Coverage Report

Created: 2025-11-16 07:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/opus/silk/resampler.c
Line
Count
Source
1
/***********************************************************************
2
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3
Redistribution and use in source and binary forms, with or without
4
modification, are permitted provided that the following conditions
5
are met:
6
- Redistributions of source code must retain the above copyright notice,
7
this list of conditions and the following disclaimer.
8
- Redistributions in binary form must reproduce the above copyright
9
notice, this list of conditions and the following disclaimer in the
10
documentation and/or other materials provided with the distribution.
11
- Neither the name of Internet Society, IETF or IETF Trust, nor the
12
names of specific contributors, may be used to endorse or promote
13
products derived from this software without specific prior written
14
permission.
15
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25
POSSIBILITY OF SUCH DAMAGE.
26
***********************************************************************/
27
28
#ifdef HAVE_CONFIG_H
29
#include "config.h"
30
#endif
31
32
/*
33
 * Matrix of resampling methods used:
34
 *                                 Fs_out (kHz)
35
 *                        8      12     16     24     48
36
 *
37
 *               8        C      UF     U      UF     UF
38
 *              12        AF     C      UF     U      UF
39
 * Fs_in (kHz)  16        D      AF     C      UF     UF
40
 *              24        AF     D      AF     C      U
41
 *              48        AF     AF     AF     D      C
42
 *
43
 * C   -> Copy (no resampling)
44
 * D   -> Allpass-based 2x downsampling
45
 * U   -> Allpass-based 2x upsampling
46
 * UF  -> Allpass-based 2x upsampling followed by FIR interpolation
47
 * AF  -> AR2 filter followed by FIR interpolation
48
 */
49
50
#include "resampler_private.h"
51
52
/* Tables with delay compensation values to equalize total delay for different modes */
53
static const opus_int8 delay_matrix_enc[ 6 ][ 3 ] = {
54
/* in  \ out  8  12  16 */
55
/*  8 */   {  6,  0,  3 },
56
/* 12 */   {  0,  7,  3 },
57
/* 16 */   {  0,  1, 10 },
58
/* 24 */   {  0,  2,  6 },
59
/* 48 */   { 18, 10, 12 },
60
/* 96 */   {  0,  0,  44 }
61
};
62
63
static const opus_int8 delay_matrix_dec[ 3 ][ 6 ] = {
64
/* in  \ out  8  12  16  24  48  96*/
65
/*  8 */   {  4,  0,  2,  0,  0,  0 },
66
/* 12 */   {  0,  9,  4,  7,  4,  4 },
67
/* 16 */   {  0,  3, 12,  7,  7,  7 }
68
};
69
70
/* Simple way to make [8000, 12000, 16000, 24000, 48000] to [0, 1, 2, 3, 4] */
71
152k
#define rateID(R) IMIN(5, ( ( ( ((R)>>12) - ((R)>16000) ) >> ((R)>24000) ) - 1 ))
72
73
0
#define USE_silk_resampler_copy                     (0)
74
0
#define USE_silk_resampler_private_up2_HQ_wrapper   (1)
75
440k
#define USE_silk_resampler_private_IIR_FIR          (2)
76
0
#define USE_silk_resampler_private_down_FIR         (3)
77
78
/* Initialize/reset the resampler state for a given pair of input/output sampling rates */
79
opus_int silk_resampler_init(
80
    silk_resampler_state_struct *S,                 /* I/O  Resampler state                                             */
81
    opus_int32                  Fs_Hz_in,           /* I    Input sampling rate (Hz)                                    */
82
    opus_int32                  Fs_Hz_out,          /* I    Output sampling rate (Hz)                                   */
83
    opus_int                    forEnc              /* I    If 1: encoder; if 0: decoder                                */
84
)
85
76.2k
{
86
76.2k
    opus_int up2x;
87
88
    /* Clear state */
89
76.2k
    silk_memset( S, 0, sizeof( silk_resampler_state_struct ) );
90
91
    /* Input checking */
92
76.2k
    if( forEnc ) {
93
0
        if( ( Fs_Hz_in  != 8000 && Fs_Hz_in  != 12000 && Fs_Hz_in  != 16000 && Fs_Hz_in  != 24000 && Fs_Hz_in  != 48000
94
#ifdef ENABLE_QEXT
95
                  && Fs_Hz_in != 96000
96
#endif
97
0
              ) ||
98
0
            ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 ) ) {
99
0
            celt_assert( 0 );
100
0
            return -1;
101
0
        }
102
0
        S->inputDelay = delay_matrix_enc[ rateID( Fs_Hz_in ) ][ rateID( Fs_Hz_out ) ];
103
76.2k
    } else {
104
76.2k
        if( ( Fs_Hz_in  != 8000 && Fs_Hz_in  != 12000 && Fs_Hz_in  != 16000 ) ||
105
76.2k
            ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 && Fs_Hz_out != 24000 && Fs_Hz_out != 48000
106
#ifdef ENABLE_QEXT
107
                  && Fs_Hz_out != 96000
108
#endif
109
76.2k
                  ) ) {
110
0
            celt_assert( 0 );
111
0
            return -1;
112
0
        }
113
76.2k
        S->inputDelay = delay_matrix_dec[ rateID( Fs_Hz_in ) ][ rateID( Fs_Hz_out ) ];
114
76.2k
    }
115
116
76.2k
    S->Fs_in_kHz  = silk_DIV32_16( Fs_Hz_in,  1000 );
117
76.2k
    S->Fs_out_kHz = silk_DIV32_16( Fs_Hz_out, 1000 );
118
119
    /* Number of samples processed per batch */
120
76.2k
    S->batchSize = S->Fs_in_kHz * RESAMPLER_MAX_BATCH_SIZE_MS;
121
122
    /* Find resampler with the right sampling ratio */
123
76.2k
    up2x = 0;
124
76.2k
    if( Fs_Hz_out > Fs_Hz_in ) {
125
        /* Upsample */
126
76.2k
        if( Fs_Hz_out == silk_MUL( Fs_Hz_in, 2 ) ) {                            /* Fs_out : Fs_in = 2 : 1 */
127
            /* Special case: directly use 2x upsampler */
128
0
            S->resampler_function = USE_silk_resampler_private_up2_HQ_wrapper;
129
76.2k
        } else {
130
            /* Default resampler */
131
76.2k
            S->resampler_function = USE_silk_resampler_private_IIR_FIR;
132
76.2k
            up2x = 1;
133
76.2k
        }
134
76.2k
    } else if ( Fs_Hz_out < Fs_Hz_in ) {
135
        /* Downsample */
136
0
         S->resampler_function = USE_silk_resampler_private_down_FIR;
137
0
        if( silk_MUL( Fs_Hz_out, 4 ) == silk_MUL( Fs_Hz_in, 3 ) ) {             /* Fs_out : Fs_in = 3 : 4 */
138
0
            S->FIR_Fracs = 3;
139
0
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR0;
140
0
            S->Coefs = silk_Resampler_3_4_COEFS;
141
0
        } else if( silk_MUL( Fs_Hz_out, 3 ) == silk_MUL( Fs_Hz_in, 2 ) ) {      /* Fs_out : Fs_in = 2 : 3 */
142
0
            S->FIR_Fracs = 2;
143
0
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR0;
144
0
            S->Coefs = silk_Resampler_2_3_COEFS;
145
0
        } else if( silk_MUL( Fs_Hz_out, 2 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 2 */
146
0
            S->FIR_Fracs = 1;
147
0
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR1;
148
0
            S->Coefs = silk_Resampler_1_2_COEFS;
149
0
        } else if( silk_MUL( Fs_Hz_out, 3 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 3 */
150
0
            S->FIR_Fracs = 1;
151
0
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2;
152
0
            S->Coefs = silk_Resampler_1_3_COEFS;
153
0
        } else if( silk_MUL( Fs_Hz_out, 4 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 4 */
154
0
            S->FIR_Fracs = 1;
155
0
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2;
156
0
            S->Coefs = silk_Resampler_1_4_COEFS;
157
0
        } else if( silk_MUL( Fs_Hz_out, 6 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 6 */
158
0
            S->FIR_Fracs = 1;
159
0
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2;
160
0
            S->Coefs = silk_Resampler_1_6_COEFS;
161
0
        } else {
162
            /* None available */
163
0
            celt_assert( 0 );
164
0
            return -1;
165
0
        }
166
0
    } else {
167
        /* Input and output sampling rates are equal: copy */
168
0
        S->resampler_function = USE_silk_resampler_copy;
169
0
    }
170
171
    /* Ratio of input/output samples */
172
76.2k
    S->invRatio_Q16 = silk_LSHIFT32( silk_DIV32( silk_LSHIFT32( Fs_Hz_in, 14 + up2x ), Fs_Hz_out ), 2 );
173
    /* Make sure the ratio is rounded up */
174
240k
    while( silk_SMULWW( S->invRatio_Q16, Fs_Hz_out ) < silk_LSHIFT32( Fs_Hz_in, up2x ) ) {
175
164k
        S->invRatio_Q16++;
176
164k
    }
177
178
76.2k
    return 0;
179
76.2k
}
180
181
/* Resampler: convert from one sampling rate to another */
182
/* Input and output sampling rate are at most 48000 Hz  */
183
opus_int silk_resampler(
184
    silk_resampler_state_struct *S,                 /* I/O  Resampler state                                             */
185
    opus_int16                  out[],              /* O    Output signal                                               */
186
    const opus_int16            in[],               /* I    Input signal                                                */
187
    opus_int32                  inLen               /* I    Number of input samples                                     */
188
)
189
363k
{
190
363k
    opus_int nSamples;
191
192
    /* Need at least 1 ms of input data */
193
363k
    celt_assert( inLen >= S->Fs_in_kHz );
194
    /* Delay can't exceed the 1 ms of buffering */
195
363k
    celt_assert( S->inputDelay <= S->Fs_in_kHz );
196
197
363k
    nSamples = S->Fs_in_kHz - S->inputDelay;
198
199
    /* Copy to delay buffer */
200
363k
    silk_memcpy( &S->delayBuf[ S->inputDelay ], in, nSamples * sizeof( opus_int16 ) );
201
202
363k
    switch( S->resampler_function ) {
203
0
        case USE_silk_resampler_private_up2_HQ_wrapper:
204
0
            silk_resampler_private_up2_HQ_wrapper( S, out, S->delayBuf, S->Fs_in_kHz );
205
0
            silk_resampler_private_up2_HQ_wrapper( S, &out[ S->Fs_out_kHz ], &in[ nSamples ], inLen - S->Fs_in_kHz );
206
0
            break;
207
363k
        case USE_silk_resampler_private_IIR_FIR:
208
363k
            silk_resampler_private_IIR_FIR( S, out, S->delayBuf, S->Fs_in_kHz );
209
363k
            silk_resampler_private_IIR_FIR( S, &out[ S->Fs_out_kHz ], &in[ nSamples ], inLen - S->Fs_in_kHz );
210
363k
            break;
211
0
        case USE_silk_resampler_private_down_FIR:
212
0
            silk_resampler_private_down_FIR( S, out, S->delayBuf, S->Fs_in_kHz );
213
0
            silk_resampler_private_down_FIR( S, &out[ S->Fs_out_kHz ], &in[ nSamples ], inLen - S->Fs_in_kHz );
214
0
            break;
215
0
        default:
216
0
            silk_memcpy( out, S->delayBuf, S->Fs_in_kHz * sizeof( opus_int16 ) );
217
0
            silk_memcpy( &out[ S->Fs_out_kHz ], &in[ nSamples ], ( inLen - S->Fs_in_kHz ) * sizeof( opus_int16 ) );
218
363k
    }
219
220
    /* Copy to delay buffer */
221
363k
    silk_memcpy( S->delayBuf, &in[ inLen - S->inputDelay ], S->inputDelay * sizeof( opus_int16 ) );
222
223
363k
    return 0;
224
363k
}