Coverage Report

Created: 2025-12-31 07:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ffmpeg/libavcodec/aacpsy.c
Line
Count
Source
1
/*
2
 * AAC encoder psychoacoustic model
3
 * Copyright (C) 2008 Konstantin Shishkov
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * AAC encoder psychoacoustic model
25
 */
26
27
#include "libavutil/attributes.h"
28
#include "libavutil/ffmath.h"
29
#include "libavutil/mem.h"
30
31
#include "avcodec.h"
32
#include "aac.h"
33
#include "psymodel.h"
34
35
/***********************************
36
 *              TODOs:
37
 * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
38
 * control quality for quality-based output
39
 **********************************/
40
41
/**
42
 * constants for 3GPP AAC psychoacoustic model
43
 * @{
44
 */
45
0
#define PSY_3GPP_THR_SPREAD_HI   1.5f // spreading factor for low-to-hi threshold spreading  (15 dB/Bark)
46
0
#define PSY_3GPP_THR_SPREAD_LOW  3.0f // spreading factor for hi-to-low threshold spreading  (30 dB/Bark)
47
/* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */
48
0
#define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
49
/* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */
50
#define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
51
/* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */
52
0
#define PSY_3GPP_EN_SPREAD_HI_S  1.5f
53
/* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */
54
0
#define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
55
/* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */
56
0
#define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
57
58
#define PSY_3GPP_RPEMIN      0.01f
59
#define PSY_3GPP_RPELEV      2.0f
60
61
0
#define PSY_3GPP_C1          3.0f           /* log2(8) */
62
0
#define PSY_3GPP_C2          1.3219281f     /* log2(2.5) */
63
0
#define PSY_3GPP_C3          0.55935729f    /* 1 - C2 / C1 */
64
65
0
#define PSY_SNR_1DB          7.9432821e-1f  /* -1dB */
66
0
#define PSY_SNR_25DB         3.1622776e-3f  /* -25dB */
67
68
0
#define PSY_3GPP_SAVE_SLOPE_L  -0.46666667f
69
0
#define PSY_3GPP_SAVE_SLOPE_S  -0.36363637f
70
0
#define PSY_3GPP_SAVE_ADD_L    -0.84285712f
71
0
#define PSY_3GPP_SAVE_ADD_S    -0.75f
72
0
#define PSY_3GPP_SPEND_SLOPE_L  0.66666669f
73
0
#define PSY_3GPP_SPEND_SLOPE_S  0.81818181f
74
0
#define PSY_3GPP_SPEND_ADD_L   -0.35f
75
0
#define PSY_3GPP_SPEND_ADD_S   -0.26111111f
76
0
#define PSY_3GPP_CLIP_LO_L      0.2f
77
0
#define PSY_3GPP_CLIP_LO_S      0.2f
78
0
#define PSY_3GPP_CLIP_HI_L      0.95f
79
0
#define PSY_3GPP_CLIP_HI_S      0.75f
80
81
0
#define PSY_3GPP_AH_THR_LONG    0.5f
82
0
#define PSY_3GPP_AH_THR_SHORT   0.63f
83
84
0
#define PSY_PE_FORGET_SLOPE  511
85
86
enum {
87
    PSY_3GPP_AH_NONE,
88
    PSY_3GPP_AH_INACTIVE,
89
    PSY_3GPP_AH_ACTIVE
90
};
91
92
0
#define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
93
0
#define PSY_3GPP_PE_TO_BITS(bits) ((bits) / 1.18f)
94
95
/* LAME psy model constants */
96
0
#define PSY_LAME_FIR_LEN 21         ///< LAME psy model FIR order
97
0
#define AAC_BLOCK_SIZE_LONG 1024    ///< long block size
98
0
#define AAC_BLOCK_SIZE_SHORT 128    ///< short block size
99
0
#define AAC_NUM_BLOCKS_SHORT 8      ///< number of blocks in a short sequence
100
0
#define PSY_LAME_NUM_SUBBLOCKS 2    ///< Number of sub-blocks in each short block
101
102
/**
103
 * @}
104
 */
105
106
/**
107
 * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
108
 */
109
typedef struct AacPsyBand{
110
    float energy;       ///< band energy
111
    float thr;          ///< energy threshold
112
    float thr_quiet;    ///< threshold in quiet
113
    float nz_lines;     ///< number of non-zero spectral lines
114
    float active_lines; ///< number of active spectral lines
115
    float pe;           ///< perceptual entropy
116
    float pe_const;     ///< constant part of the PE calculation
117
    float norm_fac;     ///< normalization factor for linearization
118
    int   avoid_holes;  ///< hole avoidance flag
119
}AacPsyBand;
120
121
/**
122
 * single/pair channel context for psychoacoustic model
123
 */
124
typedef struct AacPsyChannel{
125
    AacPsyBand band[128];               ///< bands information
126
    AacPsyBand prev_band[128];          ///< bands information from the previous frame
127
128
    float       win_energy;              ///< sliding average of channel energy
129
    float       iir_state[2];            ///< hi-pass IIR filter state
130
    uint8_t     next_grouping;           ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
131
    enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
132
    /* LAME psy model specific members */
133
    float attack_threshold;              ///< attack threshold for this channel
134
    float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS];
135
    int   prev_attack;                   ///< attack value for the last short block in the previous sequence
136
    int   next_attack0_zero;          ///< whether attack[0] of the next frame is zero
137
}AacPsyChannel;
138
139
/**
140
 * psychoacoustic model frame type-dependent coefficients
141
 */
142
typedef struct AacPsyCoeffs{
143
    float ath;           ///< absolute threshold of hearing per bands
144
    float barks;         ///< Bark value for each spectral band in long frame
145
    float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame
146
    float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame
147
    float min_snr;       ///< minimal SNR
148
}AacPsyCoeffs;
149
150
/**
151
 * 3GPP TS26.403-inspired psychoacoustic model specific data
152
 */
153
typedef struct AacPsyContext{
154
    int chan_bitrate;     ///< bitrate per channel
155
    int frame_bits;       ///< average bits per frame
156
    int fill_level;       ///< bit reservoir fill level
157
    struct {
158
        float min;        ///< minimum allowed PE for bit factor calculation
159
        float max;        ///< maximum allowed PE for bit factor calculation
160
        float previous;   ///< allowed PE of the previous frame
161
        float correction; ///< PE correction factor
162
    } pe;
163
    AacPsyCoeffs psy_coef[2][64];
164
    AacPsyChannel *ch;
165
    float global_quality; ///< normalized global quality taken from avctx
166
}AacPsyContext;
167
168
/**
169
 * LAME psy model preset struct
170
 */
171
typedef struct PsyLamePreset {
172
    int   quality;  ///< Quality to map the rest of the values to.
173
     /* This is overloaded to be both kbps per channel in ABR mode, and
174
      * requested quality in constant quality mode.
175
      */
176
    float st_lrm;   ///< short threshold for L, R, and M channels
177
} PsyLamePreset;
178
179
/**
180
 * LAME psy model preset table for ABR
181
 */
182
static const PsyLamePreset psy_abr_map[] = {
183
/* TODO: Tuning. These were taken from LAME. */
184
/* kbps/ch st_lrm   */
185
    {  8,  7.60},
186
    { 16,  7.60},
187
    { 24,  7.60},
188
    { 32,  7.60},
189
    { 40,  7.60},
190
    { 48,  7.60},
191
    { 56,  7.60},
192
    { 64,  7.40},
193
    { 80,  7.00},
194
    { 96,  6.60},
195
    {112,  6.20},
196
    {128,  6.20},
197
    {160,  6.20}
198
};
199
200
/**
201
* LAME psy model preset table for constant quality
202
*/
203
static const PsyLamePreset psy_vbr_map[] = {
204
/* vbr_q  st_lrm    */
205
    { 0,  4.20},
206
    { 1,  4.20},
207
    { 2,  4.20},
208
    { 3,  4.20},
209
    { 4,  4.20},
210
    { 5,  4.20},
211
    { 6,  4.20},
212
    { 7,  4.20},
213
    { 8,  4.20},
214
    { 9,  4.20},
215
    {10,  4.20}
216
};
217
218
/**
219
 * LAME psy model FIR coefficient table
220
 */
221
static const float psy_fir_coeffs[] = {
222
    -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
223
    -3.36639e-17 * 2, -0.0438162 * 2,  -1.54175e-17 * 2, 0.0931738 * 2,
224
    -5.52212e-17 * 2, -0.313819 * 2
225
};
226
227
/**
228
 * Calculate the ABR attack threshold from the above LAME psymodel table.
229
 */
230
static float lame_calc_attack_threshold(int bitrate)
231
0
{
232
    /* Assume max bitrate to start with */
233
0
    int lower_range = 12, upper_range = 12;
234
0
    int lower_range_kbps = psy_abr_map[12].quality;
235
0
    int upper_range_kbps = psy_abr_map[12].quality;
236
0
    int i;
237
238
    /* Determine which bitrates the value specified falls between.
239
     * If the loop ends without breaking our above assumption of 320kbps was correct.
240
     */
241
0
    for (i = 1; i < 13; i++) {
242
0
        if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) {
243
0
            upper_range = i;
244
0
            upper_range_kbps = psy_abr_map[i    ].quality;
245
0
            lower_range = i - 1;
246
0
            lower_range_kbps = psy_abr_map[i - 1].quality;
247
0
            break; /* Upper range found */
248
0
        }
249
0
    }
250
251
    /* Determine which range the value specified is closer to */
252
0
    if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps))
253
0
        return psy_abr_map[lower_range].st_lrm;
254
0
    return psy_abr_map[upper_range].st_lrm;
255
0
}
256
257
/**
258
 * LAME psy model specific initialization
259
 */
260
static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx)
261
0
{
262
0
    int i, j;
263
264
0
    for (i = 0; i < avctx->ch_layout.nb_channels; i++) {
265
0
        AacPsyChannel *pch = &ctx->ch[i];
266
267
0
        if (avctx->flags & AV_CODEC_FLAG_QSCALE)
268
0
            pch->attack_threshold = psy_vbr_map[av_clip(avctx->global_quality / FF_QP2LAMBDA, 0, 10)].st_lrm;
269
0
        else
270
0
            pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->ch_layout.nb_channels / 1000);
271
272
0
        for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++)
273
0
            pch->prev_energy_subshort[j] = 10.0f;
274
0
    }
275
0
}
276
277
/**
278
 * Calculate Bark value for given line.
279
 */
280
static av_cold float calc_bark(float f)
281
0
{
282
0
    return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
283
0
}
284
285
0
#define ATH_ADD 4
286
/**
287
 * Calculate ATH value for given frequency.
288
 * Borrowed from Lame.
289
 */
290
static av_cold float ath(float f, float add)
291
0
{
292
0
    f /= 1000.0f;
293
0
    return    3.64 * pow(f, -0.8)
294
0
            - 6.8  * exp(-0.6  * (f - 3.4) * (f - 3.4))
295
0
            + 6.0  * exp(-0.15 * (f - 8.7) * (f - 8.7))
296
0
            + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
297
0
}
298
299
0
static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
300
0
    AacPsyContext *pctx;
301
0
    float bark;
302
0
    int i, j, g, start;
303
0
    float prev, minscale, minath, minsnr, pe_min;
304
0
    int chan_bitrate = ctx->avctx->bit_rate / ((ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : ctx->avctx->ch_layout.nb_channels);
305
306
0
    const int bandwidth    = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx);
307
0
    const float num_bark   = calc_bark((float)bandwidth);
308
309
0
    if (bandwidth <= 0)
310
0
        return AVERROR(EINVAL);
311
312
0
    ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
313
0
    if (!ctx->model_priv_data)
314
0
        return AVERROR(ENOMEM);
315
0
    pctx = ctx->model_priv_data;
316
0
    pctx->global_quality = (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) * 0.01f;
317
318
0
    if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) {
319
        /* Use the target average bitrate to compute spread parameters */
320
0
        chan_bitrate = (int)(chan_bitrate / 120.0 * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120));
321
0
    }
322
323
0
    pctx->chan_bitrate = chan_bitrate;
324
0
    pctx->frame_bits   = FFMIN(2560, chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate);
325
0
    pctx->pe.min       =  8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
326
0
    pctx->pe.max       = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
327
0
    ctx->bitres.size   = 6144 - pctx->frame_bits;
328
0
    ctx->bitres.size  -= ctx->bitres.size % 8;
329
0
    pctx->fill_level   = ctx->bitres.size;
330
0
    minath = ath(3410 - 0.733 * ATH_ADD, ATH_ADD);
331
0
    for (j = 0; j < 2; j++) {
332
0
        AacPsyCoeffs *coeffs = pctx->psy_coef[j];
333
0
        const uint8_t *band_sizes = ctx->bands[j];
334
0
        float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
335
0
        float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / ctx->avctx->sample_rate;
336
        /* reference encoder uses 2.4% here instead of 60% like the spec says */
337
0
        float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark;
338
0
        float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L;
339
        /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
340
0
        float en_spread_hi  = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1;
341
342
0
        i = 0;
343
0
        prev = 0.0;
344
0
        for (g = 0; g < ctx->num_bands[j]; g++) {
345
0
            i += band_sizes[g];
346
0
            bark = calc_bark((i-1) * line_to_frequency);
347
0
            coeffs[g].barks = (bark + prev) / 2.0;
348
0
            prev = bark;
349
0
        }
350
0
        for (g = 0; g < ctx->num_bands[j] - 1; g++) {
351
0
            AacPsyCoeffs *coeff = &coeffs[g];
352
0
            float bark_width = coeffs[g+1].barks - coeffs->barks;
353
0
            coeff->spread_low[0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_LOW);
354
0
            coeff->spread_hi [0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_HI);
355
0
            coeff->spread_low[1] = ff_exp10(-bark_width * en_spread_low);
356
0
            coeff->spread_hi [1] = ff_exp10(-bark_width * en_spread_hi);
357
0
            pe_min = bark_pe * bark_width;
358
0
            minsnr = exp2(pe_min / band_sizes[g]) - 1.5f;
359
0
            coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB);
360
0
        }
361
0
        start = 0;
362
0
        for (g = 0; g < ctx->num_bands[j]; g++) {
363
0
            minscale = ath(start * line_to_frequency, ATH_ADD);
364
0
            for (i = 1; i < band_sizes[g]; i++)
365
0
                minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD));
366
0
            coeffs[g].ath = minscale - minath;
367
0
            start += band_sizes[g];
368
0
        }
369
0
    }
370
371
0
    pctx->ch = av_calloc(ctx->avctx->ch_layout.nb_channels, sizeof(*pctx->ch));
372
0
    if (!pctx->ch) {
373
0
        av_freep(&ctx->model_priv_data);
374
0
        return AVERROR(ENOMEM);
375
0
    }
376
377
0
    lame_window_init(pctx, ctx->avctx);
378
379
0
    return 0;
380
0
}
381
382
/**
383
 * IIR filter used in block switching decision
384
 */
385
static float iir_filter(int in, float state[2])
386
0
{
387
0
    float ret;
388
0
389
0
    ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
390
0
    state[0] = in;
391
0
    state[1] = ret;
392
0
    return ret;
393
0
}
394
395
/**
396
 * window grouping information stored as bits (0 - new group, 1 - group continues)
397
 */
398
static const uint8_t window_grouping[9] = {
399
    0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
400
};
401
402
/**
403
 * Tell encoder which window types to use.
404
 * @see 3GPP TS26.403 5.4.1 "Blockswitching"
405
 */
406
av_unused static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
407
                                                 const int16_t *audio,
408
                                                 const int16_t *la,
409
                                                 int channel, int prev_type)
410
0
{
411
0
    int i, j;
412
0
    int br               = ((AacPsyContext*)ctx->model_priv_data)->chan_bitrate;
413
0
    int attack_ratio     = br <= 16000 ? 18 : 10;
414
0
    AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
415
0
    AacPsyChannel *pch  = &pctx->ch[channel];
416
0
    uint8_t grouping     = 0;
417
0
    int next_type        = pch->next_window_seq;
418
0
    FFPsyWindowInfo wi  = { { 0 } };
419
0
420
0
    if (la) {
421
0
        float s[8], v;
422
0
        int switch_to_eight = 0;
423
0
        float sum = 0.0, sum2 = 0.0;
424
0
        int attack_n = 0;
425
0
        int stay_short = 0;
426
0
        for (i = 0; i < 8; i++) {
427
0
            for (j = 0; j < 128; j++) {
428
0
                v = iir_filter(la[i*128+j], pch->iir_state);
429
0
                sum += v*v;
430
0
            }
431
0
            s[i]  = sum;
432
0
            sum2 += sum;
433
0
        }
434
0
        for (i = 0; i < 8; i++) {
435
0
            if (s[i] > pch->win_energy * attack_ratio) {
436
0
                attack_n        = i + 1;
437
0
                switch_to_eight = 1;
438
0
                break;
439
0
            }
440
0
        }
441
0
        pch->win_energy = pch->win_energy*7/8 + sum2/64;
442
0
443
0
        wi.window_type[1] = prev_type;
444
0
        switch (prev_type) {
445
0
        case ONLY_LONG_SEQUENCE:
446
0
            wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
447
0
            next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
448
0
            break;
449
0
        case LONG_START_SEQUENCE:
450
0
            wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
451
0
            grouping = pch->next_grouping;
452
0
            next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
453
0
            break;
454
0
        case LONG_STOP_SEQUENCE:
455
0
            wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
456
0
            next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
457
0
            break;
458
0
        case EIGHT_SHORT_SEQUENCE:
459
0
            stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight;
460
0
            wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
461
0
            grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0;
462
0
            next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
463
0
            break;
464
0
        }
465
0
466
0
        pch->next_grouping = window_grouping[attack_n];
467
0
        pch->next_window_seq = next_type;
468
0
    } else {
469
0
        for (i = 0; i < 3; i++)
470
0
            wi.window_type[i] = prev_type;
471
0
        grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
472
0
    }
473
0
474
0
    wi.window_shape   = 1;
475
0
    if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
476
0
        wi.num_windows = 1;
477
0
        wi.grouping[0] = 1;
478
0
    } else {
479
0
        int lastgrp = 0;
480
0
        wi.num_windows = 8;
481
0
        for (i = 0; i < 8; i++) {
482
0
            if (!((grouping >> i) & 1))
483
0
                lastgrp = i;
484
0
            wi.grouping[lastgrp]++;
485
0
        }
486
0
    }
487
0
488
0
    return wi;
489
0
}
490
491
/* 5.6.1.2 "Calculation of Bit Demand" */
492
static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size,
493
                           int short_window)
494
0
{
495
0
    const float bitsave_slope  = short_window ? PSY_3GPP_SAVE_SLOPE_S  : PSY_3GPP_SAVE_SLOPE_L;
496
0
    const float bitsave_add    = short_window ? PSY_3GPP_SAVE_ADD_S    : PSY_3GPP_SAVE_ADD_L;
497
0
    const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L;
498
0
    const float bitspend_add   = short_window ? PSY_3GPP_SPEND_ADD_S   : PSY_3GPP_SPEND_ADD_L;
499
0
    const float clip_low       = short_window ? PSY_3GPP_CLIP_LO_S     : PSY_3GPP_CLIP_LO_L;
500
0
    const float clip_high      = short_window ? PSY_3GPP_CLIP_HI_S     : PSY_3GPP_CLIP_HI_L;
501
0
    float clipped_pe, bit_save, bit_spend, bit_factor, fill_level, forgetful_min_pe;
502
503
0
    ctx->fill_level += ctx->frame_bits - bits;
504
0
    ctx->fill_level  = av_clip(ctx->fill_level, 0, size);
505
0
    fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high);
506
0
    clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max);
507
0
    bit_save   = (fill_level + bitsave_add) * bitsave_slope;
508
0
    assert(bit_save <= 0.3f && bit_save >= -0.05000001f);
509
0
    bit_spend  = (fill_level + bitspend_add) * bitspend_slope;
510
0
    assert(bit_spend <= 0.5f && bit_spend >= -0.1f);
511
    /* The bit factor graph in the spec is obviously incorrect.
512
     *      bit_spend + ((bit_spend - bit_spend))...
513
     * The reference encoder subtracts everything from 1, but also seems incorrect.
514
     *      1 - bit_save + ((bit_spend + bit_save))...
515
     * Hopefully below is correct.
516
     */
517
0
    bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min);
518
    /* NOTE: The reference encoder attempts to center pe max/min around the current pe.
519
     * Here we do that by slowly forgetting pe.min when pe stays in a range that makes
520
     * it unlikely (ie: above the mean)
521
     */
522
0
    ctx->pe.max = FFMAX(pe, ctx->pe.max);
523
0
    forgetful_min_pe = ((ctx->pe.min * PSY_PE_FORGET_SLOPE)
524
0
        + FFMAX(ctx->pe.min, pe * (pe / ctx->pe.max))) / (PSY_PE_FORGET_SLOPE + 1);
525
0
    ctx->pe.min = FFMIN(pe, forgetful_min_pe);
526
527
    /* NOTE: allocate a minimum of 1/8th average frame bits, to avoid
528
     *   reservoir starvation from producing zero-bit frames
529
     */
530
0
    return FFMIN(
531
0
        ctx->frame_bits * bit_factor,
532
0
        FFMAX(ctx->frame_bits + size - bits, ctx->frame_bits / 8));
533
0
}
534
535
static float calc_pe_3gpp(AacPsyBand *band)
536
0
{
537
0
    float pe, a;
538
539
0
    band->pe           = 0.0f;
540
0
    band->pe_const     = 0.0f;
541
0
    band->active_lines = 0.0f;
542
0
    if (band->energy > band->thr) {
543
0
        a  = log2f(band->energy);
544
0
        pe = a - log2f(band->thr);
545
0
        band->active_lines = band->nz_lines;
546
0
        if (pe < PSY_3GPP_C1) {
547
0
            pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2;
548
0
            a  = a  * PSY_3GPP_C3 + PSY_3GPP_C2;
549
0
            band->active_lines *= PSY_3GPP_C3;
550
0
        }
551
0
        band->pe       = pe * band->nz_lines;
552
0
        band->pe_const = a  * band->nz_lines;
553
0
    }
554
555
0
    return band->pe;
556
0
}
557
558
static float calc_reduction_3gpp(float a, float desired_pe, float pe,
559
                                 float active_lines)
560
0
{
561
0
    float thr_avg, reduction;
562
563
0
    if(active_lines == 0.0)
564
0
        return 0;
565
566
0
    thr_avg   = exp2f((a - pe) / (4.0f * active_lines));
567
0
    reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg;
568
569
0
    return FFMAX(reduction, 0.0f);
570
0
}
571
572
static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr,
573
                                   float reduction)
574
0
{
575
0
    float thr = band->thr;
576
577
0
    if (band->energy > thr) {
578
0
        thr = sqrtf(thr);
579
0
        thr = sqrtf(thr) + reduction;
580
0
        thr *= thr;
581
0
        thr *= thr;
582
583
        /* This deviates from the 3GPP spec to match the reference encoder.
584
         * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands
585
         * that have hole avoidance on (active or inactive). It always reduces the
586
         * threshold of bands with hole avoidance off.
587
         */
588
0
        if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) {
589
0
            thr = FFMAX(band->thr, band->energy * min_snr);
590
0
            band->avoid_holes = PSY_3GPP_AH_ACTIVE;
591
0
        }
592
0
    }
593
594
0
    return thr;
595
0
}
596
597
static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch,
598
                          const uint8_t *band_sizes, const float *coefs, const int cutoff)
599
0
{
600
0
    int i, w, g;
601
0
    int start = 0, wstart = 0;
602
0
    for (w = 0; w < wi->num_windows*16; w += 16) {
603
0
        wstart = 0;
604
0
        for (g = 0; g < num_bands; g++) {
605
0
            AacPsyBand *band = &pch->band[w+g];
606
607
0
            float form_factor = 0.0f;
608
0
            float Temp;
609
0
            band->energy = 0.0f;
610
0
            if (wstart < cutoff) {
611
0
                for (i = 0; i < band_sizes[g]; i++) {
612
0
                    band->energy += coefs[start+i] * coefs[start+i];
613
0
                    form_factor  += sqrtf(fabs(coefs[start+i]));
614
0
                }
615
0
            }
616
0
            Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0;
617
0
            band->thr      = band->energy * 0.001258925f;
618
0
            band->nz_lines = form_factor * sqrtf(Temp);
619
620
0
            start += band_sizes[g];
621
0
            wstart += band_sizes[g];
622
0
        }
623
0
    }
624
0
}
625
626
static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs)
627
0
{
628
0
    int i, j;
629
0
    for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) {
630
0
        float sum1, sum2;
631
0
        sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2];
632
0
        sum2 = 0.0;
633
0
        for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) {
634
0
            sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]);
635
0
            sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]);
636
0
        }
637
        /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768.
638
         *       Tuning this for normalized floats would be difficult. */
639
0
        hpfsmpl[i] = (sum1 + sum2) * 32768.0f;
640
0
    }
641
0
}
642
643
/**
644
 * Calculate band thresholds as suggested in 3GPP TS26.403
645
 */
646
static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel,
647
                                     const float *coefs, const FFPsyWindowInfo *wi)
648
0
{
649
0
    AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
650
0
    AacPsyChannel *pch  = &pctx->ch[channel];
651
0
    int i, w, g;
652
0
    float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0};
653
0
    float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
654
0
    float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f);
655
0
    const int      num_bands   = ctx->num_bands[wi->num_windows == 8];
656
0
    const uint8_t *band_sizes  = ctx->bands[wi->num_windows == 8];
657
0
    AacPsyCoeffs  *coeffs      = pctx->psy_coef[wi->num_windows == 8];
658
0
    const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG;
659
0
    const int bandwidth        = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx);
660
0
    const int cutoff           = bandwidth * 2048 / wi->num_windows / ctx->avctx->sample_rate;
661
662
    //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
663
0
    calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff);
664
665
    //modify thresholds and energies - spread, threshold in quiet, pre-echo control
666
0
    for (w = 0; w < wi->num_windows*16; w += 16) {
667
0
        AacPsyBand *bands = &pch->band[w];
668
669
        /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */
670
0
        spread_en[0] = bands[0].energy;
671
0
        for (g = 1; g < num_bands; g++) {
672
0
            bands[g].thr   = FFMAX(bands[g].thr,    bands[g-1].thr * coeffs[g].spread_hi[0]);
673
0
            spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]);
674
0
        }
675
0
        for (g = num_bands - 2; g >= 0; g--) {
676
0
            bands[g].thr   = FFMAX(bands[g].thr,   bands[g+1].thr * coeffs[g].spread_low[0]);
677
0
            spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]);
678
0
        }
679
        //5.4.2.4 "Threshold in quiet"
680
0
        for (g = 0; g < num_bands; g++) {
681
0
            AacPsyBand *band = &bands[g];
682
683
0
            band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath);
684
            //5.4.2.5 "Pre-echo control"
685
0
            if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (!w && wi->window_type[1] == LONG_START_SEQUENCE)))
686
0
                band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr,
687
0
                                  PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
688
689
            /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */
690
0
            pe += calc_pe_3gpp(band);
691
0
            a  += band->pe_const;
692
0
            active_lines += band->active_lines;
693
694
            /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */
695
0
            if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f)
696
0
                band->avoid_holes = PSY_3GPP_AH_NONE;
697
0
            else
698
0
                band->avoid_holes = PSY_3GPP_AH_INACTIVE;
699
0
        }
700
0
    }
701
702
    /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */
703
0
    ctx->ch[channel].entropy = pe;
704
0
    if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) {
705
        /* (2.5 * 120) achieves almost transparent rate, and we want to give
706
         * ample room downwards, so we make that equivalent to QSCALE=2.4
707
         */
708
0
        desired_pe = pe * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) / (2 * 2.5f * 120.0f);
709
0
        desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe));
710
0
        desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping
711
712
        /* PE slope smoothing */
713
0
        if (ctx->bitres.bits > 0) {
714
0
            desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe));
715
0
            desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping
716
0
        }
717
718
0
        pctx->pe.max = FFMAX(pe, pctx->pe.max);
719
0
        pctx->pe.min = FFMIN(pe, pctx->pe.min);
720
0
    } else {
721
0
        desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8);
722
0
        desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits);
723
724
        /* NOTE: PE correction is kept simple. During initial testing it had very
725
         *       little effect on the final bitrate. Probably a good idea to come
726
         *       back and do more testing later.
727
         */
728
0
        if (ctx->bitres.bits > 0)
729
0
            desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits),
730
0
                                   0.85f, 1.15f);
731
0
    }
732
0
    pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits);
733
0
    ctx->bitres.alloc = desired_bits;
734
735
0
    if (desired_pe < pe) {
736
        /* 5.6.1.3.4 "First Estimation of the reduction value" */
737
0
        for (w = 0; w < wi->num_windows*16; w += 16) {
738
0
            reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines);
739
0
            pe = 0.0f;
740
0
            a  = 0.0f;
741
0
            active_lines = 0.0f;
742
0
            for (g = 0; g < num_bands; g++) {
743
0
                AacPsyBand *band = &pch->band[w+g];
744
745
0
                band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
746
                /* recalculate PE */
747
0
                pe += calc_pe_3gpp(band);
748
0
                a  += band->pe_const;
749
0
                active_lines += band->active_lines;
750
0
            }
751
0
        }
752
753
        /* 5.6.1.3.5 "Second Estimation of the reduction value" */
754
0
        for (i = 0; i < 2; i++) {
755
0
            float pe_no_ah = 0.0f, desired_pe_no_ah;
756
0
            active_lines = a = 0.0f;
757
0
            for (w = 0; w < wi->num_windows*16; w += 16) {
758
0
                for (g = 0; g < num_bands; g++) {
759
0
                    AacPsyBand *band = &pch->band[w+g];
760
761
0
                    if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) {
762
0
                        pe_no_ah += band->pe;
763
0
                        a        += band->pe_const;
764
0
                        active_lines += band->active_lines;
765
0
                    }
766
0
                }
767
0
            }
768
0
            desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f);
769
0
            if (active_lines > 0.0f)
770
0
                reduction = calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines);
771
772
0
            pe = 0.0f;
773
0
            for (w = 0; w < wi->num_windows*16; w += 16) {
774
0
                for (g = 0; g < num_bands; g++) {
775
0
                    AacPsyBand *band = &pch->band[w+g];
776
777
0
                    if (active_lines > 0.0f)
778
0
                        band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
779
0
                    pe += calc_pe_3gpp(band);
780
0
                    if (band->thr > 0.0f)
781
0
                        band->norm_fac = band->active_lines / band->thr;
782
0
                    else
783
0
                        band->norm_fac = 0.0f;
784
0
                    norm_fac += band->norm_fac;
785
0
                }
786
0
            }
787
0
            delta_pe = desired_pe - pe;
788
0
            if (fabs(delta_pe) > 0.05f * desired_pe)
789
0
                break;
790
0
        }
791
792
0
        if (pe < 1.15f * desired_pe) {
793
            /* 6.6.1.3.6 "Final threshold modification by linearization" */
794
0
            norm_fac = norm_fac ? 1.0f / norm_fac : 0;
795
0
            for (w = 0; w < wi->num_windows*16; w += 16) {
796
0
                for (g = 0; g < num_bands; g++) {
797
0
                    AacPsyBand *band = &pch->band[w+g];
798
799
0
                    if (band->active_lines > 0.5f) {
800
0
                        float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe;
801
0
                        float thr = band->thr;
802
803
0
                        thr *= exp2f(delta_sfb_pe / band->active_lines);
804
0
                        if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE)
805
0
                            thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy);
806
0
                        band->thr = thr;
807
0
                    }
808
0
                }
809
0
            }
810
0
        } else {
811
            /* 5.6.1.3.7 "Further perceptual entropy reduction" */
812
0
            g = num_bands;
813
0
            while (pe > desired_pe && g--) {
814
0
                for (w = 0; w < wi->num_windows*16; w+= 16) {
815
0
                    AacPsyBand *band = &pch->band[w+g];
816
0
                    if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) {
817
0
                        coeffs[g].min_snr = PSY_SNR_1DB;
818
0
                        band->thr = band->energy * PSY_SNR_1DB;
819
0
                        pe += band->active_lines * 1.5f - band->pe;
820
0
                    }
821
0
                }
822
0
            }
823
            /* TODO: allow more holes (unused without mid/side) */
824
0
        }
825
0
    }
826
827
0
    for (w = 0; w < wi->num_windows*16; w += 16) {
828
0
        for (g = 0; g < num_bands; g++) {
829
0
            AacPsyBand *band     = &pch->band[w+g];
830
0
            FFPsyBand  *psy_band = &ctx->ch[channel].psy_bands[w+g];
831
832
0
            psy_band->threshold = band->thr;
833
0
            psy_band->energy    = band->energy;
834
0
            psy_band->spread    = band->active_lines * 2.0f / band_sizes[g];
835
0
            psy_band->bits      = PSY_3GPP_PE_TO_BITS(band->pe);
836
0
        }
837
0
    }
838
839
0
    memcpy(pch->prev_band, pch->band, sizeof(pch->band));
840
0
}
841
842
static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
843
                                   const float **coeffs, const FFPsyWindowInfo *wi)
844
0
{
845
0
    int ch;
846
0
    FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel);
847
848
0
    for (ch = 0; ch < group->num_ch; ch++)
849
0
        psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]);
850
0
}
851
852
static av_cold void psy_3gpp_end(FFPsyContext *apc)
853
0
{
854
0
    AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data;
855
0
    if (pctx)
856
0
        av_freep(&pctx->ch);
857
0
    av_freep(&apc->model_priv_data);
858
0
}
859
860
static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock)
861
0
{
862
0
    int blocktype = ONLY_LONG_SEQUENCE;
863
0
    if (uselongblock) {
864
0
        if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE)
865
0
            blocktype = LONG_STOP_SEQUENCE;
866
0
    } else {
867
0
        blocktype = EIGHT_SHORT_SEQUENCE;
868
0
        if (ctx->next_window_seq == ONLY_LONG_SEQUENCE)
869
0
            ctx->next_window_seq = LONG_START_SEQUENCE;
870
0
        if (ctx->next_window_seq == LONG_STOP_SEQUENCE)
871
0
            ctx->next_window_seq = EIGHT_SHORT_SEQUENCE;
872
0
    }
873
874
0
    wi->window_type[0] = ctx->next_window_seq;
875
0
    ctx->next_window_seq = blocktype;
876
0
}
877
878
static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio,
879
                                       const float *la, int channel, int prev_type)
880
0
{
881
0
    AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
882
0
    AacPsyChannel *pch  = &pctx->ch[channel];
883
0
    int grouping     = 0;
884
0
    int uselongblock = 1;
885
0
    int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
886
0
    int i;
887
0
    FFPsyWindowInfo wi = { { 0 } };
888
889
0
    if (la) {
890
0
        float hpfsmpl[AAC_BLOCK_SIZE_LONG];
891
0
        const float *pf = hpfsmpl;
892
0
        float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
893
0
        float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
894
0
        float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
895
0
        const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN);
896
0
        int att_sum = 0;
897
898
        /* LAME comment: apply high pass filter of fs/4 */
899
0
        psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs);
900
901
        /* Calculate the energies of each sub-shortblock */
902
0
        for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) {
903
0
            energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)];
904
0
            assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS - 2)] > 0);
905
0
            attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS - 2)];
906
0
            energy_short[0] += energy_subshort[i];
907
0
        }
908
909
0
        for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) {
910
0
            const float *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS);
911
0
            float p = 1.0f;
912
0
            for (; pf < pfe; pf++)
913
0
                p = FFMAX(p, fabsf(*pf));
914
0
            pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p;
915
0
            energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p;
916
917
            /* NOTE: The indexes below are [i + 3 - 2] in the LAME source. Compare each sub-block to sub-block - 2 */
918
0
            if (p > energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS - 2])
919
0
                p = p / energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS - 2];
920
0
            else if (energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS - 2] > p * 10.0f)
921
0
                p = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS - 2] / (p * 10.0f);
922
0
            else
923
0
                p = 0.0;
924
925
0
            attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p;
926
0
        }
927
928
        /* compare energy between sub-short blocks */
929
0
        for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++)
930
0
            if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS])
931
0
                if (attack_intensity[i] > pch->attack_threshold)
932
0
                    attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1;
933
934
        /* should have energy change between short blocks, in order to avoid periodic signals */
935
        /* Good samples to show the effect are Trumpet test songs */
936
        /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */
937
        /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */
938
0
        for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) {
939
0
            const float u = energy_short[i - 1];
940
0
            const float v = energy_short[i];
941
0
            const float m = FFMAX(u, v);
942
0
            if (m < 40000) {                          /* (2) */
943
0
                if (u < 2.3f * v && v < 2.3f * u) {   /* (1) */
944
0
                    if (i == 1 && attacks[0] < attacks[i])
945
0
                        attacks[0] = 0;
946
0
                    attacks[i] = 0;
947
0
                }
948
0
            }
949
0
            att_sum += attacks[i];
950
0
        }
951
952
0
        if (pch->next_attack0_zero)
953
0
            attacks[0] = 0;
954
0
        pch->next_attack0_zero = !attacks[AAC_NUM_BLOCKS_SHORT];
955
956
0
        if (attacks[0] <= pch->prev_attack)
957
0
            attacks[0] = 0;
958
959
0
        att_sum += attacks[0];
960
961
        /* If the previous attack happened in the last sub-block of the previous sequence,
962
         * or if there's a new attack, use short window */
963
0
        if (pch->prev_attack == PSY_LAME_NUM_SUBBLOCKS || att_sum) {
964
0
            uselongblock = 0;
965
966
0
            for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++)
967
0
                if (attacks[i] && attacks[i-1])
968
0
                    attacks[i] = 0;
969
0
        }
970
0
    } else {
971
        /* We have no lookahead info, so just use same type as the previous sequence. */
972
0
        uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE);
973
0
    }
974
975
0
    lame_apply_block_type(pch, &wi, uselongblock);
976
977
0
    wi.window_type[1] = prev_type;
978
0
    if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
979
980
0
        wi.num_windows  = 1;
981
0
        wi.grouping[0]  = 1;
982
0
        if (wi.window_type[0] == LONG_START_SEQUENCE)
983
0
            wi.window_shape = 0;
984
0
        else
985
0
            wi.window_shape = 1;
986
987
0
    } else {
988
0
        int lastgrp = 0;
989
990
0
        wi.num_windows = 8;
991
0
        wi.window_shape = 0;
992
0
        for (i = 0; i < 8; i++) {
993
0
            if (!((pch->next_grouping >> i) & 1))
994
0
                lastgrp = i;
995
0
            wi.grouping[lastgrp]++;
996
0
        }
997
0
    }
998
999
    /* Determine grouping, based on the location of the first attack, and save for
1000
     * the next frame.
1001
     * FIXME: Move this to analysis.
1002
     * TODO: Tune groupings depending on attack location
1003
     * TODO: Handle more than one attack in a group
1004
     */
1005
0
    for (i = 0; i < 9; i++) {
1006
0
        if (attacks[i]) {
1007
0
            grouping = i;
1008
0
            break;
1009
0
        }
1010
0
    }
1011
0
    pch->next_grouping = window_grouping[grouping];
1012
1013
0
    pch->prev_attack = attacks[AAC_NUM_BLOCKS_SHORT - 1];
1014
1015
0
    return wi;
1016
0
}
1017
1018
const FFPsyModel ff_aac_psy_model =
1019
{
1020
    .name    = "3GPP TS 26.403-inspired model",
1021
    .init    = psy_3gpp_init,
1022
    .window  = psy_lame_window,
1023
    .analyze = psy_3gpp_analyze,
1024
    .end     = psy_3gpp_end,
1025
};