Coverage Report

Created: 2025-12-31 07:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ffmpeg/libavcodec/ac3enc_template.c
Line
Count
Source
1
/*
2
 * AC-3 encoder float/fixed template
3
 * Copyright (c) 2000 Fabrice Bellard
4
 * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
5
 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
6
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23
24
/**
25
 * @file
26
 * AC-3 encoder float/fixed template
27
 */
28
29
#include "config_components.h"
30
31
#include <stdint.h>
32
33
#include "libavutil/attributes.h"
34
#include "libavutil/avassert.h"
35
#include "libavutil/mem_internal.h"
36
37
#include "audiodsp.h"
38
#include "ac3enc.h"
39
#include "eac3enc.h"
40
41
#if AC3ENC_FLOAT
42
0
#define RENAME(element) element ## _float
43
#else
44
0
#define RENAME(element) element ## _fixed
45
#endif
46
47
/*
48
 * Apply the MDCT to input samples to generate frequency coefficients.
49
 * This applies the KBD window and normalizes the input to reduce precision
50
 * loss due to fixed-point calculations.
51
 */
52
static void apply_mdct(AC3EncodeContext *s, uint8_t * const *samples)
53
0
{
54
0
    av_assert1(s->num_blocks > 0);
55
56
0
    for (int ch = 0; ch < s->channels; ch++) {
57
0
        const SampleType *input_samples0 = (const SampleType*)s->planar_samples[ch];
58
        /* Reorder channels from native order to AC-3 order. */
59
0
        const SampleType *input_samples1 = (const SampleType*)samples[s->channel_map[ch]];
60
0
        int blk = 0;
61
62
0
        do {
63
0
            AC3Block *block = &s->blocks[blk];
64
0
            SampleType *windowed_samples = s->RENAME(windowed_samples);
65
66
0
            s->fdsp->vector_fmul(windowed_samples, input_samples0,
67
0
                                 s->RENAME(mdct_window), AC3_BLOCK_SIZE);
68
0
            s->fdsp->vector_fmul_reverse(windowed_samples + AC3_BLOCK_SIZE,
69
0
                                         input_samples1,
70
0
                                         s->RENAME(mdct_window), AC3_BLOCK_SIZE);
71
72
0
            s->tx_fn(s->tx, block->mdct_coef[ch+1],
73
0
                     windowed_samples, sizeof(*windowed_samples));
74
0
            input_samples0  = input_samples1;
75
0
            input_samples1 += AC3_BLOCK_SIZE;
76
0
        } while (++blk < s->num_blocks);
77
78
        /* Store last 256 samples of current frame */
79
0
        memcpy(s->planar_samples[ch], input_samples0,
80
0
               AC3_BLOCK_SIZE * sizeof(*input_samples0));
81
0
    }
82
0
}
Unexecuted instantiation: ac3enc_float.c:apply_mdct
Unexecuted instantiation: ac3enc_fixed.c:apply_mdct
83
84
85
/*
86
 * Calculate coupling channel and coupling coordinates.
87
 */
88
static void apply_channel_coupling(AC3EncodeContext *s)
89
0
{
90
0
    LOCAL_ALIGNED_32(CoefType, cpl_coords,      [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
91
#if AC3ENC_FLOAT
92
0
    LOCAL_ALIGNED_32(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
93
#else
94
    int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
95
#endif
96
0
    int av_uninit(blk), ch, bnd, i, j;
97
0
    CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
98
0
    int cpl_start, num_cpl_coefs;
99
100
0
    memset(cpl_coords,       0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
101
#if AC3ENC_FLOAT
102
0
    memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
103
#endif
104
105
    /* align start to 16-byte boundary. align length to multiple of 32.
106
        note: coupling start bin % 4 will always be 1 */
107
0
    cpl_start     = s->start_freq[CPL_CH] - 1;
108
0
    num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
109
0
    cpl_start     = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
110
111
    /* calculate coupling channel from fbw channels */
112
0
    for (blk = 0; blk < s->num_blocks; blk++) {
113
0
        AC3Block *block = &s->blocks[blk];
114
0
        CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
115
0
        if (!block->cpl_in_use)
116
0
            continue;
117
0
        memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
118
0
        for (ch = 1; ch <= s->fbw_channels; ch++) {
119
0
            CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
120
0
            if (!block->channel_in_cpl[ch])
121
0
                continue;
122
0
            for (i = 0; i < num_cpl_coefs; i++)
123
0
                cpl_coef[i] += ch_coef[i];
124
0
        }
125
126
        /* coefficients must be clipped in order to be encoded */
127
0
        clip_coefficients(&s->adsp, cpl_coef, num_cpl_coefs);
128
0
    }
129
130
    /* calculate energy in each band in coupling channel and each fbw channel */
131
    /* TODO: possibly use SIMD to speed up energy calculation */
132
0
    bnd = 0;
133
0
    i = s->start_freq[CPL_CH];
134
0
    while (i < s->cpl_end_freq) {
135
0
        int band_size = s->cpl_band_sizes[bnd];
136
0
        for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
137
0
            for (blk = 0; blk < s->num_blocks; blk++) {
138
0
                AC3Block *block = &s->blocks[blk];
139
0
                if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
140
0
                    continue;
141
0
                for (j = 0; j < band_size; j++) {
142
0
                    CoefType v = block->mdct_coef[ch][i+j];
143
0
                    MAC_COEF(energy[blk][ch][bnd], v, v);
144
0
                }
145
0
            }
146
0
        }
147
0
        i += band_size;
148
0
        bnd++;
149
0
    }
150
151
    /* calculate coupling coordinates for all blocks for all channels */
152
0
    for (blk = 0; blk < s->num_blocks; blk++) {
153
0
        AC3Block *block  = &s->blocks[blk];
154
0
        if (!block->cpl_in_use)
155
0
            continue;
156
0
        for (ch = 1; ch <= s->fbw_channels; ch++) {
157
0
            if (!block->channel_in_cpl[ch])
158
0
                continue;
159
0
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
160
0
                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
161
0
                                                          energy[blk][CPL_CH][bnd]);
162
0
            }
163
0
        }
164
0
    }
165
166
    /* determine which blocks to send new coupling coordinates for */
167
0
    for (blk = 0; blk < s->num_blocks; blk++) {
168
0
        AC3Block *block  = &s->blocks[blk];
169
0
        AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
170
171
0
        memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));
172
173
0
        if (block->cpl_in_use) {
174
            /* send new coordinates if this is the first block, if previous
175
             * block did not use coupling but this block does, the channels
176
             * using coupling has changed from the previous block, or the
177
             * coordinate difference from the last block for any channel is
178
             * greater than a threshold value. */
179
0
            if (blk == 0 || !block0->cpl_in_use) {
180
0
                for (ch = 1; ch <= s->fbw_channels; ch++)
181
0
                    block->new_cpl_coords[ch] = 1;
182
0
            } else {
183
0
                for (ch = 1; ch <= s->fbw_channels; ch++) {
184
0
                    if (!block->channel_in_cpl[ch])
185
0
                        continue;
186
0
                    if (!block0->channel_in_cpl[ch]) {
187
0
                        block->new_cpl_coords[ch] = 1;
188
0
                    } else {
189
0
                        CoefSumType coord_diff = 0;
190
0
                        for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
191
0
                            coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
192
0
                                                cpl_coords[blk  ][ch][bnd]);
193
0
                        }
194
0
                        coord_diff /= s->num_cpl_bands;
195
0
                        if (coord_diff > NEW_CPL_COORD_THRESHOLD)
196
0
                            block->new_cpl_coords[ch] = 1;
197
0
                    }
198
0
                }
199
0
            }
200
0
        }
201
0
    }
202
203
0
    av_assert1(s->fbw_channels > 0);
204
205
    /* calculate final coupling coordinates, taking into account reusing of
206
       coordinates in successive blocks */
207
0
    for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
208
0
        blk = 0;
209
0
        while (blk < s->num_blocks) {
210
0
            int av_uninit(blk1);
211
0
            AC3Block *block  = &s->blocks[blk];
212
213
0
            if (!block->cpl_in_use) {
214
0
                blk++;
215
0
                continue;
216
0
            }
217
218
0
            for (ch = 1; ch <= s->fbw_channels; ch++) {
219
0
                CoefSumType energy_ch, energy_cpl;
220
0
                if (!block->channel_in_cpl[ch])
221
0
                    continue;
222
0
                energy_cpl = energy[blk][CPL_CH][bnd];
223
0
                energy_ch = energy[blk][ch][bnd];
224
0
                blk1 = blk+1;
225
0
                while (blk1 < s->num_blocks && !s->blocks[blk1].new_cpl_coords[ch]) {
226
0
                    if (s->blocks[blk1].cpl_in_use) {
227
0
                        energy_cpl += energy[blk1][CPL_CH][bnd];
228
0
                        energy_ch += energy[blk1][ch][bnd];
229
0
                    }
230
0
                    blk1++;
231
0
                }
232
0
                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
233
0
            }
234
0
            blk = blk1;
235
0
        }
236
0
    }
237
238
    /* calculate exponents/mantissas for coupling coordinates */
239
0
    for (blk = 0; blk < s->num_blocks; blk++) {
240
0
        AC3Block *block = &s->blocks[blk];
241
0
        if (!block->cpl_in_use)
242
0
            continue;
243
244
#if AC3ENC_FLOAT
245
0
        s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
246
0
                                   cpl_coords[blk][1],
247
0
                                   s->fbw_channels * 16);
248
0
#endif
249
0
        s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
250
0
                                    fixed_cpl_coords[blk][1],
251
0
                                    s->fbw_channels * 16);
252
253
0
        for (ch = 1; ch <= s->fbw_channels; ch++) {
254
0
            int bnd, min_exp, max_exp, master_exp;
255
256
0
            if (!block->new_cpl_coords[ch])
257
0
                continue;
258
259
            /* determine master exponent */
260
0
            min_exp = max_exp = block->cpl_coord_exp[ch][0];
261
0
            for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
262
0
                int exp = block->cpl_coord_exp[ch][bnd];
263
0
                min_exp = FFMIN(exp, min_exp);
264
0
                max_exp = FFMAX(exp, max_exp);
265
0
            }
266
0
            master_exp = ((max_exp - 15) + 2) / 3;
267
0
            master_exp = FFMAX(master_exp, 0);
268
0
            while (min_exp < master_exp * 3)
269
0
                master_exp--;
270
0
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
271
0
                block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
272
0
                                                        master_exp * 3, 0, 15);
273
0
            }
274
0
            block->cpl_master_exp[ch] = master_exp;
275
276
            /* quantize mantissas */
277
0
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
278
0
                int cpl_exp  = block->cpl_coord_exp[ch][bnd];
279
0
                int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
280
0
                if (cpl_exp == 15)
281
0
                    cpl_mant >>= 1;
282
0
                else
283
0
                    cpl_mant -= 16;
284
285
0
                block->cpl_coord_mant[ch][bnd] = cpl_mant;
286
0
            }
287
0
        }
288
0
    }
289
290
0
    if (AC3ENC_FLOAT && CONFIG_EAC3_ENCODER && s->eac3)
291
0
        ff_eac3_set_cpl_states(s);
292
0
}
Unexecuted instantiation: ac3enc_float.c:apply_channel_coupling
Unexecuted instantiation: ac3enc_fixed.c:apply_channel_coupling
293
294
295
/*
296
 * Determine rematrixing flags for each block and band.
297
 */
298
static void compute_rematrixing_strategy(AC3EncodeContext *s)
299
0
{
300
0
    int nb_coefs;
301
0
    int blk, bnd;
302
0
    AC3Block *block, *block0 = NULL;
303
304
0
    if (s->channel_mode != AC3_CHMODE_STEREO)
305
0
        return;
306
307
0
    for (blk = 0; blk < s->num_blocks; blk++) {
308
0
        block = &s->blocks[blk];
309
0
        block->new_rematrixing_strategy = !blk;
310
311
0
        block->num_rematrixing_bands = 4;
312
0
        if (block->cpl_in_use) {
313
0
            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
314
0
            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
315
0
            if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
316
0
                block->new_rematrixing_strategy = 1;
317
0
        }
318
0
        nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
319
320
0
        if (!s->rematrixing_enabled) {
321
0
            block0 = block;
322
0
            continue;
323
0
        }
324
325
0
        for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
326
            /* calculate sum of squared coeffs for one band in one block */
327
0
            int start = ff_ac3_rematrix_band_tab[bnd];
328
0
            int end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
329
0
            CoefSumType sum[4];
330
0
            sum_square_butterfly(s, sum, block->mdct_coef[1] + start,
331
0
                                 block->mdct_coef[2] + start, end - start);
332
333
            /* compare sums to determine if rematrixing will be used for this band */
334
0
            if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
335
0
                block->rematrixing_flags[bnd] = 1;
336
0
            else
337
0
                block->rematrixing_flags[bnd] = 0;
338
339
            /* determine if new rematrixing flags will be sent */
340
0
            if (blk &&
341
0
                block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
342
0
                block->new_rematrixing_strategy = 1;
343
0
            }
344
0
        }
345
0
        block0 = block;
346
0
    }
347
0
}
Unexecuted instantiation: ac3enc_float.c:compute_rematrixing_strategy
Unexecuted instantiation: ac3enc_fixed.c:compute_rematrixing_strategy
348
349
350
static void encode_frame(AC3EncodeContext *s, uint8_t * const *samples)
351
0
{
352
0
    apply_mdct(s, samples);
353
354
0
    s->cpl_on = s->cpl_enabled;
355
0
    ff_ac3_compute_coupling_strategy(s);
356
357
0
    if (s->cpl_on)
358
0
        apply_channel_coupling(s);
359
360
0
    compute_rematrixing_strategy(s);
361
362
#if AC3ENC_FLOAT
363
    scale_coefficients(s);
364
#endif
365
0
}
Unexecuted instantiation: ac3enc_float.c:encode_frame
Unexecuted instantiation: ac3enc_fixed.c:encode_frame