Coverage Report

Created: 2025-12-31 07:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fdk-aac/libSBRdec/src/sbrdec_freq_sca.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2021 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** SBR decoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  Frequency scale calculation
106
*/
107
108
#include "sbrdec_freq_sca.h"
109
110
#include "transcendent.h"
111
#include "sbr_rom.h"
112
#include "env_extr.h"
113
114
#include "genericStds.h" /* need log() for debug-code only */
115
116
1.00M
#define MAX_OCTAVE 29
117
#define MAX_SECOND_REGION 50
118
119
static int numberOfBands(FIXP_SGL bpo_div16, int start, int stop, int warpFlag);
120
static void CalcBands(UCHAR *diff, UCHAR start, UCHAR stop, UCHAR num_bands);
121
static SBR_ERROR modifyBands(UCHAR max_band, UCHAR *diff, UCHAR length);
122
static void cumSum(UCHAR start_value, UCHAR *diff, UCHAR length,
123
                   UCHAR *start_adress);
124
125
/*!
126
  \brief     Retrieve QMF-band where the SBR range starts
127
128
  Convert startFreq which was read from the bitstream into a
129
  QMF-channel number.
130
131
  \return  Number of start band
132
*/
133
static UCHAR getStartBand(
134
    UINT fs,              /*!< Output sampling frequency */
135
    UCHAR startFreq,      /*!< Index to table of possible start bands */
136
    UINT headerDataFlags) /*!< Info to SBR mode */
137
522k
{
138
522k
  INT band;
139
522k
  UINT fsMapped = fs;
140
522k
  SBR_RATE rate = DUAL;
141
142
522k
  if (headerDataFlags & (SBRDEC_SYNTAX_USAC | SBRDEC_SYNTAX_RSVD50)) {
143
270k
    if (headerDataFlags & SBRDEC_QUAD_RATE) {
144
11.2k
      rate = QUAD;
145
11.2k
    }
146
270k
    fsMapped = sbrdec_mapToStdSampleRate(fs, 1);
147
270k
  }
148
149
522k
  FDK_ASSERT(2 * (rate + 1) <= (4));
150
151
522k
  switch (fsMapped) {
152
7
    case 192000:
153
7
      band = FDK_sbrDecoder_sbr_start_freq_192[startFreq];
154
7
      break;
155
500
    case 176400:
156
500
      band = FDK_sbrDecoder_sbr_start_freq_176[startFreq];
157
500
      break;
158
7
    case 128000:
159
7
      band = FDK_sbrDecoder_sbr_start_freq_128[startFreq];
160
7
      break;
161
80.8k
    case 96000:
162
137k
    case 88200:
163
137k
      band = FDK_sbrDecoder_sbr_start_freq_88[rate][startFreq];
164
137k
      break;
165
82.4k
    case 64000:
166
82.4k
      band = FDK_sbrDecoder_sbr_start_freq_64[rate][startFreq];
167
82.4k
      break;
168
11.6k
    case 48000:
169
11.6k
      band = FDK_sbrDecoder_sbr_start_freq_48[rate][startFreq];
170
11.6k
      break;
171
7.89k
    case 44100:
172
7.89k
      band = FDK_sbrDecoder_sbr_start_freq_44[rate][startFreq];
173
7.89k
      break;
174
93.0k
    case 40000:
175
93.0k
      band = FDK_sbrDecoder_sbr_start_freq_40[rate][startFreq];
176
93.0k
      break;
177
77.2k
    case 32000:
178
77.2k
      band = FDK_sbrDecoder_sbr_start_freq_32[rate][startFreq];
179
77.2k
      break;
180
65.9k
    case 24000:
181
65.9k
      band = FDK_sbrDecoder_sbr_start_freq_24[rate][startFreq];
182
65.9k
      break;
183
4.08k
    case 22050:
184
4.08k
      band = FDK_sbrDecoder_sbr_start_freq_22[rate][startFreq];
185
4.08k
      break;
186
41.6k
    case 16000:
187
41.6k
      band = FDK_sbrDecoder_sbr_start_freq_16[rate][startFreq];
188
41.6k
      break;
189
0
    default:
190
0
      band = 255;
191
522k
  }
192
193
522k
  return band;
194
522k
}
195
196
/*!
197
  \brief     Retrieve QMF-band where the SBR range starts
198
199
  Convert startFreq which was read from the bitstream into a
200
  QMF-channel number.
201
202
  \return  Number of start band
203
*/
204
static UCHAR getStopBand(
205
    UINT fs,              /*!< Output sampling frequency */
206
    UCHAR stopFreq,       /*!< Index to table of possible start bands */
207
    UINT headerDataFlags, /*!< Info to SBR mode */
208
    UCHAR k0)             /*!< Start freq index */
209
522k
{
210
522k
  UCHAR k2;
211
212
522k
  if (stopFreq < 14) {
213
481k
    INT stopMin;
214
481k
    INT num = 2 * (64);
215
481k
    UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
216
481k
    UCHAR *diff0 = diff_tot;
217
481k
    UCHAR *diff1 = diff_tot + MAX_OCTAVE;
218
219
481k
    if (headerDataFlags & SBRDEC_QUAD_RATE) {
220
10.9k
      num >>= 1;
221
10.9k
    }
222
223
481k
    if (fs < 32000) {
224
142k
      stopMin = (((2 * 6000 * num) / fs) + 1) >> 1;
225
338k
    } else {
226
338k
      if (fs < 64000) {
227
210k
        stopMin = (((2 * 8000 * num) / fs) + 1) >> 1;
228
210k
      } else {
229
128k
        stopMin = (((2 * 10000 * num) / fs) + 1) >> 1;
230
128k
      }
231
338k
    }
232
233
481k
    stopMin = fMin(stopMin, 64);
234
235
    /*
236
      Choose a stop band between k1 and 64 depending on stopFreq (0..13),
237
      based on a logarithmic scale.
238
      The vectors diff0 and diff1 are used temporarily here.
239
    */
240
481k
    CalcBands(diff0, stopMin, 64, 13);
241
481k
    shellsort(diff0, 13);
242
481k
    cumSum(stopMin, diff0, 13, diff1);
243
481k
    k2 = diff1[stopFreq];
244
481k
  } else if (stopFreq == 14)
245
4.96k
    k2 = 2 * k0;
246
35.9k
  else
247
35.9k
    k2 = 3 * k0;
248
249
  /* Limit to Nyquist */
250
522k
  if (k2 > (64)) k2 = (64);
251
252
  /* Range checks */
253
  /* 1 <= difference <= 48; 1 <= fs <= 96000 */
254
522k
  {
255
522k
    UCHAR max_freq_coeffs = (headerDataFlags & SBRDEC_QUAD_RATE)
256
522k
                                ? MAX_FREQ_COEFFS_QUAD_RATE
257
522k
                                : MAX_FREQ_COEFFS;
258
522k
    if (((k2 - k0) > max_freq_coeffs) || (k2 <= k0)) {
259
4.85k
      return 255;
260
4.85k
    }
261
522k
  }
262
263
517k
  if (headerDataFlags & SBRDEC_QUAD_RATE) {
264
10.6k
    return k2; /* skip other checks: (k2 - k0) must be <=
265
                  MAX_FREQ_COEFFS_QUAD_RATE for all fs */
266
10.6k
  }
267
506k
  if (headerDataFlags & (SBRDEC_SYNTAX_USAC | SBRDEC_SYNTAX_RSVD50)) {
268
    /* 1 <= difference <= 35; 42000 <= fs <= 96000 */
269
256k
    if ((fs >= 42000) && ((k2 - k0) > MAX_FREQ_COEFFS_FS44100)) {
270
1.42k
      return 255;
271
1.42k
    }
272
    /* 1 <= difference <= 32; 46009 <= fs <= 96000 */
273
255k
    if ((fs >= 46009) && ((k2 - k0) > MAX_FREQ_COEFFS_FS48000)) {
274
4.24k
      return 255;
275
4.24k
    }
276
255k
  } else {
277
    /* 1 <= difference <= 35; fs == 44100 */
278
249k
    if ((fs == 44100) && ((k2 - k0) > MAX_FREQ_COEFFS_FS44100)) {
279
71
      return 255;
280
71
    }
281
    /* 1 <= difference <= 32; 48000 <= fs <= 96000 */
282
249k
    if ((fs >= 48000) && ((k2 - k0) > MAX_FREQ_COEFFS_FS48000)) {
283
1.44k
      return 255;
284
1.44k
    }
285
249k
  }
286
287
499k
  return k2;
288
506k
}
289
290
/*!
291
  \brief     Generates master frequency tables
292
293
  Frequency tables are calculated according to the selected domain
294
  (linear/logarithmic) and granularity.
295
  IEC 14496-3 4.6.18.3.2.1
296
297
  \return  errorCode, 0 if successful
298
*/
299
SBR_ERROR
300
sbrdecUpdateFreqScale(
301
    UCHAR *v_k_master, /*!< Master table to be created */
302
    UCHAR *numMaster,  /*!< Number of entries in master table */
303
    UINT fs,           /*!< SBR working sampling rate */
304
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Control data from bitstream */
305
522k
    UINT flags) {
306
522k
  FIXP_SGL bpo_div16; /* bands_per_octave divided by 16 */
307
522k
  INT dk = 0;
308
309
  /* Internal variables */
310
522k
  UCHAR k0, k2, i;
311
522k
  UCHAR num_bands0 = 0;
312
522k
  UCHAR num_bands1 = 0;
313
522k
  UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
314
522k
  UCHAR *diff0 = diff_tot;
315
522k
  UCHAR *diff1 = diff_tot + MAX_OCTAVE;
316
522k
  INT k2_achived;
317
522k
  INT k2_diff;
318
522k
  INT incr = 0;
319
320
  /*
321
    Determine start band
322
  */
323
522k
  if (flags & SBRDEC_QUAD_RATE) {
324
11.2k
    fs >>= 1;
325
11.2k
  }
326
327
522k
  k0 = getStartBand(fs, hHeaderData->bs_data.startFreq, flags);
328
522k
  if (k0 == 255) {
329
0
    return SBRDEC_UNSUPPORTED_CONFIG;
330
0
  }
331
332
  /*
333
    Determine stop band
334
  */
335
522k
  k2 = getStopBand(fs, hHeaderData->bs_data.stopFreq, flags, k0);
336
522k
  if (k2 == 255) {
337
12.0k
    return SBRDEC_UNSUPPORTED_CONFIG;
338
12.0k
  }
339
340
509k
  if (hHeaderData->bs_data.freqScale > 0) { /* Bark */
341
245k
    INT k1;
342
343
245k
    if (hHeaderData->bs_data.freqScale == 1) {
344
11.8k
      bpo_div16 = FL2FXCONST_SGL(12.0f / 16.0f);
345
233k
    } else if (hHeaderData->bs_data.freqScale == 2) {
346
198k
      bpo_div16 = FL2FXCONST_SGL(10.0f / 16.0f);
347
198k
    } else {
348
35.0k
      bpo_div16 = FL2FXCONST_SGL(8.0f / 16.0f);
349
35.0k
    }
350
351
    /* Ref: ISO/IEC 23003-3, Figure 12 - Flowchart calculation of fMaster for
352
     * 4:1 system when bs_freq_scale > 0 */
353
245k
    if (flags & SBRDEC_QUAD_RATE) {
354
5.74k
      if ((SHORT)k0 < (SHORT)(bpo_div16 >> ((FRACT_BITS - 1) - 4))) {
355
1.79k
        bpo_div16 = (FIXP_SGL)(k0 & (UCHAR)0xfe)
356
1.79k
                    << ((FRACT_BITS - 1) - 4); /* bpo_div16 = floor(k0/2)*2 */
357
1.79k
      }
358
5.74k
    }
359
360
245k
    if (1000 * k2 > 2245 * k0) { /* Two or more regions */
361
156k
      k1 = 2 * k0;
362
363
156k
      num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
364
156k
      num_bands1 =
365
156k
          numberOfBands(bpo_div16, k1, k2, hHeaderData->bs_data.alterScale);
366
156k
      if (num_bands0 < 1) {
367
709
        return SBRDEC_UNSUPPORTED_CONFIG;
368
709
      }
369
155k
      if (num_bands1 < 1) {
370
19
        return SBRDEC_UNSUPPORTED_CONFIG;
371
19
      }
372
373
155k
      CalcBands(diff0, k0, k1, num_bands0);
374
155k
      shellsort(diff0, num_bands0);
375
155k
      if (diff0[0] == 0) {
376
43.1k
        return SBRDEC_UNSUPPORTED_CONFIG;
377
43.1k
      }
378
379
112k
      cumSum(k0, diff0, num_bands0, v_k_master);
380
381
112k
      CalcBands(diff1, k1, k2, num_bands1);
382
112k
      shellsort(diff1, num_bands1);
383
112k
      if (diff0[num_bands0 - 1] > diff1[0]) {
384
13.8k
        SBR_ERROR err;
385
386
13.8k
        err = modifyBands(diff0[num_bands0 - 1], diff1, num_bands1);
387
13.8k
        if (err) return SBRDEC_UNSUPPORTED_CONFIG;
388
13.8k
      }
389
390
      /* Add 2nd region */
391
112k
      cumSum(k1, diff1, num_bands1, &v_k_master[num_bands0]);
392
112k
      *numMaster = num_bands0 + num_bands1; /* Output nr of bands */
393
394
112k
    } else { /* Only one region */
395
89.5k
      k1 = k2;
396
397
89.5k
      num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
398
89.5k
      if (num_bands0 < 1) {
399
551
        return SBRDEC_UNSUPPORTED_CONFIG;
400
551
      }
401
89.0k
      CalcBands(diff0, k0, k1, num_bands0);
402
89.0k
      shellsort(diff0, num_bands0);
403
89.0k
      if (diff0[0] == 0) {
404
2.10k
        return SBRDEC_UNSUPPORTED_CONFIG;
405
2.10k
      }
406
407
86.9k
      cumSum(k0, diff0, num_bands0, v_k_master);
408
86.9k
      *numMaster = num_bands0; /* Output nr of bands */
409
86.9k
    }
410
264k
  } else { /* Linear mode */
411
264k
    if (hHeaderData->bs_data.alterScale == 0) {
412
44.1k
      dk = 1;
413
      /* FLOOR to get to few number of bands (next lower even number) */
414
44.1k
      num_bands0 = (k2 - k0) & 254;
415
220k
    } else {
416
220k
      dk = 2;
417
220k
      num_bands0 = (((k2 - k0) >> 1) + 1) & 254; /* ROUND to the closest fit */
418
220k
    }
419
420
264k
    if (num_bands0 < 1) {
421
13
      return SBRDEC_UNSUPPORTED_CONFIG;
422
      /* We must return already here because 'i' can become negative below. */
423
13
    }
424
425
264k
    k2_achived = k0 + num_bands0 * dk;
426
264k
    k2_diff = k2 - k2_achived;
427
428
2.64M
    for (i = 0; i < num_bands0; i++) diff_tot[i] = dk;
429
430
    /* If linear scale wasn't achieved */
431
    /* and we got too wide SBR area */
432
264k
    if (k2_diff < 0) {
433
181k
      incr = 1;
434
181k
      i = 0;
435
181k
    }
436
437
    /* If linear scale wasn't achieved */
438
    /* and we got too small SBR area */
439
264k
    if (k2_diff > 0) {
440
35.6k
      incr = -1;
441
35.6k
      i = num_bands0 - 1;
442
35.6k
    }
443
444
    /* Adjust diff vector to get sepc. SBR range */
445
601k
    while (k2_diff != 0) {
446
337k
      diff_tot[i] = diff_tot[i] - incr;
447
337k
      i = i + incr;
448
337k
      k2_diff = k2_diff + incr;
449
337k
    }
450
451
264k
    cumSum(k0, diff_tot, num_bands0, v_k_master); /* cumsum */
452
264k
    *numMaster = num_bands0;                      /* Output nr of bands */
453
264k
  }
454
455
463k
  if (*numMaster < 1) {
456
0
    return SBRDEC_UNSUPPORTED_CONFIG;
457
0
  }
458
459
  /* Ref: ISO/IEC 23003-3 Cor.3, "In 7.5.5.2, add to the requirements:"*/
460
463k
  if (flags & SBRDEC_QUAD_RATE) {
461
9.84k
    int k;
462
89.2k
    for (k = 1; k < *numMaster; k++) {
463
79.9k
      if (!(v_k_master[k] - v_k_master[k - 1] <= k0 - 2)) {
464
564
        return SBRDEC_UNSUPPORTED_CONFIG;
465
564
      }
466
79.9k
    }
467
9.84k
  }
468
469
  /*
470
    Print out the calculated table
471
  */
472
473
462k
  return SBRDEC_OK;
474
463k
}
475
476
/*!
477
  \brief     Calculate frequency ratio of one SBR band
478
479
  All SBR bands should span a constant frequency range in the logarithmic
480
  domain. This function calculates the ratio of any SBR band's upper and lower
481
  frequency.
482
483
 \return    num_band-th root of k_start/k_stop
484
*/
485
837k
static FIXP_SGL calcFactorPerBand(int k_start, int k_stop, int num_bands) {
486
  /* Scaled bandfactor and step 1 bit right to avoid overflow
487
   * use double data type */
488
837k
  FIXP_DBL bandfactor = FL2FXCONST_DBL(0.25f); /* Start value */
489
837k
  FIXP_DBL step = FL2FXCONST_DBL(0.125f); /* Initial increment for factor */
490
491
837k
  int direction = 1;
492
493
  /* Because saturation can't be done in INT IIS,
494
   * changed start and stop data type from FIXP_SGL to FIXP_DBL */
495
837k
  FIXP_DBL start = k_start << (DFRACT_BITS - 8);
496
837k
  FIXP_DBL stop = k_stop << (DFRACT_BITS - 8);
497
498
837k
  FIXP_DBL temp;
499
500
837k
  int j, i = 0;
501
502
38.3M
  while (step > FL2FXCONST_DBL(0.0f)) {
503
37.5M
    i++;
504
37.5M
    temp = stop;
505
506
    /* Calculate temp^num_bands: */
507
440M
    for (j = 0; j < num_bands; j++)
508
      // temp = fMult(temp,bandfactor);
509
403M
      temp = fMultDiv2(temp, bandfactor) << 2;
510
511
37.5M
    if (temp < start) { /* Factor too strong, make it weaker */
512
19.2M
      if (direction == 0)
513
        /* Halfen step. Right shift is not done as fract because otherwise the
514
           lowest bit cannot be cleared due to rounding */
515
11.7M
        step = (FIXP_DBL)((LONG)step >> 1);
516
19.2M
      direction = 1;
517
19.2M
      bandfactor = bandfactor + step;
518
19.2M
    } else { /* Factor is too weak: make it stronger */
519
18.2M
      if (direction == 1) step = (FIXP_DBL)((LONG)step >> 1);
520
18.2M
      direction = 0;
521
18.2M
      bandfactor = bandfactor - step;
522
18.2M
    }
523
524
37.5M
    if (i > 100) {
525
0
      step = FL2FXCONST_DBL(0.0f);
526
0
    }
527
37.5M
  }
528
837k
  return (bandfactor >= FL2FXCONST_DBL(0.5)) ? (FIXP_SGL)MAXVAL_SGL
529
837k
                                             : FX_DBL2FX_SGL(bandfactor << 1);
530
837k
}
531
532
/*!
533
  \brief     Calculate number of SBR bands between start and stop band
534
535
  Given the number of bands per octave, this function calculates how many
536
  bands fit in the given frequency range.
537
  When the warpFlag is set, the 'band density' is decreased by a factor
538
  of 1/1.3
539
540
  \return    number of bands
541
*/
542
static int numberOfBands(
543
    FIXP_SGL bpo_div16, /*!< Input: number of bands per octave divided by 16 */
544
    int start,          /*!< First QMF band of SBR frequency range */
545
    int stop,           /*!< Last QMF band of SBR frequency range + 1 */
546
    int warpFlag)       /*!< Stretching flag */
547
401k
{
548
401k
  FIXP_SGL num_bands_div128;
549
401k
  int num_bands;
550
551
401k
  num_bands_div128 =
552
401k
      FX_DBL2FX_SGL(fMult(FDK_getNumOctavesDiv8(start, stop), bpo_div16));
553
554
401k
  if (warpFlag) {
555
    /* Apply the warp factor of 1.3 to get wider bands.  We use a value
556
       of 32768/25200 instead of the exact value to avoid critical cases
557
       of rounding.
558
    */
559
134k
    num_bands_div128 = FX_DBL2FX_SGL(
560
134k
        fMult(num_bands_div128, FL2FXCONST_SGL(25200.0 / 32768.0)));
561
134k
  }
562
563
  /* add scaled 1 for rounding to even numbers: */
564
401k
  num_bands_div128 = num_bands_div128 + FL2FXCONST_SGL(1.0f / 128.0f);
565
  /* scale back to right aligned integer and double the value: */
566
401k
  num_bands = 2 * ((LONG)num_bands_div128 >> (FRACT_BITS - 7));
567
568
401k
  return (num_bands);
569
401k
}
570
571
/*!
572
  \brief     Calculate width of SBR bands
573
574
  Given the desired number of bands within the SBR frequency range,
575
  this function calculates the width of each SBR band in QMF channels.
576
  The bands get wider from start to stop (bark scale).
577
*/
578
static void CalcBands(UCHAR *diff,     /*!< Vector of widths to be calculated */
579
                      UCHAR start,     /*!< Lower end of subband range */
580
                      UCHAR stop,      /*!< Upper end of subband range */
581
                      UCHAR num_bands) /*!< Desired number of bands */
582
837k
{
583
837k
  int i;
584
837k
  int previous;
585
837k
  int current;
586
837k
  FIXP_SGL exact, temp;
587
837k
  FIXP_SGL bandfactor = calcFactorPerBand(start, stop, num_bands);
588
589
837k
  previous = stop; /* Start with highest QMF channel */
590
837k
  exact = (FIXP_SGL)(
591
837k
      stop << (FRACT_BITS - 8)); /* Shift left to gain some accuracy */
592
593
9.82M
  for (i = num_bands - 1; i >= 0; i--) {
594
    /* Calculate border of next lower sbr band */
595
8.98M
    exact = FX_DBL2FX_SGL(fMult(exact, bandfactor));
596
597
    /* Add scaled 0.5 for rounding:
598
       We use a value 128/256 instead of 0.5 to avoid some critical cases of
599
       rounding. */
600
8.98M
    temp = exact + FL2FXCONST_SGL(128.0 / 32768.0);
601
602
    /* scale back to right alinged integer: */
603
8.98M
    current = (LONG)temp >> (FRACT_BITS - 8);
604
605
    /* Save width of band i */
606
8.98M
    diff[i] = previous - current;
607
8.98M
    previous = current;
608
8.98M
  }
609
837k
}
610
611
/*!
612
  \brief     Calculate cumulated sum vector from delta vector
613
*/
614
static void cumSum(UCHAR start_value, UCHAR *diff, UCHAR length,
615
1.05M
                   UCHAR *start_adress) {
616
1.05M
  int i;
617
1.05M
  start_adress[0] = start_value;
618
11.9M
  for (i = 1; i <= length; i++)
619
10.9M
    start_adress[i] = start_adress[i - 1] + diff[i - 1];
620
1.05M
}
621
622
/*!
623
  \brief     Adapt width of frequency bands in the second region
624
625
  If SBR spans more than 2 octaves, the upper part of a bark-frequency-scale
626
  is calculated separately. This function tries to avoid that the second region
627
  starts with a band smaller than the highest band of the first region.
628
*/
629
static SBR_ERROR modifyBands(UCHAR max_band_previous, UCHAR *diff,
630
13.8k
                             UCHAR length) {
631
13.8k
  int change = max_band_previous - diff[0];
632
633
  /* Limit the change so that the last band cannot get narrower than the first
634
   * one */
635
13.8k
  if (change > (diff[length - 1] - diff[0]) >> 1)
636
13.1k
    change = (diff[length - 1] - diff[0]) >> 1;
637
638
13.8k
  diff[0] += change;
639
13.8k
  diff[length - 1] -= change;
640
13.8k
  shellsort(diff, length);
641
642
13.8k
  return SBRDEC_OK;
643
13.8k
}
644
645
/*!
646
  \brief   Update high resolution frequency band table
647
*/
648
static void sbrdecUpdateHiRes(UCHAR *h_hires, UCHAR *num_hires,
649
                              UCHAR *v_k_master, UCHAR num_bands,
650
434k
                              UCHAR xover_band) {
651
434k
  UCHAR i;
652
653
434k
  *num_hires = num_bands - xover_band;
654
655
4.37M
  for (i = xover_band; i <= num_bands; i++) {
656
3.94M
    h_hires[i - xover_band] = v_k_master[i];
657
3.94M
  }
658
434k
}
659
660
/*!
661
  \brief  Build low resolution table out of high resolution table
662
*/
663
static void sbrdecUpdateLoRes(UCHAR *h_lores, UCHAR *num_lores, UCHAR *h_hires,
664
434k
                              UCHAR num_hires) {
665
434k
  UCHAR i;
666
667
434k
  if ((num_hires & 1) == 0) {
668
    /* If even number of hires bands */
669
317k
    *num_lores = num_hires >> 1;
670
    /* Use every second lores=hires[0,2,4...] */
671
2.09M
    for (i = 0; i <= *num_lores; i++) h_lores[i] = h_hires[i * 2];
672
317k
  } else {
673
    /* Odd number of hires, which means xover is odd */
674
117k
    *num_lores = (num_hires + 1) >> 1;
675
    /* Use lores=hires[0,1,3,5 ...] */
676
117k
    h_lores[0] = h_hires[0];
677
472k
    for (i = 1; i <= *num_lores; i++) {
678
355k
      h_lores[i] = h_hires[i * 2 - 1];
679
355k
    }
680
117k
  }
681
434k
}
682
683
/*!
684
  \brief   Derive a low-resolution frequency-table from the master frequency
685
  table
686
*/
687
void sbrdecDownSampleLoRes(UCHAR *v_result, UCHAR num_result,
688
413k
                           UCHAR *freqBandTableRef, UCHAR num_Ref) {
689
413k
  int step;
690
413k
  int i, j;
691
413k
  int org_length, result_length;
692
413k
  int v_index[MAX_FREQ_COEFFS >> 1];
693
694
  /* init */
695
413k
  org_length = num_Ref;
696
413k
  result_length = num_result;
697
698
413k
  v_index[0] = 0; /* Always use left border */
699
413k
  i = 0;
700
1.18M
  while (org_length > 0) {
701
    /* Create downsample vector */
702
766k
    i++;
703
766k
    step = org_length / result_length;
704
766k
    org_length = org_length - step;
705
766k
    result_length--;
706
766k
    v_index[i] = v_index[i - 1] + step;
707
766k
  }
708
709
1.59M
  for (j = 0; j <= i; j++) {
710
    /* Use downsample vector to index LoResolution vector */
711
1.18M
    v_result[j] = freqBandTableRef[v_index[j]];
712
1.18M
  }
713
413k
}
714
715
/*!
716
  \brief   Sorting routine
717
*/
718
4.89M
void shellsort(UCHAR *in, UCHAR n) {
719
4.89M
  int i, j, v, w;
720
4.89M
  int inc = 1;
721
722
4.89M
  do
723
9.59M
    inc = 3 * inc + 1;
724
9.59M
  while (inc <= n);
725
726
9.59M
  do {
727
9.59M
    inc = inc / 3;
728
54.2M
    for (i = inc; i < n; i++) {
729
44.6M
      v = in[i];
730
44.6M
      j = i;
731
54.9M
      while ((w = in[j - inc]) > v) {
732
11.1M
        in[j] = w;
733
11.1M
        j -= inc;
734
11.1M
        if (j < inc) break;
735
11.1M
      }
736
44.6M
      in[j] = v;
737
44.6M
    }
738
9.59M
  } while (inc > 1);
739
4.89M
}
740
741
/*!
742
  \brief   Reset frequency band tables
743
  \return  errorCode, 0 if successful
744
*/
745
SBR_ERROR
746
522k
resetFreqBandTables(HANDLE_SBR_HEADER_DATA hHeaderData, const UINT flags) {
747
522k
  SBR_ERROR err = SBRDEC_OK;
748
522k
  int k2, kx, lsb, usb;
749
522k
  int intTemp;
750
522k
  UCHAR nBandsLo, nBandsHi;
751
522k
  HANDLE_FREQ_BAND_DATA hFreq = &hHeaderData->freqBandData;
752
753
  /* Calculate master frequency function */
754
522k
  err = sbrdecUpdateFreqScale(hFreq->v_k_master, &hFreq->numMaster,
755
522k
                              hHeaderData->sbrProcSmplRate, hHeaderData, flags);
756
757
522k
  if (err || (hHeaderData->bs_info.xover_band > hFreq->numMaster)) {
758
87.5k
    return SBRDEC_UNSUPPORTED_CONFIG;
759
87.5k
  }
760
761
  /* Derive Hiresolution from master frequency function */
762
434k
  sbrdecUpdateHiRes(hFreq->freqBandTable[1], &nBandsHi, hFreq->v_k_master,
763
434k
                    hFreq->numMaster, hHeaderData->bs_info.xover_band);
764
  /* Derive Loresolution from Hiresolution */
765
434k
  sbrdecUpdateLoRes(hFreq->freqBandTable[0], &nBandsLo, hFreq->freqBandTable[1],
766
434k
                    nBandsHi);
767
768
  /* Check index to freqBandTable[0] */
769
434k
  if (!(nBandsLo > 0) ||
770
429k
      (nBandsLo > (((hHeaderData->numberOfAnalysisBands == 16)
771
429k
                        ? MAX_FREQ_COEFFS_QUAD_RATE
772
429k
                        : MAX_FREQ_COEFFS_DUAL_RATE) >>
773
429k
                   1))) {
774
5.32k
    return SBRDEC_UNSUPPORTED_CONFIG;
775
5.32k
  }
776
777
429k
  hFreq->nSfb[0] = nBandsLo;
778
429k
  hFreq->nSfb[1] = nBandsHi;
779
780
429k
  lsb = hFreq->freqBandTable[0][0];
781
429k
  usb = hFreq->freqBandTable[0][nBandsLo];
782
783
  /* Check for start frequency border k_x:
784
     - ISO/IEC 14496-3 4.6.18.3.6 Requirements
785
     - ISO/IEC 23003-3 7.5.5.2    Modifications and additions to the MPEG-4 SBR
786
     tool
787
  */
788
  /* Note that lsb > as hHeaderData->numberOfAnalysisBands is a valid SBR config
789
   * for 24 band QMF analysis. */
790
429k
  if ((lsb > ((flags & SBRDEC_QUAD_RATE) ? 16 : (32))) || (lsb >= usb)) {
791
15.1k
    return SBRDEC_UNSUPPORTED_CONFIG;
792
15.1k
  }
793
794
  /* Calculate number of noise bands */
795
796
413k
  k2 = hFreq->freqBandTable[1][nBandsHi];
797
413k
  kx = hFreq->freqBandTable[1][0];
798
799
413k
  if (hHeaderData->bs_data.noise_bands == 0) {
800
40.8k
    hFreq->nNfb = 1;
801
40.8k
  } else /* Calculate no of noise bands 1,2 or 3 bands/octave */
802
373k
  {
803
    /* Fetch number of octaves divided by 32 */
804
373k
    intTemp = (LONG)FDK_getNumOctavesDiv8(kx, k2) >> 2;
805
806
    /* Integer-Multiplication with number of bands: */
807
373k
    intTemp = intTemp * hHeaderData->bs_data.noise_bands;
808
809
    /* Add scaled 0.5 for rounding: */
810
373k
    intTemp = intTemp + (LONG)FL2FXCONST_SGL(0.5f / 32.0f);
811
812
    /* Convert to right-aligned integer: */
813
373k
    intTemp = intTemp >> (FRACT_BITS - 1 /*sign*/ - 5 /* rescale */);
814
815
373k
    if (intTemp == 0) intTemp = 1;
816
817
373k
    if (intTemp > MAX_NOISE_COEFFS) {
818
114
      return SBRDEC_UNSUPPORTED_CONFIG;
819
114
    }
820
821
373k
    hFreq->nNfb = intTemp;
822
373k
  }
823
824
413k
  hFreq->nInvfBands = hFreq->nNfb;
825
826
  /* Get noise bands */
827
413k
  sbrdecDownSampleLoRes(hFreq->freqBandTableNoise, hFreq->nNfb,
828
413k
                        hFreq->freqBandTable[0], nBandsLo);
829
830
  /* save old highband; required for overlap in usac
831
     when headerchange occurs at XVAR and VARX frame; */
832
413k
  hFreq->ov_highSubband = hFreq->highSubband;
833
834
413k
  hFreq->lowSubband = lsb;
835
413k
  hFreq->highSubband = usb;
836
837
413k
  return SBRDEC_OK;
838
413k
}