
521k
            tmp2--;
562
521k
        }
563
9.84k
    } else if (ifm < 59) {
564
447k
        for (k = 0; k < len; k++) {
565
            /*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 262144 (= 0.5 << 19)
566
               maxVal is in Q5 and result is in Q(-1) */
567
439k
            (*tmp1) = (int16_t) ((SPL_MUL_16_16(maxVal, ilbc_state[(*tmp2)]) + 262144) >> 19);
568
439k
            tmp1++;
569
439k
            tmp2--;
570
439k
        }
571
7.65k
    } else {
572
127k
        for (k = 0; k < len; k++) {
573
            /*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 65536 (= 0.5 << 17)
574
               maxVal is in Q3 and result is in Q(-1) */
575
125k
            (*tmp1) = (int16_t) ((SPL_MUL_16_16(maxVal, ilbc_state[(*tmp2)]) + 65536) >> 17);
576
125k
            tmp1++;
577
125k
            tmp2--;
578
125k
        }
579
2.19k
    }
580
581
    /* Set the rest of the data to zero */
582
18.9k
    memset(&sampleVal[len], 0, len * 2);
583
584
    /* circular convolution with all-pass filter */
585
586
    /* Set the state to zero */
587
18.9k
    memset(sampleValVec, 0, LPC_FILTERORDER * 2);
588
589
    /* Run MA filter + AR filter */
590
18.9k
    filter_mafq12(sampleVal, sampleMa, numerator, LPC_FILTERORDER + 1, len + LPC_FILTERORDER);
591
18.9k
    memset(&sampleMa[len + LPC_FILTERORDER], 0, (len - LPC_FILTERORDER) * 2);
592
18.9k
    filter_arfq12(sampleMa, sampleAr, synt_denum, LPC_FILTERORDER + 1, 2 * len);
593
594
18.9k
    tmp1 = &sampleAr[len - 1];
595
18.9k
    tmp2 = &sampleAr[2 * len - 1];
596
18.9k
    tmp3 = Out_fix;
597
1.10M
    for (k = 0; k < len; k++) {
598
1.08M
        (*tmp3) = (*tmp1) + (*tmp2);
599
1.08M
        tmp1--;
600
1.08M
        tmp2--;
601
1.08M
        tmp3++;
602
1.08M
    }
603
18.9k
}
604
605
static int16_t gain_dequantization(int index, int max_in, int stage)
606
207k
{
607
207k
    int16_t scale = FFMAX(1638, FFABS(max_in));
608
609
207k
    return ((scale * ilbc_gain[stage][index]) + 8192) >> 14;
610
207k
}
611
612
static void vector_rmultiplication(int16_t *out, const int16_t *in,
613
                                   const int16_t *win,
614
                                   int length, int shift)
615
10.2k
{
616
50.4k
    for (int i = 0; i < length; i++)
617
40.2k
        out[i] = (in[i] * win[-i]) >> shift;
618
10.2k
}
619
620
static void vector_multiplication(int16_t *out, const int16_t *in,
621
                                  const int16_t *win, int length,
622
                                  int shift)
623
10.2k
{
624
50.4k
    for (int i = 0; i < length; i++)
625
40.2k
        out[i] = (in[i] * win[i]) >> shift;
626
10.2k
}
627
628
static void add_vector_and_shift(int16_t *out, const int16_t *in1,
629
                                 const int16_t *in2, int length,
630
                                 int shift)
631
10.2k
{
632
50.4k
    for (int i = 0; i < length; i++)
633
40.2k
        out[i] = (in1[i] + in2[i]) >> shift;
634
10.2k
}
635
636
static void create_augmented_vector(int index, const int16_t *buffer, int16_t *cbVec)
637
10.2k
{
638
10.2k
    int16_t cbVecTmp[4];
639
10.2k
    int interpolation_length = FFMIN(4, index);
640
10.2k
    int16_t ilow = index - interpolation_length;
641
642
10.2k
    memcpy(cbVec, buffer - index, index * 2);
643
644
10.2k
    vector_multiplication(&cbVec[ilow], buffer - index - interpolation_length, alpha, interpolation_length, 15);
645
10.2k
    vector_rmultiplication(cbVecTmp, buffer - interpolation_length, &alpha[interpolation_length - 1], interpolation_length, 15);
646
10.2k
    add_vector_and_shift(&cbVec[ilow], &cbVec[ilow], cbVecTmp, interpolation_length, 0);
647
648
10.2k
    memcpy(cbVec + index, buffer - index, FFMIN(SUBL - index, index) * sizeof(*cbVec));
649
10.2k
}
650
651
static void get_codebook(int16_t * cbvec,   /* (o) Constructed codebook vector */
652
                     int16_t * mem,     /* (i) Codebook buffer */
653
                     int16_t index,     /* (i) Codebook index */
654
                     int16_t lMem,      /* (i) Length of codebook buffer */
655
                     int16_t cbveclen   /* (i) Codebook vector length */
656
)
657
207k
{
658
207k
    int16_t k, base_size;
659
207k
    int16_t lag;
660
    /* Stack based */
661
207k
    int16_t tempbuff2[SUBL + 5] = {0};
662
663
    /* Determine size of codebook sections */
664
207k
    base_size = lMem - cbveclen + 1;
665
666
207k
    if (cbveclen == SUBL) {
667
150k
        base_size += cbveclen / 2;
668
150k
    }
669
670
    /* No filter -> First codebook section */
671
207k
    if (index < lMem - cbveclen + 1) {
672
        /* first non-interpolated vectors */
673
674
179k
        k = index + cbveclen;
675
        /* get vector */
676
179k
        memcpy(cbvec, mem + lMem - k, cbveclen * 2);
677
179k
    } else if (index < base_size) {
678
3.35k
        memset(cbvec, 0, cbveclen * 2);
679
680
        /* Calculate lag */
681
682
3.35k
        k = (int16_t) SPL_MUL_16_16(2, (index - (lMem - cbveclen + 1))) + cbveclen;
683
684
3.35k
        lag = k / 2;
685
686
3.35k
        create_augmented_vector(lag, mem + lMem, cbvec);
687
24.7k
    } else {
688
24.7k
        int16_t memIndTest;
689
690
        /* first non-interpolated vectors */
691
692
24.7k
        if (index - base_size < lMem - cbveclen + 1) {
693
694
            /* Set up filter memory, stuff zeros outside memory buffer */
695
696
17.8k
            memIndTest = lMem - (index - base_size + cbveclen);
697
698
17.8k
            memset(mem - CB_HALFFILTERLEN, 0, CB_HALFFILTERLEN * 2);
699
17.8k
            memset(mem + lMem, 0, CB_HALFFILTERLEN * 2);
700
701
            /* do filtering to get the codebook vector */
702
703
17.8k
            filter_mafq12(&mem[memIndTest + 4], cbvec, kCbFiltersRev, CB_FILTERLEN, cbveclen);
704
17.8k
        } else {
705
6.91k
            memset(cbvec, 0, cbveclen * 2);
706
            /* interpolated vectors */
707
            /* Stuff zeros outside memory buffer  */
708
6.91k
            memIndTest = lMem - cbveclen - CB_FILTERLEN;
709
6.91k
            memset(mem + lMem, 0, CB_HALFFILTERLEN * 2);
710
711
            /* do filtering */
712
6.91k
            filter_mafq12(&mem[memIndTest + 7], tempbuff2, kCbFiltersRev, CB_FILTERLEN, (int16_t) (cbveclen + 5));
713
714
            /* Calculate lag index */
715
6.91k
            lag = (cbveclen << 1) - 20 + index - base_size - lMem - 1;
716
717
6.91k
            create_augmented_vector(lag, tempbuff2 + SUBL + 5, cbvec);
718
6.91k
        }
719
24.7k
    }
720
207k
}
721
722
static void construct_vector (
723
    int16_t *decvector,   /* (o) Decoded vector */
724
    const int16_t *index,       /* (i) Codebook indices */
725
    const int16_t *gain_index,  /* (i) Gain quantization indices */
726
    int16_t *mem,         /* (i) Buffer for codevector construction */
727
    int16_t lMem,         /* (i) Length of buffer */
728
    int16_t veclen)
729
69.2k
{
730
69.2k
    int16_t gain[CB_NSTAGES];
731
69.2k
    int16_t cbvec0[SUBL];
732
69.2k
    int16_t cbvec1[SUBL];
733
69.2k
    int16_t cbvec2[SUBL];
734
69.2k
    unsigned a32;
735
69.2k
    int16_t *gainPtr;
736
69.2k
    int j;
737
738
    /* gain de-quantization */
739
740
69.2k
    gain[0] = gain_dequantization(gain_index[0], 16384, 0);
741
69.2k
    gain[1] = gain_dequantization(gain_index[1], gain[0], 1);
742
69.2k
    gain[2] = gain_dequantization(gain_index[2], gain[1], 2);
743
744
    /* codebook vector construction and construction of total vector */
745
746
    /* Stack based */
747
69.2k
    get_codebook(cbvec0, mem, index[0], lMem, veclen);
748
69.2k
    get_codebook(cbvec1, mem, index[1], lMem, veclen);
749
69.2k
    get_codebook(cbvec2, mem, index[2], lMem, veclen);
750
751
69.2k
    gainPtr = &gain[0];
752
2.51M
    for (j = 0; j < veclen; j++) {
753
2.44M
        a32 = SPL_MUL_16_16(*gainPtr++, cbvec0[j]);
754
2.44M
        a32 += SPL_MUL_16_16(*gainPtr++, cbvec1[j]);
755
2.44M
        a32 += SPL_MUL_16_16(*gainPtr, cbvec2[j]);
756
2.44M
        gainPtr -= 2;
757
2.44M
        decvector[j] = (int)(a32 + 8192) >> 14;
758
2.44M
    }
759
69.2k
}
760
761
static void reverse_memcpy(int16_t *dest, const int16_t *source, int length)
762
41.8k
{
763
41.8k
    int16_t* destPtr = dest;
764
41.8k
    const int16_t *sourcePtr = source;
765
41.8k
    int j;
766
767
2.88M
    for (j = 0; j < length; j++)
768
2.84M
        *destPtr-- = *sourcePtr++;
769
41.8k
}
770
771
static void decode_residual(ILBCContext *s,
772
                            ILBCFrame *encbits,
773
                            int16_t *decresidual,
774
                            const int16_t *syntdenum)
775
18.9k
{
776
18.9k
    int16_t meml_gotten, Nfor, Nback, diff, start_pos;
777
18.9k
    int16_t subcount, subframe;
778
18.9k
    int16_t *reverseDecresidual = s->enh_buf;        /* Reversed decoded data, used for decoding backwards in time (reuse memory in state) */
779
18.9k
    int16_t *memVec = s->prevResidual;
780
18.9k
    int16_t *mem = &memVec[CB_HALFFILTERLEN];   /* Memory for codebook */
781
782
18.9k
    diff = STATE_LEN - s->state_short_len;
783
784
18.9k
    if (encbits->state_first == 1) {
785
10.2k
        start_pos = (encbits->start - 1) * SUBL;
786
10.2k
    } else {
787
8.73k
        start_pos = (encbits->start - 1) * SUBL + diff;
788
8.73k
    }
789
790
    /* decode scalar part of start state */
791
792
18.9k
    state_construct(encbits->ifm, encbits->idx, &syntdenum[(encbits->start - 1) * (LPC_FILTERORDER + 1)], &decresidual[start_pos], s->state_short_len);
793
794
18.9k
    if (encbits->state_first) { /* put adaptive part in the end */
795
        /* setup memory */
796
10.2k
        memset(mem, 0, (int16_t) (CB_MEML - s->state_short_len) * 2);
797
10.2k
        memcpy(mem + CB_MEML - s->state_short_len, decresidual + start_pos, s->state_short_len * 2);
798
799
        /* construct decoded vector */
800
801
10.2k
        construct_vector(&decresidual[start_pos + s->state_short_len], encbits->cb_index, encbits->gain_index, mem + CB_MEML - ST_MEM_L_TBL, ST_MEM_L_TBL, (int16_t) diff);
802
803
10.2k
    } else { /* put adaptive part in the beginning */
804
        /* setup memory */
805
8.73k
        meml_gotten = s->state_short_len;
806
8.73k
        reverse_memcpy(mem + CB_MEML - 1, decresidual + start_pos, meml_gotten);
807
8.73k
        memset(mem, 0, (int16_t) (CB_MEML - meml_gotten) * 2);
808
809
        /* construct decoded vector */
810
8.73k
        construct_vector(reverseDecresidual, encbits->cb_index, encbits->gain_index, mem + CB_MEML - ST_MEM_L_TBL, ST_MEM_L_TBL, diff);
811
812
        /* get decoded residual from reversed vector */
813
8.73k
        reverse_memcpy(&decresidual[start_pos - 1], reverseDecresidual, diff);
814
8.73k
    }
815
816
    /* counter for predicted subframes */
817
18.9k
    subcount = 1;
818
819
    /* forward prediction of subframes */
820
18.9k
    Nfor = s->nsub - encbits->start - 1;
821
822
18.9k
    if (Nfor > 0) {
823
        /* setup memory */
824
13.7k
        memset(mem, 0, (CB_MEML - STATE_LEN) * 2);
825
13.7k
        memcpy(mem + CB_MEML - STATE_LEN, decresidual + (encbits->start - 1) * SUBL, STATE_LEN * 2);
826
827
        /* loop over subframes to encode */
828
44.7k
        for (subframe = 0; subframe < Nfor; subframe++) {
829
            /* construct decoded vector */
830
31.0k
            construct_vector(&decresidual[(encbits->start + 1 + subframe) * SUBL], encbits->cb_index + subcount * CB_NSTAGES, encbits->gain_index + subcount * CB_NSTAGES, mem, MEM_LF_TBL, SUBL);
831
832
            /* update memory */
833
31.0k
            memmove(mem, mem + SUBL, (CB_MEML - SUBL) * sizeof(*mem));
834
31.0k
            memcpy(mem + CB_MEML - SUBL, &decresidual[(encbits->start + 1 + subframe) * SUBL], SUBL * 2);
835
836
31.0k
            subcount++;
837
31.0k
        }
838
839
13.7k
    }
840
841
    /* backward prediction of subframes */
842
18.9k
    Nback = encbits->start - 1;
843
844
18.9k
    if (Nback > 0) {
845
        /* setup memory */
846
12.1k
        meml_gotten = SUBL * (s->nsub + 1 - encbits->start);
847
12.1k
        if (meml_gotten > CB_MEML) {
848
4.67k
            meml_gotten = CB_MEML;
849
4.67k
        }
850
851
12.1k
        reverse_memcpy(mem + CB_MEML - 1, decresidual + (encbits->start - 1) * SUBL, meml_gotten);
852
12.1k
        memset(mem, 0, (int16_t) (CB_MEML - meml_gotten) * 2);
853
854
        /* loop over subframes to decode */
855
31.4k
        for (subframe = 0; subframe < Nback; subframe++) {
856
            /* construct decoded vector */
857
19.2k
            construct_vector(&reverseDecresidual[subframe * SUBL], encbits->cb_index + subcount * CB_NSTAGES,
858
19.2k
                        encbits->gain_index + subcount * CB_NSTAGES, mem, MEM_LF_TBL, SUBL);
859
860
            /* update memory */
861
19.2k
            memmove(mem, mem + SUBL, (CB_MEML - SUBL) * sizeof(*mem));
862
19.2k
            memcpy(mem + CB_MEML - SUBL, &reverseDecresidual[subframe * SUBL], SUBL * 2);
863
864
19.2k
            subcount++;
865
19.2k
        }
866
867
        /* get decoded residual from reversed vector */
868
12.1k
        reverse_memcpy(decresidual + SUBL * Nback - 1, reverseDecresidual, SUBL * Nback);
869
12.1k
    }
870
18.9k
}
871
872
static int16_t max_abs_value_w16(const int16_t* vector, int length)
873
196k
{
874
196k
    int i = 0, absolute = 0, maximum = 0;
875
876
196k
    if (vector == NULL || length <= 0) {
877
0
        return -1;
878
0
    }
879
880
28.4M
    for (i = 0; i < length; i++) {
881
28.3M
        absolute = FFABS(vector[i]);
882
28.3M
        if (absolute > maximum)
883
1.27M
            maximum = absolute;
884
28.3M
    }
885
886
    // Guard the case for abs(-32768).
887
196k
    return FFMIN(maximum, INT16_MAX);
888
196k
}
889
890
static int16_t get_size_in_bits(uint32_t n)
891
0
{
892
0
    int16_t bits;
893
894
0
    if (0xFFFF0000 & n) {
895
0
        bits = 16;
896
0
    } else {
897
0
        bits = 0;
898
0
    }
899
900
0
    if (0x0000FF00 & (n >> bits)) bits += 8;
901
0
    if (0x000000F0 & (n >> bits)) bits += 4;
902
0
    if (0x0000000C & (n >> bits)) bits += 2;
903
0
    if (0x00000002 & (n >> bits)) bits += 1;
904
0
    if (0x00000001 & (n >> bits)) bits += 1;
905
906
0
    return bits;
907
0
}
908
909
static int32_t scale_dot_product(const int16_t *v1, const int16_t *v2, int length, int scaling)
910
16.4M
{
911
16.4M
    int64_t sum = 0;
912
913
1.04G
    for (int i = 0; i < length; i++)
914
1.03G
        sum += (v1[i] * v2[i]) >> scaling;
915
916
16.4M
    return av_clipl_int32(sum);
917
16.4M
}
918
919
static void correlation(int32_t *corr, int32_t *ener, const int16_t *buffer,
920
                        int16_t lag, int16_t blen, int16_t srange, int16_t scale)
921
0
{
922
0
    const int16_t *w16ptr = &buffer[blen - srange - lag];
923
924
0
    *corr = scale_dot_product(&buffer[blen - srange], w16ptr, srange, scale);
925
0
    *ener = scale_dot_product(w16ptr, w16ptr, srange, scale);
926
927
0
    if (*ener == 0) {
928
0
        *corr = 0;
929
0
        *ener = 1;
930
0
    }
931
0
}
932
933
11.5M
#define SPL_SHIFT_W32(x, c) (((c) >= 0) ? ((x) << (c)) : ((x) >> (-(c))))
934
935
static int16_t norm_w32(int32_t a)
936
11.5M
{
937
11.5M
    if (a == 0) {
938
0
        return 0;
939
11.5M
    } else if (a < 0) {
940
0
        a = ~a;
941
0
    }
942
943
11.5M
    return ff_clz(a);
944
11.5M
}
945
946
static int32_t div_w32_w16(int32_t num, int16_t den)
947
0
{
948
0
    if (den != 0)
949
0
        return num / den;
950
0
    else
951
0
        return 0x7FFFFFFF;
952
0
}
953
954
static void do_plc(int16_t *plc_residual,      /* (o) concealed residual */
955
                   int16_t *plc_lpc,           /* (o) concealed LP parameters */
956
                   int16_t PLI,                /* (i) packet loss indicator
957
                                                      0 - no PL, 1 = PL */
958
                   const int16_t *decresidual, /* (i) decoded residual */
959
                   const int16_t *lpc,         /* (i) decoded LPC (only used for no PL) */
960
                   int16_t inlag,              /* (i) pitch lag */
961
                   ILBCContext *s)             /* (i/o) decoder instance */
962
18.9k
{
963
18.9k
    int16_t i, pick;
964
18.9k
    int32_t cross, ener, cross_comp, ener_comp = 0;
965
18.9k
    int32_t measure, max_measure, energy;
966
18.9k
    int16_t max, cross_square_max, cross_square;
967
18.9k
    int16_t j, lag, tmp1, tmp2, randlag;
968
18.9k
    int16_t shift1, shift2, shift3, shift_max;
969
18.9k
    int16_t scale3;
970
18.9k
    int16_t corrLen;
971
18.9k
    int32_t tmpW32, tmp2W32;
972
18.9k
    int16_t use_gain;
973
18.9k
    int16_t tot_gain;
974
18.9k
    int16_t max_perSquare;
975
18.9k
    int16_t scale1, scale2;
976
18.9k
    int16_t totscale;
977
18.9k
    int32_t nom;
978
18.9k
    int16_t denom;
979
18.9k
    int16_t pitchfact;
980
18.9k
    int16_t use_lag;
981
18.9k
    int ind;
982
18.9k
    int16_t randvec[BLOCKL_MAX];
983
984
    /* Packet Loss */
985
18.9k
    if (PLI == 1) {
986
987
0
        s->consPLICount += 1;
988
989
        /* if previous frame not lost,
990
           determine pitch pred. gain */
991
992
0
        if (s->prevPLI != 1) {
993
994
            /* Maximum 60 samples are correlated, preserve as high accuracy
995
               as possible without getting overflow */
996
0
            max = max_abs_value_w16(s->prevResidual, s->block_samples);
997
0
            scale3 = (get_size_in_bits(max) << 1) - 25;
998
0
            if (scale3 < 0) {
999
0
                scale3 = 0;
1000
0
            }
1001
1002
            /* Store scale for use when interpolating between the
1003
             * concealment and the received packet */
1004
0
            s->prevScale = scale3;
1005
1006
            /* Search around the previous lag +/-3 to find the
1007
               best pitch period */
1008
0
            lag = inlag - 3;
1009
1010
            /* Guard against getting outside the frame */
1011
0
            corrLen = FFMIN(60, s->block_samples - (inlag + 3));
1012
1013
0
            correlation(&cross, &ener, s->prevResidual, lag, s->block_samples, corrLen, scale3);
1014
1015
            /* Normalize and store cross^2 and the number of shifts */
1016
0
            shift_max = get_size_in_bits(FFABS(cross)) - 15;
1017
0
            cross_square_max = (int16_t) SPL_MUL_16_16_RSFT(SPL_SHIFT_W32(cross, -shift_max), SPL_SHIFT_W32(cross, -shift_max), 15);
1018
1019
0
            for (j = inlag - 2; j <= inlag + 3; j++) {
1020
0
                correlation(&cross_comp, &ener_comp, s->prevResidual, j, s->block_samples, corrLen, scale3);
1021
1022
                /* Use the criteria (corr*corr)/energy to compare if
1023
                   this lag is better or not. To avoid the division,
1024
                   do a cross multiplication */
1025
0
                shift1 = get_size_in_bits(FFABS(cross_comp)) - 15;
1026
0
                cross_square = (int16_t) SPL_MUL_16_16_RSFT(SPL_SHIFT_W32(cross_comp, -shift1), SPL_SHIFT_W32(cross_comp, -shift1), 15);
1027
1028
0
                shift2 = get_size_in_bits(ener) - 15;
1029
0
                measure = SPL_MUL_16_16(SPL_SHIFT_W32(ener, -shift2), cross_square);
1030
1031
0
                shift3 = get_size_in_bits(ener_comp) - 15;
1032
0
                max_measure = SPL_MUL_16_16(SPL_SHIFT_W32(ener_comp, -shift3), cross_square_max);
1033
1034
                /* Calculate shift value, so that the two measures can
1035
                   be put in the same Q domain */
1036
0
                if (((shift_max << 1) + shift3) > ((shift1 << 1) + shift2)) {
1037
0
                    tmp1 = FFMIN(31, (shift_max << 1) + shift3 - (shift1 << 1) - shift2);
1038
0
                    tmp2 = 0;
1039
0
                } else {
1040
0
                    tmp1 = 0;
1041
0
                    tmp2 = FFMIN(31, (shift1 << 1) + shift2 - (shift_max << 1) - shift3);
1042
0
                }
1043
1044
0
                if ((measure >> tmp1) > (max_measure >> tmp2)) {
1045
                    /* New lag is better => record lag, measure and domain */
1046
0
                    lag = j;
1047
0
                    cross_square_max = cross_square;
1048
0
                    cross = cross_comp;
1049
0
                    shift_max = shift1;
1050
0
                    ener = ener_comp;
1051
0
                }
1052
0
            }
1053
1054
            /* Calculate the periodicity for the lag with the maximum correlation.
1055
1056
               Definition of the periodicity:
1057
               abs(corr(vec1, vec2))/(sqrt(energy(vec1))*sqrt(energy(vec2)))
1058
1059
               Work in the Square domain to simplify the calculations
1060
               max_perSquare is less than 1 (in Q15)
1061
             */
1062
0
            tmp2W32 = scale_dot_product(&s->prevResidual[s->block_samples - corrLen], &s->prevResidual[s->block_samples - corrLen], corrLen, scale3);
1063
1064
0
            if ((tmp2W32 > 0) && (ener_comp > 0)) {
1065
                /* norm energies to int16_t, compute the product of the energies and
1066
                   use the upper int16_t as the denominator */
1067
1068
0
                scale1 = norm_w32(tmp2W32) - 16;
1069
0
                tmp1 = SPL_SHIFT_W32(tmp2W32, scale1);
1070
1071
0
                scale2 = norm_w32(ener) - 16;
1072
0
                tmp2 =  SPL_SHIFT_W32(ener, scale2);
1073
0
                denom = SPL_MUL_16_16_RSFT(tmp1, tmp2, 16);    /* denom in Q(scale1+scale2-16) */
1074
1075
                /* Square the cross correlation and norm it such that max_perSquare
1076
                   will be in Q15 after the division */
1077
1078
0
                totscale = scale1 + scale2 - 1;
1079
0
                tmp1 = SPL_SHIFT_W32(cross, (totscale >> 1));
1080
0
                tmp2 = SPL_SHIFT_W32(cross, totscale - (totscale >> 1));
1081
1082
0
                nom = SPL_MUL_16_16(tmp1, tmp2);
1083
0
                max_perSquare = div_w32_w16(nom, denom);
1084
0
            } else {
1085
0
                max_perSquare = 0;
1086
0
            }
1087
0
        } else {
1088
            /* previous frame lost, use recorded lag and gain */
1089
0
            lag = s->prevLag;
1090
0
            max_perSquare = s->per_square;
1091
0
        }
1092
1093
        /* Attenuate signal and scale down pitch pred gain if
1094
           several frames lost consecutively */
1095
1096
0
        use_gain = 32767;       /* 1.0 in Q15 */
1097
1098
0
        if (s->consPLICount * s->block_samples > 320) {
1099
0
            use_gain = 29491;   /* 0.9 in Q15 */
1100
0
        }
1101
1102
        /* Compute mixing factor of picth repetition and noise:
1103
           for max_per>0.7 set periodicity to 1.0
1104
           0.4<max_per<0.7 set periodicity to (maxper-0.4)/0.7-0.4)
1105
           max_per<0.4 set periodicity to 0.0
1106
         */
1107
1108
0
        if (max_perSquare > 7868) {     /* periodicity > 0.7  (0.7^4=0.2401 in Q15) */
1109
0
            pitchfact = 32767;
1110
0
        } else if (max_perSquare > 839) {       /* 0.4 < periodicity < 0.7 (0.4^4=0.0256 in Q15) */
1111
            /* find best index and interpolate from that */
1112
0
            ind = 5;
1113
0
            while ((max_perSquare < kPlcPerSqr[ind]) && (ind > 0)) {
1114
0
                ind--;
1115
0
            }
1116
            /* pitch fact is approximated by first order */
1117
0
            tmpW32 = kPlcPitchFact[ind] + SPL_MUL_16_16_RSFT(kPlcPfSlope[ind], (max_perSquare - kPlcPerSqr[ind]), 11);
1118
1119
0
            pitchfact = FFMIN(tmpW32, 32767); /* guard against overflow */
1120
1121
0
        } else {                /* periodicity < 0.4 */
1122
0
            pitchfact = 0;
1123
0
        }
1124
1125
        /* avoid repetition of same pitch cycle (buzzyness) */
1126
0
        use_lag = lag;
1127
0
        if (lag < 80) {
1128
0
            use_lag = 2 * lag;
1129
0
        }
1130
1131
        /* compute concealed residual */
1132
0
        energy = 0;
1133
1134
0
        for (i = 0; i < s->block_samples; i++) {
1135
            /* noise component -  52 < randlagFIX < 117 */
1136
0
            s->seed = SPL_MUL_16_16(s->seed, 31821) + 13849;
1137
0
            randlag = 53 + (s->seed & 63);
1138
1139
0
            pick = i - randlag;
1140
1141
0
            if (pick < 0) {
1142
0
                randvec[i] = s->prevResidual[s->block_samples + pick];
1143
0
            } else {
1144
0
                randvec[i] = s->prevResidual[pick];
1145
0
            }
1146
1147
            /* pitch repetition component */
1148
0
            pick = i - use_lag;
1149
1150
0
            if (pick < 0) {
1151
0
                plc_residual[i] = s->prevResidual[s->block_samples + pick];
1152
0
            } else {
1153
0
                plc_residual[i] = plc_residual[pick];
1154
0
            }
1155
1156
            /* Attinuate total gain for each 10 ms */
1157
0
            if (i < 80) {
1158
0
                tot_gain = use_gain;
1159
0
            } else if (i < 160) {
1160
0
                tot_gain = SPL_MUL_16_16_RSFT(31130, use_gain, 15);    /* 0.95*use_gain */
1161
0
            } else {
1162
0
                tot_gain = SPL_MUL_16_16_RSFT(29491, use_gain, 15);    /* 0.9*use_gain */
1163
0
            }
1164
1165
            /* mix noise and pitch repetition */
1166
0
            plc_residual[i] = SPL_MUL_16_16_RSFT(tot_gain, (pitchfact * plc_residual[i] + (32767 - pitchfact) * randvec[i] + 16384) >> 15, 15);
1167
1168
            /* Shifting down the result one step extra to ensure that no overflow
1169
               will occur */
1170
0
            energy += SPL_MUL_16_16_RSFT(plc_residual[i], plc_residual[i], (s->prevScale + 1));
1171
1172
0
        }
1173
1174
        /* less than 30 dB, use only noise */
1175
0
        if (energy < SPL_SHIFT_W32(s->block_samples * 900, -s->prevScale - 1)) {
1176
0
            energy = 0;
1177
0
            for (i = 0; i < s->block_samples; i++) {
1178
0
                plc_residual[i] = randvec[i];
1179
0
            }
1180
0
        }
1181
1182
        /* use the old LPC */
1183
0
        memcpy(plc_lpc, (*s).prev_lpc, (LPC_FILTERORDER + 1) * 2);
1184
1185
        /* Update state in case there are multiple frame losses */
1186
0
        s->prevLag = lag;
1187
0
        s->per_square = max_perSquare;
1188
18.9k
    } else { /* no packet loss, copy input */
1189
18.9k
        memcpy(plc_residual, decresidual, s->block_samples * 2);
1190
18.9k
        memcpy(plc_lpc, lpc, (LPC_FILTERORDER + 1) * 2);
1191
18.9k
        s->consPLICount = 0;
1192
18.9k
    }
1193
1194
    /* update state */
1195
18.9k
    s->prevPLI = PLI;
1196
18.9k
    memcpy(s->prev_lpc, plc_lpc, (LPC_FILTERORDER + 1) * 2);
1197
18.9k
    memcpy(s->prevResidual, plc_residual, s->block_samples * 2);
1198
1199
18.9k
    return;
1200
18.9k
}
1201
1202
static int xcorr_coeff(const int16_t *target, const int16_t *regressor,
1203
                       int16_t subl, int16_t searchLen,
1204
                       int16_t offset, int16_t step)
1205
196k
{
1206
196k
    int16_t maxlag;
1207
196k
    int16_t pos;
1208
196k
    int16_t max;
1209
196k
    int16_t cross_corr_scale, energy_scale;
1210
196k
    int16_t cross_corr_sg_mod, cross_corr_sg_mod_max;
1211
196k
    int32_t cross_corr, energy;
1212
196k
    int16_t cross_corr_mod, energy_mod, enery_mod_max;
1213
196k
    const int16_t *rp;
1214
196k
    const int16_t *rp_beg, *rp_end;
1215
196k
    int16_t totscale, totscale_max;
1216
196k
    int16_t scalediff;
1217
196k
    int32_t new_crit, max_crit;
1218
196k
    int shifts;
1219
196k
    int k;
1220
1221
    /* Initializations, to make sure that the first one is selected */
1222
196k
    cross_corr_sg_mod_max = 0;
1223
196k
    enery_mod_max = INT16_MAX;
1224
196k
    totscale_max = -500;
1225
196k
    maxlag = 0;
1226
196k
    pos = 0;
1227
1228
    /* Find scale value and start position */
1229
196k
    if (step == 1) {
1230
0
        max = max_abs_value_w16(regressor, (int16_t) (subl + searchLen - 1));
1231
0
        rp_beg = regressor;
1232
0
        rp_end = &regressor[subl];
1233
196k
    } else {                    /* step== -1 */
1234
196k
        max = max_abs_value_w16(&regressor[-searchLen], (int16_t) (subl + searchLen - 1));
1235
196k
        rp_beg = &regressor[-1];
1236
196k
        rp_end = &regressor[subl - 1];
1237
196k
    }
1238
1239
    /* Introduce a scale factor on the energy in int32_t in
1240
       order to make sure that the calculation does not
1241
       overflow */
1242
1243
196k
    if (max > 5000) {
1244
12.7k
        shifts = 2;
1245
184k
    } else {
1246
184k
        shifts = 0;
1247
184k
    }
1248
1249
    /* Calculate the first energy, then do a +/- to get the other energies */
1250
196k
    energy = scale_dot_product(regressor, regressor, subl, shifts);
1251
1252
16.4M
    for (k = 0; k < searchLen; k++) {
1253
16.2M
        rp = &regressor[pos];
1254
1255
16.2M
        cross_corr = scale_dot_product(target, rp, subl, shifts);
1256
1257
16.2M
        if ((energy > 0) && (cross_corr > 0)) {
1258
            /* Put cross correlation and energy on 16 bit word */
1259
5.76M
            cross_corr_scale = norm_w32(cross_corr) - 16;
1260
5.76M
            cross_corr_mod = (int16_t) SPL_SHIFT_W32(cross_corr, cross_corr_scale);
1261
5.76M
            energy_scale = norm_w32(energy) - 16;
1262
5.76M
            energy_mod = (int16_t) SPL_SHIFT_W32(energy, energy_scale);
1263
1264
            /* Square cross correlation and store upper int16_t */
1265
5.76M
            cross_corr_sg_mod = (int16_t) SPL_MUL_16_16_RSFT(cross_corr_mod, cross_corr_mod, 16);
1266
1267
            /* Calculate the total number of (dynamic) right shifts that have
1268
               been performed on (cross_corr*cross_corr)/energy
1269
             */
1270
5.76M
            totscale = energy_scale - (cross_corr_scale * 2);
1271
1272
            /* Calculate the shift difference in order to be able to compare the two
1273
               (cross_corr*cross_corr)/energy in the same domain
1274
             */
1275
5.76M
            scalediff = totscale - totscale_max;
1276
5.76M
            scalediff = FFMIN(scalediff, 31);
1277
5.76M
            scalediff = FFMAX(scalediff, -31);
1278
1279
            /* Compute the cross multiplication between the old best criteria
1280
               and the new one to be able to compare them without using a
1281
               division */
1282
1283
5.76M
            if (scalediff < 0) {
1284
888k
                new_crit = ((int32_t) cross_corr_sg_mod * enery_mod_max) >> (-scalediff);
1285
888k
                max_crit = ((int32_t) cross_corr_sg_mod_max * energy_mod);
1286
4.88M
            } else {
1287
4.88M
                new_crit = ((int32_t) cross_corr_sg_mod * enery_mod_max);
1288
4.88M
                max_crit = ((int32_t) cross_corr_sg_mod_max * energy_mod) >> scalediff;
1289
4.88M
            }
1290
1291
            /* Store the new lag value if the new criteria is larger
1292
               than previous largest criteria */
1293
1294
5.76M
            if (new_crit > max_crit) {
1295
677k
                cross_corr_sg_mod_max = cross_corr_sg_mod;
1296
677k
                enery_mod_max = energy_mod;
1297
677k
                totscale_max = totscale;
1298
677k
                maxlag = k;
1299
677k
            }
1300
5.76M
        }
1301
16.2M
        pos += step;
1302
1303
        /* Do a +/- to get the next energy */
1304
16.2M
        energy += (unsigned)step * ((*rp_end * *rp_end - *rp_beg * *rp_beg) >> shifts);
1305
1306
16.2M
        rp_beg += step;
1307
16.2M
        rp_end += step;
1308
16.2M
    }
1309
1310
196k
    return maxlag + offset;
1311
196k
}
1312
1313
static void hp_output(int16_t *signal, const int16_t *ba, int16_t *y,
1314
                      int16_t *x, int16_t len)
1315
196k
{
1316
196k
    int32_t tmp;
1317
1318
33.5M
    for (int i = 0; i < len; i++) {
1319
33.3M
        tmp = SPL_MUL_16_16(y[1], ba[3]);     /* (-a[1])*y[i-1] (low part) */
1320
33.3M
        tmp += SPL_MUL_16_16(y[3], ba[4]);    /* (-a[2])*y[i-2] (low part) */
1321
33.3M
        tmp = (tmp >> 15);
1322
33.3M
        tmp += SPL_MUL_16_16(y[0], ba[3]);    /* (-a[1])*y[i-1] (high part) */
1323
33.3M
        tmp += SPL_MUL_16_16(y[2], ba[4]);    /* (-a[2])*y[i-2] (high part) */
1324
33.3M
        tmp = (tmp * 2);
1325
1326
33.3M
        tmp += SPL_MUL_16_16(signal[i], ba[0]);       /* b[0]*x[0] */
1327
33.3M
        tmp += SPL_MUL_16_16(x[0], ba[1]);    /* b[1]*x[i-1] */
1328
33.3M
        tmp += SPL_MUL_16_16(x[1], ba[2]);    /* b[2]*x[i-2] */
1329
1330
        /* Update state (input part) */
1331
33.3M
        x[1] = x[0];
1332
33.3M
        x[0] = signal[i];
1333
1334
        /* Convert back to Q0 and multiply with 2 */
1335
33.3M
        signal[i] = av_clip_intp2(tmp + 1024, 26) >> 11;
1336
1337
        /* Update state (filtered part) */
1338
33.3M
        y[2] = y[0];
1339
33.3M
        y[3] = y[1];
1340
1341
        /* upshift tmp by 3 with saturation */
1342
33.3M
        if (tmp > 268435455) {
1343
803
            tmp = INT32_MAX;
1344
33.3M
        } else if (tmp < -268435456) {
1345
1.22k
            tmp = INT32_MIN;
1346
33.3M
        } else {
1347
33.3M
            tmp = tmp * 8;
1348
33.3M
        }
1349
1350
33.3M
        y[0] = tmp >> 16;
1351
33.3M
        y[1] = (tmp - (y[0] * (1 << 16))) >> 1;
1352
33.3M
    }
1353
196k
}
1354
1355
static int ilbc_decode_frame(AVCodecContext *avctx, AVFrame *frame,
1356
                             int *got_frame_ptr, AVPacket *avpkt)
1357
196k
{
1358
196k
    ILBCContext *s     = avctx->priv_data;
1359
196k
    int mode = s->mode, ret;
1360
196k
    int16_t *plc_data = &s->plc_residual[LPC_FILTERORDER];
1361
1362
196k
    memset(&s->frame, 0, sizeof(ILBCFrame));
1363
196k
    ret = unpack_frame(s, avpkt->data, avpkt->size);
1364
196k
    if (ret < 0)
1365
0
        return ret;
1366
196k
    if (ret)
1367
1.44k
        mode = 0;
1368
1369
196k
    frame->nb_samples = s->block_samples;
1370
196k
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1371
0
        return ret;
1372
1373
196k
    if (s->frame.start < 1 || s->frame.start > 5)
1374
176k
        mode = 0;
1375
1376
196k
    if (mode) {
1377
18.9k
        index_conv(s->frame.cb_index);
1378
1379
18.9k
        lsf_dequantization(s->lsfdeq, s->frame.lsf, s->lpc_n);
1380
18.9k
        lsf_check_stability(s->lsfdeq, LPC_FILTERORDER, s->lpc_n);
1381
18.9k
        lsp_interpolate(s->syntdenum, s->weightdenum,
1382
18.9k
                        s->lsfdeq, LPC_FILTERORDER, s);
1383
18.9k
        decode_residual(s, &s->frame, s->decresidual, s->syntdenum);
1384
1385
18.9k
        do_plc(s->plc_residual, s->plc_lpc, 0,
1386
18.9k
                               s->decresidual, s->syntdenum + (LPC_FILTERORDER + 1) * (s->nsub - 1),
1387
18.9k
                               s->last_lag, s);
1388
1389
18.9k
        memcpy(s->decresidual, s->plc_residual, s->block_samples * 2);
1390
18.9k
    }
1391
1392
196k
    if (s->enhancer) {
1393
        /* TODO */
1394
196k
    } else {
1395
196k
        int16_t lag, i;
1396
1397
        /* Find last lag (since the enhancer is not called to give this info) */
1398
196k
        if (s->mode == 20) {
1399
173k
            lag = xcorr_coeff(&s->decresidual[s->block_samples-60], &s->decresidual[s->block_samples-80],
1400
173k
                              60, 80, 20, -1);
1401
173k
        } else {
1402
23.3k
            lag = xcorr_coeff(&s->decresidual[s->block_samples-ENH_BLOCKL],
1403
23.3k
                              &s->decresidual[s->block_samples-ENH_BLOCKL-20],
1404
23.3k
                              ENH_BLOCKL, 100, 20, -1);
1405
23.3k
        }
1406
1407
        /* Store lag (it is needed if next packet is lost) */
1408
196k
        s->last_lag = lag;
1409
1410
        /* copy data and run synthesis filter */
1411
196k
        memcpy(plc_data, s->decresidual, s->block_samples * 2);
1412
1413
        /* Set up the filter state */
1414
196k
        memcpy(&plc_data[-LPC_FILTERORDER], s->syntMem, LPC_FILTERORDER * 2);
1415
1416
1.03M
        for (i = 0; i < s->nsub; i++) {
1417
834k
            filter_arfq12(plc_data+i*SUBL, plc_data+i*SUBL,
1418
834k
                                      s->syntdenum + i*(LPC_FILTERORDER + 1),
1419
834k
                                      LPC_FILTERORDER + 1, SUBL);
1420
834k
        }
1421
1422
        /* Save the filter state */
1423
196k
        memcpy(s->syntMem, &plc_data[s->block_samples-LPC_FILTERORDER], LPC_FILTERORDER * 2);
1424
196k
    }
1425
1426
196k
    memcpy(frame->data[0], plc_data, s->block_samples * 2);
1427
1428
196k
    hp_output((int16_t *)frame->data[0], hp_out_coeffs,
1429
196k
              s->hpimemy, s->hpimemx, s->block_samples);
1430
1431
196k
    memcpy(s->old_syntdenum, s->syntdenum, s->nsub*(LPC_FILTERORDER + 1) * 2);
1432
1433
196k
    s->prev_enh_pl = 0;
1434
196k
    if (mode == 0)
1435
177k
        s->prev_enh_pl = 1;
1436
1437
196k
    *got_frame_ptr = 1;
1438
1439
196k
    return avpkt->size;
1440
196k
}
1441
1442
static av_cold int ilbc_decode_init(AVCodecContext *avctx)
1443
2.42k
{
1444
2.42k
    ILBCContext *s  = avctx->priv_data;
1445
1446
2.42k
    if (avctx->block_align == 38)
1447
6
        s->mode = 20;
1448
2.42k
    else if (avctx->block_align == 50)
1449
65
        s->mode = 30;
1450
2.35k
    else if (avctx->bit_rate > 0)
1451
2.27k
        s->mode = avctx->bit_rate <= 14000 ? 30 : 20;
1452
78
    else
1453
78
        return AVERROR_INVALIDDATA;
1454
1455
2.34k
    av_channel_layout_uninit(&avctx->ch_layout);
1456
2.34k
    avctx->ch_layout = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO;
1457
2.34k
    avctx->sample_rate    = 8000;
1458
2.34k
    avctx->sample_fmt     = AV_SAMPLE_FMT_S16;
1459
1460
2.34k
    if (s->mode == 30) {
1461
626
        s->block_samples = 240;
1462
626
        s->nsub = NSUB_30MS;
1463
626
        s->nasub = NASUB_30MS;
1464
626
        s->lpc_n = LPC_N_30MS;
1465
626
        s->state_short_len = STATE_SHORT_LEN_30MS;
1466
1.72k
    } else {
1467
1.72k
        s->block_samples = 160;
1468
1.72k
        s->nsub = NSUB_20MS;
1469
1.72k
        s->nasub = NASUB_20MS;
1470
1.72k
        s->lpc_n = LPC_N_20MS;
1471
1.72k
        s->state_short_len = STATE_SHORT_LEN_20MS;
1472
1.72k
    }
1473
1474
2.34k
    return 0;
1475
2.42k
}
1476
1477
const FFCodec ff_ilbc_decoder = {
1478
    .p.name         = "ilbc",
1479
    CODEC_LONG_NAME("iLBC (Internet Low Bitrate Codec)"),
1480
    .p.type         = AVMEDIA_TYPE_AUDIO,
1481
    .p.id           = AV_CODEC_ID_ILBC,
1482
    .init           = ilbc_decode_init,
1483
    FF_CODEC_DECODE_CB(ilbc_decode_frame),
1484
    .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
1485
    .priv_data_size = sizeof(ILBCContext),
1486
};