Coverage Report

Created: 2025-12-31 07:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fdk-aac/libFDK/src/qmf.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):   Markus Lohwasser, Josef Hoepfl, Manuel Jander
98
99
   Description: QMF filterbank
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  Complex qmf analysis/synthesis
106
  This module contains the qmf filterbank for analysis [
107
  cplxAnalysisQmfFiltering() ] and synthesis [ cplxSynthesisQmfFiltering() ]. It
108
  is a polyphase implementation of a complex exponential modulated filter bank.
109
  The analysis part usually runs at half the sample rate than the synthesis
110
  part. (So called "dual-rate" mode.)
111
112
  The coefficients of the prototype filter are specified in #qmf_pfilt640 (in
113
  sbr_rom.cpp). Thus only a 64 channel version (32 on the analysis side) with a
114
  640 tap prototype filter are used.
115
116
  \anchor PolyphaseFiltering <h2>About polyphase filtering</h2>
117
  The polyphase implementation of a filterbank requires filtering at the input
118
  and output. This is implemented as part of cplxAnalysisQmfFiltering() and
119
  cplxSynthesisQmfFiltering(). The implementation requires the filter
120
  coefficients in a specific structure as described in #sbr_qmf_64_640_qmf (in
121
  sbr_rom.cpp).
122
123
  This module comprises the computationally most expensive functions of the SBR
124
  decoder. The accuracy of computations is also important and has a direct
125
  impact on the overall sound quality. Therefore a special test program is
126
  available which can be used to only test the filterbank: main_audio.cpp
127
128
  This modules also uses scaling of data to provide better SNR on fixed-point
129
  processors. See #QMF_SCALE_FACTOR (in sbr_scale.h) for details. An interesting
130
  note: The function getScalefactor() can constitute a significant amount of
131
  computational complexity - very much depending on the bitrate. Since it is a
132
  rather small function, effective assembler optimization might be possible.
133
134
*/
135
136
#include "qmf.h"
137
138
#include "FDK_trigFcts.h"
139
#include "fixpoint_math.h"
140
#include "dct.h"
141
142
#define QSSCALE (0)
143
#define FX_DBL2FX_QSS(x) (x)
144
#define FX_QSS2FX_DBL(x) (x)
145
146
/* moved to qmf_pcm.h: -> qmfSynPrototypeFirSlot */
147
/* moved to qmf_pcm.h: -> qmfSynPrototypeFirSlot_NonSymmetric */
148
/* moved to qmf_pcm.h: -> qmfSynthesisFilteringSlot */
149
150
/*!
151
 *
152
 * \brief Perform real-valued forward modulation of the time domain
153
 *        data of timeIn and stores the real part of the subband
154
 *        samples in rSubband
155
 *
156
 */
157
static void qmfForwardModulationLP_even(
158
    HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank  */
159
    FIXP_DBL *timeIn,              /*!< Time Signal */
160
    FIXP_DBL *rSubband)            /*!< Real Output */
161
9.59M
{
162
9.59M
  int i;
163
9.59M
  int L = anaQmf->no_channels;
164
9.59M
  int M = L >> 1;
165
9.59M
  int scale = 0;
166
9.59M
  FIXP_DBL accu;
167
168
9.59M
  const FIXP_DBL *timeInTmp1 = (FIXP_DBL *)&timeIn[3 * M];
169
9.59M
  const FIXP_DBL *timeInTmp2 = timeInTmp1;
170
9.59M
  FIXP_DBL *rSubbandTmp = rSubband;
171
172
9.59M
  rSubband[0] = timeIn[3 * M] >> 1;
173
174
153M
  for (i = M - 1; i != 0; i--) {
175
143M
    accu = ((*--timeInTmp1) >> 1) + ((*++timeInTmp2) >> 1);
176
143M
    *++rSubbandTmp = accu;
177
143M
  }
178
179
9.59M
  timeInTmp1 = &timeIn[2 * M];
180
9.59M
  timeInTmp2 = &timeIn[0];
181
9.59M
  rSubbandTmp = &rSubband[M];
182
183
163M
  for (i = L - M; i != 0; i--) {
184
153M
    accu = ((*timeInTmp1--) >> 1) - ((*timeInTmp2++) >> 1);
185
153M
    *rSubbandTmp++ = accu;
186
153M
  }
187
188
9.59M
  dct_III(rSubband, timeIn, L, &scale);
189
9.59M
}
190
191
#if !defined(FUNCTION_qmfForwardModulationLP_odd)
192
static void qmfForwardModulationLP_odd(
193
    HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank  */
194
    const FIXP_DBL *timeIn,        /*!< Time Signal */
195
    FIXP_DBL *rSubband)            /*!< Real Output */
196
10.9M
{
197
10.9M
  int i;
198
10.9M
  int L = anaQmf->no_channels;
199
10.9M
  int M = L >> 1;
200
10.9M
  int shift = (anaQmf->no_channels >> 6) + 1;
201
202
184M
  for (i = 0; i < M; i++) {
203
173M
    rSubband[M + i] = (timeIn[L - 1 - i] >> 1) - (timeIn[i] >> shift);
204
173M
    rSubband[M - 1 - i] =
205
173M
        (timeIn[L + i] >> 1) + (timeIn[2 * L - 1 - i] >> shift);
206
173M
  }
207
208
10.9M
  dct_IV(rSubband, L, &shift);
209
10.9M
}
210
#endif /* !defined(FUNCTION_qmfForwardModulationLP_odd) */
211
212
/*!
213
 *
214
 * \brief Perform complex-valued forward modulation of the time domain
215
 *        data of timeIn and stores the real part of the subband
216
 *        samples in rSubband, and the imaginary part in iSubband
217
 *
218
 *
219
 */
220
#if !defined(FUNCTION_qmfForwardModulationHQ)
221
static void qmfForwardModulationHQ(
222
    HANDLE_QMF_FILTER_BANK anaQmf,   /*!< Handle of Qmf Analysis Bank  */
223
    const FIXP_DBL *RESTRICT timeIn, /*!< Time Signal */
224
    FIXP_DBL *RESTRICT rSubband,     /*!< Real Output */
225
    FIXP_DBL *RESTRICT iSubband      /*!< Imaginary Output */
226
49.3M
) {
227
49.3M
  int i;
228
49.3M
  int L = anaQmf->no_channels;
229
49.3M
  int L2 = L << 1;
230
49.3M
  int shift = 0;
231
232
  /* Time advance by one sample, which is equivalent to the complex
233
     rotation at the end of the analysis. Works only for STD mode. */
234
49.3M
  if ((L == 64) && !(anaQmf->flags & (QMF_FLAG_CLDFB | QMF_FLAG_MPSLDFB))) {
235
0
    FIXP_DBL x, y;
236
237
    /*rSubband[0] = u[1] + u[0]*/
238
    /*iSubband[0] = u[1] - u[0]*/
239
0
    x = timeIn[1] >> 1;
240
0
    y = timeIn[0];
241
0
    rSubband[0] = x + (y >> 1);
242
0
    iSubband[0] = x - (y >> 1);
243
244
    /*rSubband[n] = u[n+1] - u[2M-n], n=1,...,M-1*/
245
    /*iSubband[n] = u[n+1] + u[2M-n], n=1,...,M-1*/
246
0
    for (i = 1; i < L; i++) {
247
0
      x = timeIn[i + 1] >> 1; /*u[n+1]  */
248
0
      y = timeIn[L2 - i];     /*u[2M-n] */
249
0
      rSubband[i] = x - (y >> 1);
250
0
      iSubband[i] = x + (y >> 1);
251
0
    }
252
49.3M
  } else {
253
673M
    for (i = 0; i < L; i += 2) {
254
623M
      FIXP_DBL x0, x1, y0, y1;
255
256
623M
      x0 = timeIn[i + 0] >> 1;
257
623M
      x1 = timeIn[i + 1] >> 1;
258
623M
      y0 = timeIn[L2 - 1 - i];
259
623M
      y1 = timeIn[L2 - 2 - i];
260
261
623M
      rSubband[i + 0] = x0 - (y0 >> 1);
262
623M
      rSubband[i + 1] = x1 - (y1 >> 1);
263
623M
      iSubband[i + 0] = x0 + (y0 >> 1);
264
623M
      iSubband[i + 1] = x1 + (y1 >> 1);
265
623M
    }
266
49.3M
  }
267
268
49.3M
  dct_IV(rSubband, L, &shift);
269
49.3M
  dst_IV(iSubband, L, &shift);
270
271
  /* Do the complex rotation except for the case of 64 bands (in STD mode). */
272
49.3M
  if ((L != 64) || (anaQmf->flags & (QMF_FLAG_CLDFB | QMF_FLAG_MPSLDFB))) {
273
49.3M
    if (anaQmf->flags & QMF_FLAG_MPSLDFB_OPTIMIZE_MODULATION) {
274
0
      FIXP_DBL iBand;
275
0
      for (i = 0; i < fMin(anaQmf->lsb, L); i += 2) {
276
0
        iBand = rSubband[i];
277
0
        rSubband[i] = -iSubband[i];
278
0
        iSubband[i] = iBand;
279
280
0
        iBand = -rSubband[i + 1];
281
0
        rSubband[i + 1] = iSubband[i + 1];
282
0
        iSubband[i + 1] = iBand;
283
0
      }
284
49.3M
    } else {
285
49.3M
      const FIXP_QTW *sbr_t_cos;
286
49.3M
      const FIXP_QTW *sbr_t_sin;
287
49.3M
      const int len = L; /* was len = fMin(anaQmf->lsb, L) but in case of USAC
288
                            the signal above lsb is actually needed in some
289
                            cases (HBE?) */
290
49.3M
      sbr_t_cos = anaQmf->t_cos;
291
49.3M
      sbr_t_sin = anaQmf->t_sin;
292
293
1.29G
      for (i = 0; i < len; i++) {
294
1.24G
        cplxMult(&iSubband[i], &rSubband[i], iSubband[i], rSubband[i],
295
1.24G
                 sbr_t_cos[i], sbr_t_sin[i]);
296
1.24G
      }
297
49.3M
    }
298
49.3M
  }
299
49.3M
}
300
#endif /* FUNCTION_qmfForwardModulationHQ */
301
302
/*!
303
 *
304
 * \brief Perform low power inverse modulation of the subband
305
 *        samples stored in rSubband (real part) and iSubband (imaginary
306
 *        part) and stores the result in pWorkBuffer.
307
 *
308
 */
309
inline static void qmfInverseModulationLP_even(
310
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank  */
311
    const FIXP_DBL *qmfReal, /*!< Pointer to qmf real subband slot (input) */
312
    const int scaleFactorLowBand,  /*!< Scalefactor for Low band */
313
    const int scaleFactorHighBand, /*!< Scalefactor for High band */
314
    FIXP_DBL *pTimeOut             /*!< Pointer to qmf subband slot (output)*/
315
13.4M
) {
316
13.4M
  int i;
317
13.4M
  int L = synQmf->no_channels;
318
13.4M
  int M = L >> 1;
319
13.4M
  int scale = 0;
320
13.4M
  FIXP_DBL tmp;
321
13.4M
  FIXP_DBL *RESTRICT tReal = pTimeOut;
322
13.4M
  FIXP_DBL *RESTRICT tImag = pTimeOut + L;
323
324
  /* Move input to output vector with offset */
325
13.4M
  scaleValuesSaturate(&tReal[0], &qmfReal[0], synQmf->lsb, scaleFactorLowBand);
326
13.4M
  scaleValuesSaturate(&tReal[0 + synQmf->lsb], &qmfReal[0 + synQmf->lsb],
327
13.4M
                      synQmf->usb - synQmf->lsb, scaleFactorHighBand);
328
13.4M
  FDKmemclear(&tReal[0 + synQmf->usb], (L - synQmf->usb) * sizeof(FIXP_DBL));
329
330
  /* Dct type-2 transform */
331
13.4M
  dct_II(tReal, tImag, L, &scale);
332
333
  /* Expand output and replace inplace the output buffers */
334
13.4M
  tImag[0] = tReal[M];
335
13.4M
  tImag[M] = (FIXP_DBL)0;
336
13.4M
  tmp = tReal[0];
337
13.4M
  tReal[0] = tReal[M];
338
13.4M
  tReal[M] = tmp;
339
340
166M
  for (i = 1; i < M / 2; i++) {
341
    /* Imag */
342
153M
    tmp = tReal[L - i];
343
153M
    tImag[M - i] = tmp;
344
153M
    tImag[i + M] = -tmp;
345
346
153M
    tmp = tReal[M + i];
347
153M
    tImag[i] = tmp;
348
153M
    tImag[L - i] = -tmp;
349
350
    /* Real */
351
153M
    tReal[M + i] = tReal[i];
352
153M
    tReal[L - i] = tReal[M - i];
353
153M
    tmp = tReal[i];
354
153M
    tReal[i] = tReal[M - i];
355
153M
    tReal[M - i] = tmp;
356
153M
  }
357
  /* Remaining odd terms */
358
13.4M
  tmp = tReal[M + M / 2];
359
13.4M
  tImag[M / 2] = tmp;
360
13.4M
  tImag[M / 2 + M] = -tmp;
361
362
13.4M
  tReal[M + M / 2] = tReal[M / 2];
363
13.4M
}
364
365
inline static void qmfInverseModulationLP_odd(
366
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank  */
367
    const FIXP_DBL *qmfReal, /*!< Pointer to qmf real subband slot (input) */
368
    const int scaleFactorLowBand,  /*!< Scalefactor for Low band */
369
    const int scaleFactorHighBand, /*!< Scalefactor for High band */
370
    FIXP_DBL *pTimeOut             /*!< Pointer to qmf subband slot (output)*/
371
10.9M
) {
372
10.9M
  int i;
373
10.9M
  int L = synQmf->no_channels;
374
10.9M
  int M = L >> 1;
375
10.9M
  int shift = 0;
376
377
  /* Move input to output vector with offset */
378
10.9M
  scaleValuesSaturate(pTimeOut + M, qmfReal, synQmf->lsb, scaleFactorLowBand);
379
10.9M
  scaleValuesSaturate(pTimeOut + M + synQmf->lsb, qmfReal + synQmf->lsb,
380
10.9M
                      synQmf->usb - synQmf->lsb, scaleFactorHighBand);
381
10.9M
  FDKmemclear(pTimeOut + M + synQmf->usb, (L - synQmf->usb) * sizeof(FIXP_DBL));
382
383
10.9M
  dct_IV(pTimeOut + M, L, &shift);
384
193M
  for (i = 0; i < M; i++) {
385
182M
    pTimeOut[i] = pTimeOut[L - 1 - i];
386
182M
    pTimeOut[2 * L - 1 - i] = -pTimeOut[L + i];
387
182M
  }
388
10.9M
}
389
390
#ifndef FUNCTION_qmfInverseModulationHQ
391
/*!
392
 *
393
 * \brief Perform complex-valued inverse modulation of the subband
394
 *        samples stored in rSubband (real part) and iSubband (imaginary
395
 *        part) and stores the result in pWorkBuffer.
396
 *
397
 */
398
inline static void qmfInverseModulationHQ(
399
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank     */
400
    const FIXP_DBL *qmfReal,       /*!< Pointer to qmf real subband slot */
401
    const FIXP_DBL *qmfImag,       /*!< Pointer to qmf imag subband slot */
402
    const int scaleFactorLowBand,  /*!< Scalefactor for Low band         */
403
    const int scaleFactorHighBand, /*!< Scalefactor for High band        */
404
    FIXP_DBL *pWorkBuffer          /*!< WorkBuffer (output)              */
405
50.0M
) {
406
50.0M
  int i;
407
50.0M
  int L = synQmf->no_channels;
408
50.0M
  int M = L >> 1;
409
50.0M
  int shift = 0;
410
50.0M
  FIXP_DBL *RESTRICT tReal = pWorkBuffer;
411
50.0M
  FIXP_DBL *RESTRICT tImag = pWorkBuffer + L;
412
413
50.0M
  if (synQmf->flags & QMF_FLAG_CLDFB) {
414
24.1M
    for (i = 0; i < synQmf->usb; i++) {
415
23.4M
      cplxMultDiv2(&tImag[i], &tReal[i], qmfImag[i], qmfReal[i],
416
23.4M
                   synQmf->t_cos[i], synQmf->t_sin[i]);
417
23.4M
    }
418
728k
    scaleValuesSaturate(&tReal[0], synQmf->lsb, scaleFactorLowBand + 1);
419
728k
    scaleValuesSaturate(&tReal[0 + synQmf->lsb], synQmf->usb - synQmf->lsb,
420
728k
                        scaleFactorHighBand + 1);
421
728k
    scaleValuesSaturate(&tImag[0], synQmf->lsb, scaleFactorLowBand + 1);
422
728k
    scaleValuesSaturate(&tImag[0 + synQmf->lsb], synQmf->usb - synQmf->lsb,
423
728k
                        scaleFactorHighBand + 1);
424
728k
  }
425
426
50.0M
  if ((synQmf->flags & QMF_FLAG_CLDFB) == 0) {
427
49.2M
    scaleValuesSaturate(&tReal[0], &qmfReal[0], synQmf->lsb,
428
49.2M
                        scaleFactorLowBand);
429
49.2M
    scaleValuesSaturate(&tReal[0 + synQmf->lsb], &qmfReal[0 + synQmf->lsb],
430
49.2M
                        synQmf->usb - synQmf->lsb, scaleFactorHighBand);
431
49.2M
    scaleValuesSaturate(&tImag[0], &qmfImag[0], synQmf->lsb,
432
49.2M
                        scaleFactorLowBand);
433
49.2M
    scaleValuesSaturate(&tImag[0 + synQmf->lsb], &qmfImag[0 + synQmf->lsb],
434
49.2M
                        synQmf->usb - synQmf->lsb, scaleFactorHighBand);
435
49.2M
  }
436
437
50.0M
  FDKmemclear(&tReal[synQmf->usb],
438
50.0M
              (synQmf->no_channels - synQmf->usb) * sizeof(FIXP_DBL));
439
50.0M
  FDKmemclear(&tImag[synQmf->usb],
440
50.0M
              (synQmf->no_channels - synQmf->usb) * sizeof(FIXP_DBL));
441
442
50.0M
  dct_IV(tReal, L, &shift);
443
50.0M
  dst_IV(tImag, L, &shift);
444
445
50.0M
  if (synQmf->flags & QMF_FLAG_CLDFB) {
446
12.4M
    for (i = 0; i < M; i++) {
447
11.7M
      FIXP_DBL r1, i1, r2, i2;
448
11.7M
      r1 = tReal[i];
449
11.7M
      i2 = tImag[L - 1 - i];
450
11.7M
      r2 = tReal[L - i - 1];
451
11.7M
      i1 = tImag[i];
452
453
11.7M
      tReal[i] = (r1 - i1) >> 1;
454
11.7M
      tImag[L - 1 - i] = -(r1 + i1) >> 1;
455
11.7M
      tReal[L - i - 1] = (r2 - i2) >> 1;
456
11.7M
      tImag[i] = -(r2 + i2) >> 1;
457
11.7M
    }
458
49.2M
  } else {
459
    /* The array accesses are negative to compensate the missing minus sign in
460
     * the low and hi band gain. */
461
    /* 26 cycles on ARM926 */
462
1.62G
    for (i = 0; i < M; i++) {
463
1.57G
      FIXP_DBL r1, i1, r2, i2;
464
1.57G
      r1 = -tReal[i];
465
1.57G
      i2 = -tImag[L - 1 - i];
466
1.57G
      r2 = -tReal[L - i - 1];
467
1.57G
      i1 = -tImag[i];
468
469
1.57G
      tReal[i] = (r1 - i1) >> 1;
470
1.57G
      tImag[L - 1 - i] = -(r1 + i1) >> 1;
471
1.57G
      tReal[L - i - 1] = (r2 - i2) >> 1;
472
1.57G
      tImag[i] = -(r2 + i2) >> 1;
473
1.57G
    }
474
49.2M
  }
475
50.0M
}
476
#endif /* #ifndef FUNCTION_qmfInverseModulationHQ */
477
478
/*!
479
 *
480
 * \brief Create QMF filter bank instance
481
 *
482
 * \return 0 if successful
483
 *
484
 */
485
static int qmfInitFilterBank(
486
    HANDLE_QMF_FILTER_BANK h_Qmf, /*!< Handle to return */
487
    void *pFilterStates,          /*!< Handle to filter states */
488
    int noCols,                   /*!< Number of timeslots per frame */
489
    int lsb,                      /*!< Lower end of QMF frequency range */
490
    int usb,                      /*!< Upper end of QMF frequency range */
491
    int no_channels,              /*!< Number of channels (bands) */
492
    UINT flags,                   /*!< flags */
493
    int synflag)                  /*!< 1: synthesis; 0: analysis */
494
378k
{
495
378k
  FDKmemclear(h_Qmf, sizeof(QMF_FILTER_BANK));
496
497
378k
  if (flags & QMF_FLAG_MPSLDFB) {
498
0
    flags |= QMF_FLAG_NONSYMMETRIC;
499
0
    flags |= QMF_FLAG_MPSLDFB_OPTIMIZE_MODULATION;
500
501
0
    h_Qmf->t_cos = NULL;
502
0
    h_Qmf->t_sin = NULL;
503
0
    h_Qmf->filterScale = QMF_MPSLDFB_PFT_SCALE;
504
0
    h_Qmf->p_stride = 1;
505
506
0
    switch (no_channels) {
507
0
      case 64:
508
0
        h_Qmf->p_filter = qmf_mpsldfb_640;
509
0
        h_Qmf->FilterSize = 640;
510
0
        break;
511
0
      case 32:
512
0
        h_Qmf->p_filter = qmf_mpsldfb_320;
513
0
        h_Qmf->FilterSize = 320;
514
0
        break;
515
0
      default:
516
0
        return -1;
517
0
    }
518
0
  }
519
520
378k
  if (!(flags & QMF_FLAG_MPSLDFB) && (flags & QMF_FLAG_CLDFB)) {
521
11.9k
    flags |= QMF_FLAG_NONSYMMETRIC;
522
11.9k
    h_Qmf->filterScale = QMF_CLDFB_PFT_SCALE;
523
524
11.9k
    h_Qmf->p_stride = 1;
525
11.9k
    switch (no_channels) {
526
347
      case 64:
527
347
        h_Qmf->t_cos = qmf_phaseshift_cos64_cldfb;
528
347
        h_Qmf->t_sin = qmf_phaseshift_sin64_cldfb;
529
347
        h_Qmf->p_filter = qmf_cldfb_640;
530
347
        h_Qmf->FilterSize = 640;
531
347
        break;
532
11.4k
      case 32:
533
11.4k
        h_Qmf->t_cos = (synflag) ? qmf_phaseshift_cos32_cldfb_syn
534
11.4k
                                 : qmf_phaseshift_cos32_cldfb_ana;
535
11.4k
        h_Qmf->t_sin = qmf_phaseshift_sin32_cldfb;
536
11.4k
        h_Qmf->p_filter = qmf_cldfb_320;
537
11.4k
        h_Qmf->FilterSize = 320;
538
11.4k
        break;
539
138
      case 16:
540
138
        h_Qmf->t_cos = (synflag) ? qmf_phaseshift_cos16_cldfb_syn
541
138
                                 : qmf_phaseshift_cos16_cldfb_ana;
542
138
        h_Qmf->t_sin = qmf_phaseshift_sin16_cldfb;
543
138
        h_Qmf->p_filter = qmf_cldfb_160;
544
138
        h_Qmf->FilterSize = 160;
545
138
        break;
546
34
      case 8:
547
34
        h_Qmf->t_cos = (synflag) ? qmf_phaseshift_cos8_cldfb_syn
548
34
                                 : qmf_phaseshift_cos8_cldfb_ana;
549
34
        h_Qmf->t_sin = qmf_phaseshift_sin8_cldfb;
550
34
        h_Qmf->p_filter = qmf_cldfb_80;
551
34
        h_Qmf->FilterSize = 80;
552
34
        break;
553
0
      default:
554
0
        return -1;
555
11.9k
    }
556
11.9k
  }
557
558
378k
  if (!(flags & QMF_FLAG_MPSLDFB) && ((flags & QMF_FLAG_CLDFB) == 0)) {
559
366k
    switch (no_channels) {
560
179k
      case 64:
561
179k
        h_Qmf->p_filter = qmf_pfilt640;
562
179k
        h_Qmf->t_cos = qmf_phaseshift_cos64;
563
179k
        h_Qmf->t_sin = qmf_phaseshift_sin64;
564
179k
        h_Qmf->p_stride = 1;
565
179k
        h_Qmf->FilterSize = 640;
566
179k
        h_Qmf->filterScale = 0;
567
179k
        break;
568
485
      case 40:
569
485
        if (synflag) {
570
0
          break;
571
485
        } else {
572
485
          h_Qmf->p_filter = qmf_pfilt400; /* Scaling factor 0.8 */
573
485
          h_Qmf->t_cos = qmf_phaseshift_cos40;
574
485
          h_Qmf->t_sin = qmf_phaseshift_sin40;
575
485
          h_Qmf->filterScale = 1;
576
485
          h_Qmf->p_stride = 1;
577
485
          h_Qmf->FilterSize = no_channels * 10;
578
485
        }
579
485
        break;
580
177k
      case 32:
581
177k
        h_Qmf->p_filter = qmf_pfilt640;
582
177k
        if (flags & QMF_FLAG_DOWNSAMPLED) {
583
0
          h_Qmf->t_cos = qmf_phaseshift_cos_downsamp32;
584
0
          h_Qmf->t_sin = qmf_phaseshift_sin_downsamp32;
585
177k
        } else {
586
177k
          h_Qmf->t_cos = qmf_phaseshift_cos32;
587
177k
          h_Qmf->t_sin = qmf_phaseshift_sin32;
588
177k
        }
589
177k
        h_Qmf->p_stride = 2;
590
177k
        h_Qmf->FilterSize = 640;
591
177k
        h_Qmf->filterScale = 0;
592
177k
        break;
593
485
      case 20:
594
485
        h_Qmf->p_filter = qmf_pfilt200;
595
485
        h_Qmf->p_stride = 1;
596
485
        h_Qmf->FilterSize = 200;
597
485
        h_Qmf->filterScale = 0;
598
485
        break;
599
1.83k
      case 12:
600
1.83k
        h_Qmf->p_filter = qmf_pfilt120;
601
1.83k
        h_Qmf->p_stride = 1;
602
1.83k
        h_Qmf->FilterSize = 120;
603
1.83k
        h_Qmf->filterScale = 0;
604
1.83k
        break;
605
390
      case 8:
606
390
        h_Qmf->p_filter = qmf_pfilt640;
607
390
        h_Qmf->p_stride = 8;
608
390
        h_Qmf->FilterSize = 640;
609
390
        h_Qmf->filterScale = 0;
610
390
        break;
611
2.09k
      case 16:
612
2.09k
        h_Qmf->p_filter = qmf_pfilt640;
613
2.09k
        h_Qmf->t_cos = qmf_phaseshift_cos16;
614
2.09k
        h_Qmf->t_sin = qmf_phaseshift_sin16;
615
2.09k
        h_Qmf->p_stride = 4;
616
2.09k
        h_Qmf->FilterSize = 640;
617
2.09k
        h_Qmf->filterScale = 0;
618
2.09k
        break;
619
4.11k
      case 24:
620
4.11k
        h_Qmf->p_filter = qmf_pfilt240;
621
4.11k
        h_Qmf->t_cos = qmf_phaseshift_cos24;
622
4.11k
        h_Qmf->t_sin = qmf_phaseshift_sin24;
623
4.11k
        h_Qmf->p_stride = 1;
624
4.11k
        h_Qmf->FilterSize = 240;
625
4.11k
        h_Qmf->filterScale = 1;
626
4.11k
        break;
627
12
      default:
628
12
        return -1;
629
366k
    }
630
366k
  }
631
632
378k
  h_Qmf->synScalefactor = h_Qmf->filterScale;
633
  // DCT|DST dependency
634
378k
  switch (no_channels) {
635
0
    case 128:
636
0
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK + 1;
637
0
      break;
638
485
    case 40: {
639
485
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 1;
640
485
    } break;
641
180k
    case 64:
642
180k
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK;
643
180k
      break;
644
424
    case 8:
645
424
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 3;
646
424
      break;
647
1.83k
    case 12:
648
1.83k
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK;
649
1.83k
      break;
650
485
    case 20:
651
485
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK + 1;
652
485
      break;
653
188k
    case 32:
654
188k
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 1;
655
188k
      break;
656
2.23k
    case 16:
657
2.23k
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 2;
658
2.23k
      break;
659
4.11k
    case 24:
660
4.11k
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 1;
661
4.11k
      break;
662
0
    default:
663
0
      return -1;
664
378k
  }
665
666
378k
  h_Qmf->flags = flags;
667
668
378k
  h_Qmf->no_channels = no_channels;
669
378k
  h_Qmf->no_col = noCols;
670
671
378k
  h_Qmf->lsb = fMin(lsb, h_Qmf->no_channels);
672
378k
  h_Qmf->usb = synflag
673
378k
                   ? fMin(usb, h_Qmf->no_channels)
674
378k
                   : usb; /* was: h_Qmf->usb = fMin(usb, h_Qmf->no_channels); */
675
676
378k
  h_Qmf->FilterStates = (void *)pFilterStates;
677
678
378k
  h_Qmf->outScalefactor =
679
378k
      (ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK + h_Qmf->filterScale) +
680
378k
      h_Qmf->synScalefactor;
681
682
378k
  h_Qmf->outGain_m =
683
378k
      (FIXP_DBL)0x80000000; /* default init value will be not applied */
684
378k
  h_Qmf->outGain_e = 0;
685
686
378k
  return (0);
687
378k
}
688
689
/*!
690
 *
691
 * \brief Adjust synthesis qmf filter states
692
 *
693
 * \return void
694
 *
695
 */
696
static inline void qmfAdaptFilterStates(
697
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Filter Bank */
698
    int scaleFactorDiff)           /*!< Scale factor difference to be applied */
699
204k
{
700
204k
  if (synQmf == NULL || synQmf->FilterStates == NULL) {
701
0
    return;
702
0
  }
703
204k
  if (scaleFactorDiff > 0) {
704
104k
    scaleValuesSaturate((FIXP_QSS *)synQmf->FilterStates,
705
104k
                        synQmf->no_channels * (QMF_NO_POLY * 2 - 1),
706
104k
                        scaleFactorDiff);
707
104k
  } else {
708
100k
    scaleValues((FIXP_QSS *)synQmf->FilterStates,
709
100k
                synQmf->no_channels * (QMF_NO_POLY * 2 - 1), scaleFactorDiff);
710
100k
  }
711
204k
}
712
713
/*!
714
 *
715
 * \brief Create QMF filter bank instance
716
 *
717
 *
718
 * \return 0 if succesful
719
 *
720
 */
721
int qmfInitSynthesisFilterBank(
722
    HANDLE_QMF_FILTER_BANK h_Qmf, /*!< Returns handle */
723
    FIXP_QSS *pFilterStates,      /*!< Handle to filter states */
724
    int noCols,                   /*!< Number of timeslots per frame */
725
    int lsb,                      /*!< lower end of QMF */
726
    int usb,                      /*!< upper end of QMF */
727
    int no_channels,              /*!< Number of channels (bands) */
728
    int flags)                    /*!< Low Power flag */
729
189k
{
730
189k
  int oldOutScale = h_Qmf->outScalefactor;
731
189k
  int err = qmfInitFilterBank(h_Qmf, pFilterStates, noCols, lsb, usb,
732
189k
                              no_channels, flags, 1);
733
189k
  if (h_Qmf->FilterStates != NULL) {
734
189k
    if (!(flags & QMF_FLAG_KEEP_STATES)) {
735
111k
      FDKmemclear(
736
111k
          h_Qmf->FilterStates,
737
111k
          (2 * QMF_NO_POLY - 1) * h_Qmf->no_channels * sizeof(FIXP_QSS));
738
111k
    } else {
739
78.3k
      qmfAdaptFilterStates(h_Qmf, oldOutScale - h_Qmf->outScalefactor);
740
78.3k
    }
741
189k
  }
742
743
189k
  FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->lsb);
744
189k
  FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->usb);
745
746
189k
  return err;
747
189k
}
748
749
/*!
750
 *
751
 * \brief Change scale factor for output data and adjust qmf filter states
752
 *
753
 * \return void
754
 *
755
 */
756
void qmfChangeOutScalefactor(
757
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank */
758
    int outScalefactor             /*!< New scaling factor for output data */
759
3.42M
) {
760
3.42M
  if (synQmf == NULL) {
761
0
    return;
762
0
  }
763
764
  /* Add internal filterbank scale */
765
3.42M
  outScalefactor +=
766
3.42M
      (ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK + synQmf->filterScale) +
767
3.42M
      synQmf->synScalefactor;
768
769
  /* adjust filter states when scale factor has been changed */
770
3.42M
  if (synQmf->outScalefactor != outScalefactor) {
771
126k
    int diff;
772
773
126k
    diff = synQmf->outScalefactor - outScalefactor;
774
775
126k
    qmfAdaptFilterStates(synQmf, diff);
776
777
    /* save new scale factor */
778
126k
    synQmf->outScalefactor = outScalefactor;
779
126k
  }
780
3.42M
}
781
782
/*!
783
 *
784
 * \brief Get scale factor change which was set by qmfChangeOutScalefactor()
785
 *
786
 * \return scaleFactor
787
 *
788
 */
789
int qmfGetOutScalefactor(
790
    HANDLE_QMF_FILTER_BANK synQmf) /*!< Handle of Qmf Synthesis Bank */
791
185k
{
792
185k
  int scaleFactor = synQmf->outScalefactor
793
185k
                        ? (synQmf->outScalefactor -
794
73.3k
                           (ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK +
795
73.3k
                            synQmf->filterScale + synQmf->synScalefactor))
796
185k
                        : 0;
797
185k
  return scaleFactor;
798
185k
}
799
800
/*!
801
 *
802
 * \brief Change gain for output data
803
 *
804
 * \return void
805
 *
806
 */
807
void qmfChangeOutGain(
808
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank */
809
    FIXP_DBL outputGain,           /*!< New gain for output data (mantissa) */
810
    int outputGainScale            /*!< New gain for output data (exponent) */
811
226k
) {
812
226k
  synQmf->outGain_m = outputGain;
813
226k
  synQmf->outGain_e = outputGainScale;
814
226k
}
815
816
0
#define INT_PCM_QMFOUT INT_PCM
817
0
#define SAMPLE_BITS_QMFOUT SAMPLE_BITS
818
#include "qmf_pcm.h"
819
#if SAMPLE_BITS == 16
820
  /* also create a 32 bit output version */
821
#undef INT_PCM_QMFOUT
822
#undef SAMPLE_BITS_QMFOUT
823
#undef QMF_PCM_H
824
#undef FIXP_QAS
825
#undef QAS_BITS
826
#undef INT_PCM_QMFIN
827
4.21G
#define INT_PCM_QMFOUT LONG
828
74.4M
#define SAMPLE_BITS_QMFOUT 32
829
186M
#define FIXP_QAS FIXP_DBL
830
#define QAS_BITS 32
831
#define INT_PCM_QMFIN LONG
832
#include "qmf_pcm.h"
833
#endif