/src/ffmpeg/libavcodec/g722.c
Line | Count | Source |
1 | | /* |
2 | | * G.722 ADPCM audio encoder/decoder |
3 | | * |
4 | | * Copyright (c) CMU 1993 Computer Science, Speech Group |
5 | | * Chengxiang Lu and Alex Hauptmann |
6 | | * Copyright (c) 2005 Steve Underwood <steveu at coppice.org> |
7 | | * Copyright (c) 2009 Kenan Gillet |
8 | | * Copyright (c) 2010 Martin Storsjo |
9 | | * |
10 | | * This file is part of FFmpeg. |
11 | | * |
12 | | * FFmpeg is free software; you can redistribute it and/or |
13 | | * modify it under the terms of the GNU Lesser General Public |
14 | | * License as published by the Free Software Foundation; either |
15 | | * version 2.1 of the License, or (at your option) any later version. |
16 | | * |
17 | | * FFmpeg is distributed in the hope that it will be useful, |
18 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
19 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
20 | | * Lesser General Public License for more details. |
21 | | * |
22 | | * You should have received a copy of the GNU Lesser General Public |
23 | | * License along with FFmpeg; if not, write to the Free Software |
24 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
25 | | */ |
26 | | |
27 | | /** |
28 | | * @file |
29 | | * G.722 ADPCM audio codec |
30 | | * |
31 | | * This G.722 decoder is a bit-exact implementation of the ITU G.722 |
32 | | * specification for all three specified bitrates - 64000bps, 56000bps |
33 | | * and 48000bps. It passes the ITU tests. |
34 | | * |
35 | | * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits |
36 | | * respectively of each byte are ignored. |
37 | | */ |
38 | | |
39 | | #include "mathops.h" |
40 | | #include "g722.h" |
41 | | |
42 | | static const int8_t sign_lookup[2] = { -1, 1 }; |
43 | | |
44 | | static const int16_t inv_log2_table[32] = { |
45 | | 2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383, |
46 | | 2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834, |
47 | | 2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371, |
48 | | 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008 |
49 | | }; |
50 | | static const int16_t high_log_factor_step[2] = { 798, -214 }; |
51 | | const int16_t ff_g722_high_inv_quant[4] = { -926, -202, 926, 202 }; |
52 | | /** |
53 | | * low_log_factor_step[index] == wl[rl42[index]] |
54 | | */ |
55 | | static const int16_t low_log_factor_step[16] = { |
56 | | -60, 3042, 1198, 538, 334, 172, 58, -30, |
57 | | 3042, 1198, 538, 334, 172, 58, -30, -60 |
58 | | }; |
59 | | const int16_t ff_g722_low_inv_quant4[16] = { |
60 | | 0, -2557, -1612, -1121, -786, -530, -323, -150, |
61 | | 2557, 1612, 1121, 786, 530, 323, 150, 0 |
62 | | }; |
63 | | const int16_t ff_g722_low_inv_quant6[64] = { |
64 | | -17, -17, -17, -17, -3101, -2738, -2376, -2088, |
65 | | -1873, -1689, -1535, -1399, -1279, -1170, -1072, -982, |
66 | | -899, -822, -750, -682, -618, -558, -501, -447, |
67 | | -396, -347, -300, -254, -211, -170, -130, -91, |
68 | | 3101, 2738, 2376, 2088, 1873, 1689, 1535, 1399, |
69 | | 1279, 1170, 1072, 982, 899, 822, 750, 682, |
70 | | 618, 558, 501, 447, 396, 347, 300, 254, |
71 | | 211, 170, 130, 91, 54, 17, -54, -17 |
72 | | }; |
73 | | |
74 | | static inline void s_zero(int cur_diff, struct G722Band *band) |
75 | 30.1M | { |
76 | 30.1M | int s_zero = 0; |
77 | | |
78 | 180M | #define ACCUM(k, x, d) do { \ |
79 | 180M | int tmp = x; \ |
80 | 180M | band->zero_mem[k] = ((band->zero_mem[k] * 255) >> 8) + \ |
81 | 180M | d*((band->diff_mem[k]^cur_diff) < 0 ? -128 : 128); \ |
82 | 180M | band->diff_mem[k] = tmp; \ |
83 | 180M | s_zero += (tmp * band->zero_mem[k]) >> 15; \ |
84 | 180M | } while (0) |
85 | 30.1M | if (cur_diff) { |
86 | 22.9M | ACCUM(5, band->diff_mem[4], 1); |
87 | 22.9M | ACCUM(4, band->diff_mem[3], 1); |
88 | 22.9M | ACCUM(3, band->diff_mem[2], 1); |
89 | 22.9M | ACCUM(2, band->diff_mem[1], 1); |
90 | 22.9M | ACCUM(1, band->diff_mem[0], 1); |
91 | 22.9M | ACCUM(0, cur_diff * 2, 1); |
92 | 22.9M | } else { |
93 | 7.12M | ACCUM(5, band->diff_mem[4], 0); |
94 | 7.12M | ACCUM(4, band->diff_mem[3], 0); |
95 | 7.12M | ACCUM(3, band->diff_mem[2], 0); |
96 | 7.12M | ACCUM(2, band->diff_mem[1], 0); |
97 | 7.12M | ACCUM(1, band->diff_mem[0], 0); |
98 | 7.12M | ACCUM(0, cur_diff * 2, 0); |
99 | 7.12M | } |
100 | 30.1M | #undef ACCUM |
101 | 30.1M | band->s_zero = s_zero; |
102 | 30.1M | } |
103 | | |
104 | | /** |
105 | | * adaptive predictor |
106 | | * |
107 | | * @param cur_diff the dequantized and scaled delta calculated from the |
108 | | * current codeword |
109 | | */ |
110 | | static void do_adaptive_prediction(struct G722Band *band, const int cur_diff) |
111 | 30.1M | { |
112 | 30.1M | int sg[2], limit, cur_qtzd_reconst; |
113 | | |
114 | 30.1M | const int cur_part_reconst = band->s_zero + cur_diff < 0; |
115 | | |
116 | 30.1M | sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]]; |
117 | 30.1M | sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]]; |
118 | 30.1M | band->part_reconst_mem[1] = band->part_reconst_mem[0]; |
119 | 30.1M | band->part_reconst_mem[0] = cur_part_reconst; |
120 | | |
121 | 30.1M | band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) + |
122 | 30.1M | (sg[1] * 128) + (band->pole_mem[1] * 127 >> 7), -12288, 12288); |
123 | | |
124 | 30.1M | limit = 15360 - band->pole_mem[1]; |
125 | 30.1M | band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit); |
126 | | |
127 | 30.1M | s_zero(cur_diff, band); |
128 | | |
129 | 30.1M | cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) * 2); |
130 | 30.1M | band->s_predictor = av_clip_int16(band->s_zero + |
131 | 30.1M | (band->pole_mem[0] * cur_qtzd_reconst >> 15) + |
132 | 30.1M | (band->pole_mem[1] * band->prev_qtzd_reconst >> 15)); |
133 | 30.1M | band->prev_qtzd_reconst = cur_qtzd_reconst; |
134 | 30.1M | } |
135 | | |
136 | | static inline int linear_scale_factor(const int log_factor) |
137 | 30.1M | { |
138 | 30.1M | const int wd1 = inv_log2_table[(log_factor >> 6) & 31]; |
139 | 30.1M | const int shift = log_factor >> 11; |
140 | 30.1M | return shift < 0 ? wd1 >> -shift : wd1 << shift; |
141 | 30.1M | } |
142 | | |
143 | | void ff_g722_update_low_predictor(struct G722Band *band, const int ilow) |
144 | 15.0M | { |
145 | 15.0M | do_adaptive_prediction(band, |
146 | 15.0M | band->scale_factor * ff_g722_low_inv_quant4[ilow] >> 10); |
147 | | |
148 | | // quantizer adaptation |
149 | 15.0M | band->log_factor = av_clip((band->log_factor * 127 >> 7) + |
150 | 15.0M | low_log_factor_step[ilow], 0, 18432); |
151 | 15.0M | band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11)); |
152 | 15.0M | } |
153 | | |
154 | | void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh, |
155 | | const int ihigh) |
156 | 15.0M | { |
157 | 15.0M | do_adaptive_prediction(band, dhigh); |
158 | | |
159 | | // quantizer adaptation |
160 | 15.0M | band->log_factor = av_clip((band->log_factor * 127 >> 7) + |
161 | 15.0M | high_log_factor_step[ihigh&1], 0, 22528); |
162 | 15.0M | band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11)); |
163 | 15.0M | } |