/src/ffmpeg/libavcodec/ac3enc_template.c
Line | Count | Source |
1 | | /* |
2 | | * AC-3 encoder float/fixed template |
3 | | * Copyright (c) 2000 Fabrice Bellard |
4 | | * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com> |
5 | | * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de> |
6 | | * |
7 | | * This file is part of FFmpeg. |
8 | | * |
9 | | * FFmpeg is free software; you can redistribute it and/or |
10 | | * modify it under the terms of the GNU Lesser General Public |
11 | | * License as published by the Free Software Foundation; either |
12 | | * version 2.1 of the License, or (at your option) any later version. |
13 | | * |
14 | | * FFmpeg is distributed in the hope that it will be useful, |
15 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
17 | | * Lesser General Public License for more details. |
18 | | * |
19 | | * You should have received a copy of the GNU Lesser General Public |
20 | | * License along with FFmpeg; if not, write to the Free Software |
21 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
22 | | */ |
23 | | |
24 | | /** |
25 | | * @file |
26 | | * AC-3 encoder float/fixed template |
27 | | */ |
28 | | |
29 | | #include "config_components.h" |
30 | | |
31 | | #include <stdint.h> |
32 | | |
33 | | #include "libavutil/attributes.h" |
34 | | #include "libavutil/avassert.h" |
35 | | #include "libavutil/mem_internal.h" |
36 | | |
37 | | #include "audiodsp.h" |
38 | | #include "ac3enc.h" |
39 | | #include "eac3enc.h" |
40 | | |
41 | | #if AC3ENC_FLOAT |
42 | 0 | #define RENAME(element) element ## _float |
43 | | #else |
44 | 0 | #define RENAME(element) element ## _fixed |
45 | | #endif |
46 | | |
47 | | /* |
48 | | * Apply the MDCT to input samples to generate frequency coefficients. |
49 | | * This applies the KBD window and normalizes the input to reduce precision |
50 | | * loss due to fixed-point calculations. |
51 | | */ |
52 | | static void apply_mdct(AC3EncodeContext *s, uint8_t * const *samples) |
53 | 0 | { |
54 | 0 | av_assert1(s->num_blocks > 0); |
55 | |
|
56 | 0 | for (int ch = 0; ch < s->channels; ch++) { |
57 | 0 | const SampleType *input_samples0 = (const SampleType*)s->planar_samples[ch]; |
58 | | /* Reorder channels from native order to AC-3 order. */ |
59 | 0 | const SampleType *input_samples1 = (const SampleType*)samples[s->channel_map[ch]]; |
60 | 0 | int blk = 0; |
61 | |
|
62 | 0 | do { |
63 | 0 | AC3Block *block = &s->blocks[blk]; |
64 | 0 | SampleType *windowed_samples = s->RENAME(windowed_samples); |
65 | |
|
66 | 0 | s->fdsp->vector_fmul(windowed_samples, input_samples0, |
67 | 0 | s->RENAME(mdct_window), AC3_BLOCK_SIZE); |
68 | 0 | s->fdsp->vector_fmul_reverse(windowed_samples + AC3_BLOCK_SIZE, |
69 | 0 | input_samples1, |
70 | 0 | s->RENAME(mdct_window), AC3_BLOCK_SIZE); |
71 | |
|
72 | 0 | s->tx_fn(s->tx, block->mdct_coef[ch+1], |
73 | 0 | windowed_samples, sizeof(*windowed_samples)); |
74 | 0 | input_samples0 = input_samples1; |
75 | 0 | input_samples1 += AC3_BLOCK_SIZE; |
76 | 0 | } while (++blk < s->num_blocks); |
77 | | |
78 | | /* Store last 256 samples of current frame */ |
79 | 0 | memcpy(s->planar_samples[ch], input_samples0, |
80 | 0 | AC3_BLOCK_SIZE * sizeof(*input_samples0)); |
81 | 0 | } |
82 | 0 | } Unexecuted instantiation: ac3enc_float.c:apply_mdct Unexecuted instantiation: ac3enc_fixed.c:apply_mdct |
83 | | |
84 | | |
85 | | /* |
86 | | * Calculate coupling channel and coupling coordinates. |
87 | | */ |
88 | | static void apply_channel_coupling(AC3EncodeContext *s) |
89 | 0 | { |
90 | 0 | LOCAL_ALIGNED_32(CoefType, cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]); |
91 | | #if AC3ENC_FLOAT |
92 | 0 | LOCAL_ALIGNED_32(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]); |
93 | | #else |
94 | | int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords; |
95 | | #endif |
96 | 0 | int av_uninit(blk), ch, bnd, i, j; |
97 | 0 | CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}}; |
98 | 0 | int cpl_start, num_cpl_coefs; |
99 | |
|
100 | 0 | memset(cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords)); |
101 | | #if AC3ENC_FLOAT |
102 | 0 | memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords)); |
103 | | #endif |
104 | | |
105 | | /* align start to 16-byte boundary. align length to multiple of 32. |
106 | | note: coupling start bin % 4 will always be 1 */ |
107 | 0 | cpl_start = s->start_freq[CPL_CH] - 1; |
108 | 0 | num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32); |
109 | 0 | cpl_start = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs; |
110 | | |
111 | | /* calculate coupling channel from fbw channels */ |
112 | 0 | for (blk = 0; blk < s->num_blocks; blk++) { |
113 | 0 | AC3Block *block = &s->blocks[blk]; |
114 | 0 | CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start]; |
115 | 0 | if (!block->cpl_in_use) |
116 | 0 | continue; |
117 | 0 | memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef)); |
118 | 0 | for (ch = 1; ch <= s->fbw_channels; ch++) { |
119 | 0 | CoefType *ch_coef = &block->mdct_coef[ch][cpl_start]; |
120 | 0 | if (!block->channel_in_cpl[ch]) |
121 | 0 | continue; |
122 | 0 | for (i = 0; i < num_cpl_coefs; i++) |
123 | 0 | cpl_coef[i] += ch_coef[i]; |
124 | 0 | } |
125 | | |
126 | | /* coefficients must be clipped in order to be encoded */ |
127 | 0 | clip_coefficients(&s->adsp, cpl_coef, num_cpl_coefs); |
128 | 0 | } |
129 | | |
130 | | /* calculate energy in each band in coupling channel and each fbw channel */ |
131 | | /* TODO: possibly use SIMD to speed up energy calculation */ |
132 | 0 | bnd = 0; |
133 | 0 | i = s->start_freq[CPL_CH]; |
134 | 0 | while (i < s->cpl_end_freq) { |
135 | 0 | int band_size = s->cpl_band_sizes[bnd]; |
136 | 0 | for (ch = CPL_CH; ch <= s->fbw_channels; ch++) { |
137 | 0 | for (blk = 0; blk < s->num_blocks; blk++) { |
138 | 0 | AC3Block *block = &s->blocks[blk]; |
139 | 0 | if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch])) |
140 | 0 | continue; |
141 | 0 | for (j = 0; j < band_size; j++) { |
142 | 0 | CoefType v = block->mdct_coef[ch][i+j]; |
143 | 0 | MAC_COEF(energy[blk][ch][bnd], v, v); |
144 | 0 | } |
145 | 0 | } |
146 | 0 | } |
147 | 0 | i += band_size; |
148 | 0 | bnd++; |
149 | 0 | } |
150 | | |
151 | | /* calculate coupling coordinates for all blocks for all channels */ |
152 | 0 | for (blk = 0; blk < s->num_blocks; blk++) { |
153 | 0 | AC3Block *block = &s->blocks[blk]; |
154 | 0 | if (!block->cpl_in_use) |
155 | 0 | continue; |
156 | 0 | for (ch = 1; ch <= s->fbw_channels; ch++) { |
157 | 0 | if (!block->channel_in_cpl[ch]) |
158 | 0 | continue; |
159 | 0 | for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
160 | 0 | cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd], |
161 | 0 | energy[blk][CPL_CH][bnd]); |
162 | 0 | } |
163 | 0 | } |
164 | 0 | } |
165 | | |
166 | | /* determine which blocks to send new coupling coordinates for */ |
167 | 0 | for (blk = 0; blk < s->num_blocks; blk++) { |
168 | 0 | AC3Block *block = &s->blocks[blk]; |
169 | 0 | AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL; |
170 | |
|
171 | 0 | memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords)); |
172 | |
|
173 | 0 | if (block->cpl_in_use) { |
174 | | /* send new coordinates if this is the first block, if previous |
175 | | * block did not use coupling but this block does, the channels |
176 | | * using coupling has changed from the previous block, or the |
177 | | * coordinate difference from the last block for any channel is |
178 | | * greater than a threshold value. */ |
179 | 0 | if (blk == 0 || !block0->cpl_in_use) { |
180 | 0 | for (ch = 1; ch <= s->fbw_channels; ch++) |
181 | 0 | block->new_cpl_coords[ch] = 1; |
182 | 0 | } else { |
183 | 0 | for (ch = 1; ch <= s->fbw_channels; ch++) { |
184 | 0 | if (!block->channel_in_cpl[ch]) |
185 | 0 | continue; |
186 | 0 | if (!block0->channel_in_cpl[ch]) { |
187 | 0 | block->new_cpl_coords[ch] = 1; |
188 | 0 | } else { |
189 | 0 | CoefSumType coord_diff = 0; |
190 | 0 | for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
191 | 0 | coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] - |
192 | 0 | cpl_coords[blk ][ch][bnd]); |
193 | 0 | } |
194 | 0 | coord_diff /= s->num_cpl_bands; |
195 | 0 | if (coord_diff > NEW_CPL_COORD_THRESHOLD) |
196 | 0 | block->new_cpl_coords[ch] = 1; |
197 | 0 | } |
198 | 0 | } |
199 | 0 | } |
200 | 0 | } |
201 | 0 | } |
202 | |
|
203 | 0 | av_assert1(s->fbw_channels > 0); |
204 | | |
205 | | /* calculate final coupling coordinates, taking into account reusing of |
206 | | coordinates in successive blocks */ |
207 | 0 | for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
208 | 0 | blk = 0; |
209 | 0 | while (blk < s->num_blocks) { |
210 | 0 | int av_uninit(blk1); |
211 | 0 | AC3Block *block = &s->blocks[blk]; |
212 | |
|
213 | 0 | if (!block->cpl_in_use) { |
214 | 0 | blk++; |
215 | 0 | continue; |
216 | 0 | } |
217 | | |
218 | 0 | for (ch = 1; ch <= s->fbw_channels; ch++) { |
219 | 0 | CoefSumType energy_ch, energy_cpl; |
220 | 0 | if (!block->channel_in_cpl[ch]) |
221 | 0 | continue; |
222 | 0 | energy_cpl = energy[blk][CPL_CH][bnd]; |
223 | 0 | energy_ch = energy[blk][ch][bnd]; |
224 | 0 | blk1 = blk+1; |
225 | 0 | while (blk1 < s->num_blocks && !s->blocks[blk1].new_cpl_coords[ch]) { |
226 | 0 | if (s->blocks[blk1].cpl_in_use) { |
227 | 0 | energy_cpl += energy[blk1][CPL_CH][bnd]; |
228 | 0 | energy_ch += energy[blk1][ch][bnd]; |
229 | 0 | } |
230 | 0 | blk1++; |
231 | 0 | } |
232 | 0 | cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl); |
233 | 0 | } |
234 | 0 | blk = blk1; |
235 | 0 | } |
236 | 0 | } |
237 | | |
238 | | /* calculate exponents/mantissas for coupling coordinates */ |
239 | 0 | for (blk = 0; blk < s->num_blocks; blk++) { |
240 | 0 | AC3Block *block = &s->blocks[blk]; |
241 | 0 | if (!block->cpl_in_use) |
242 | 0 | continue; |
243 | | |
244 | | #if AC3ENC_FLOAT |
245 | 0 | s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1], |
246 | 0 | cpl_coords[blk][1], |
247 | 0 | s->fbw_channels * 16); |
248 | 0 | #endif |
249 | 0 | s->ac3dsp.extract_exponents(block->cpl_coord_exp[1], |
250 | 0 | fixed_cpl_coords[blk][1], |
251 | 0 | s->fbw_channels * 16); |
252 | |
|
253 | 0 | for (ch = 1; ch <= s->fbw_channels; ch++) { |
254 | 0 | int bnd, min_exp, max_exp, master_exp; |
255 | |
|
256 | 0 | if (!block->new_cpl_coords[ch]) |
257 | 0 | continue; |
258 | | |
259 | | /* determine master exponent */ |
260 | 0 | min_exp = max_exp = block->cpl_coord_exp[ch][0]; |
261 | 0 | for (bnd = 1; bnd < s->num_cpl_bands; bnd++) { |
262 | 0 | int exp = block->cpl_coord_exp[ch][bnd]; |
263 | 0 | min_exp = FFMIN(exp, min_exp); |
264 | 0 | max_exp = FFMAX(exp, max_exp); |
265 | 0 | } |
266 | 0 | master_exp = ((max_exp - 15) + 2) / 3; |
267 | 0 | master_exp = FFMAX(master_exp, 0); |
268 | 0 | while (min_exp < master_exp * 3) |
269 | 0 | master_exp--; |
270 | 0 | for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
271 | 0 | block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] - |
272 | 0 | master_exp * 3, 0, 15); |
273 | 0 | } |
274 | 0 | block->cpl_master_exp[ch] = master_exp; |
275 | | |
276 | | /* quantize mantissas */ |
277 | 0 | for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
278 | 0 | int cpl_exp = block->cpl_coord_exp[ch][bnd]; |
279 | 0 | int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24; |
280 | 0 | if (cpl_exp == 15) |
281 | 0 | cpl_mant >>= 1; |
282 | 0 | else |
283 | 0 | cpl_mant -= 16; |
284 | |
|
285 | 0 | block->cpl_coord_mant[ch][bnd] = cpl_mant; |
286 | 0 | } |
287 | 0 | } |
288 | 0 | } |
289 | |
|
290 | 0 | if (AC3ENC_FLOAT && CONFIG_EAC3_ENCODER && s->eac3) |
291 | 0 | ff_eac3_set_cpl_states(s); |
292 | 0 | } Unexecuted instantiation: ac3enc_float.c:apply_channel_coupling Unexecuted instantiation: ac3enc_fixed.c:apply_channel_coupling |
293 | | |
294 | | |
295 | | /* |
296 | | * Determine rematrixing flags for each block and band. |
297 | | */ |
298 | | static void compute_rematrixing_strategy(AC3EncodeContext *s) |
299 | 0 | { |
300 | 0 | int nb_coefs; |
301 | 0 | int blk, bnd; |
302 | 0 | AC3Block *block, *block0 = NULL; |
303 | |
|
304 | 0 | if (s->channel_mode != AC3_CHMODE_STEREO) |
305 | 0 | return; |
306 | | |
307 | 0 | for (blk = 0; blk < s->num_blocks; blk++) { |
308 | 0 | block = &s->blocks[blk]; |
309 | 0 | block->new_rematrixing_strategy = !blk; |
310 | |
|
311 | 0 | block->num_rematrixing_bands = 4; |
312 | 0 | if (block->cpl_in_use) { |
313 | 0 | block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61); |
314 | 0 | block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37); |
315 | 0 | if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands) |
316 | 0 | block->new_rematrixing_strategy = 1; |
317 | 0 | } |
318 | 0 | nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]); |
319 | |
|
320 | 0 | if (!s->rematrixing_enabled) { |
321 | 0 | block0 = block; |
322 | 0 | continue; |
323 | 0 | } |
324 | | |
325 | 0 | for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) { |
326 | | /* calculate sum of squared coeffs for one band in one block */ |
327 | 0 | int start = ff_ac3_rematrix_band_tab[bnd]; |
328 | 0 | int end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]); |
329 | 0 | CoefSumType sum[4]; |
330 | 0 | sum_square_butterfly(s, sum, block->mdct_coef[1] + start, |
331 | 0 | block->mdct_coef[2] + start, end - start); |
332 | | |
333 | | /* compare sums to determine if rematrixing will be used for this band */ |
334 | 0 | if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1])) |
335 | 0 | block->rematrixing_flags[bnd] = 1; |
336 | 0 | else |
337 | 0 | block->rematrixing_flags[bnd] = 0; |
338 | | |
339 | | /* determine if new rematrixing flags will be sent */ |
340 | 0 | if (blk && |
341 | 0 | block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) { |
342 | 0 | block->new_rematrixing_strategy = 1; |
343 | 0 | } |
344 | 0 | } |
345 | 0 | block0 = block; |
346 | 0 | } |
347 | 0 | } Unexecuted instantiation: ac3enc_float.c:compute_rematrixing_strategy Unexecuted instantiation: ac3enc_fixed.c:compute_rematrixing_strategy |
348 | | |
349 | | |
350 | | static void encode_frame(AC3EncodeContext *s, uint8_t * const *samples) |
351 | 0 | { |
352 | 0 | apply_mdct(s, samples); |
353 | |
|
354 | 0 | s->cpl_on = s->cpl_enabled; |
355 | 0 | ff_ac3_compute_coupling_strategy(s); |
356 | |
|
357 | 0 | if (s->cpl_on) |
358 | 0 | apply_channel_coupling(s); |
359 | |
|
360 | 0 | compute_rematrixing_strategy(s); |
361 | |
|
362 | | #if AC3ENC_FLOAT |
363 | | scale_coefficients(s); |
364 | | #endif |
365 | 0 | } Unexecuted instantiation: ac3enc_float.c:encode_frame Unexecuted instantiation: ac3enc_fixed.c:encode_frame |